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Abstract. In this work, we present various hardware implementation for ASCON. We cover
encryption + tag generation as well as decryption + tag verification for ASCON AEAD and
also ASCON hash function. On top the usual (unprotected) implementation, we present side
channel protection (threshold countermeasure) and triplication/majority based fault protection.
The side channel and fault protections work orthogonal to each other (i.e., either one can be
turned on/off without affecting the other). We also show ASIC and FPGA benchmarks for our
implementations.
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1 Introduction

ASCON is a lightweight hash function and AEAD (authenticated encryption with associated data)
family [DEMS19]. It has recently been selected as the primary choice in the LWC project by NIST
[NIS23]. As the main aim of lightweight cryptography are resource-constrained embedded devices
(such as Internet-of-Things appliances), one of the main concerns are efficient implementations and
protection against physical attacks.

1.1 Our Contributions

In this work, we present various hardware (Verilog) implementations of ASCON AEAD and hash. We
consider regular (unprotected) implementations as well as side-channel and fault attack protection.

In summary, we implement and benchmark the followings:

(α) Unprotected ASCON (encryption + tag generation, decryption + tag verification; and hashing).
(β) Side channel attack protected ASCON using threshold implementation.
(γ) Fault injection protected ASCON using triplication/majority.
(δ) Combined side channel attack and fault injection protected ASCON using threshold and triplica-

tion/majority.

Our implementations use simple interface. The side channel and fault protections can be turned
on/off easily depending on the use-case (it is not necessary that both the countermeasures have to be
used all the time) by making minimal adjustment to the interface. Our source-codes are aceesible as
an open-source project1.

∗The work is supported by the Ministry of Interior of Czech Republic under grant VJ02010010.
1https://github.com/aneeshkandi14/ascon-hw-public.

https://github.com/aneeshkandi14/ascon-hw-public
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1.2 Previous Works

The hardware implementation of ASCON has been explored before, for instance, [WEHM+22,GMK16].
However, as far as we can tell, no side channel protected (threshold) implementation exists. Also, the
common countermeasure against fault (that rely on triplication/majority) has apparently not been
explored before.

2 ASCON Description

The ASCON family has 2 variants - ASCON 128 (block size = 64) and ASCON 128a (block size = 128).
Both of those take 128-bit key and nonce, and have a 320-bit state. A 128-bit tag is generated after
encryption + tag generation and it is verified in decryption + tag verification.

2.1 Permutation

The main strength of ASCON lies in the permutation process. pn represents the number of rounds of the
permutation. There are two types of permutation of i) pa consisting of a rounds (used for initialization
and finalization) and ii) pb consisting of b rounds (used for data processing).

The 320-bit state S of the ASCON is divided into 5 registers of 64 bits each. S = x0||x1||x2||x3||x4.
These 5 registers are then sent for further processing. Each permutation round is further divided into
three layers – the constant addition layer, the substitution layer, and the linear diffusion layer.

Constant Addition Layer: In this layer, a constant term is added with the x2 register word. The
constant term added depends on the current round number of the permutation. For pa, round constant
cr is used and for ρb, round constant ca−b+r is used, where r is the number of rounds. The number of
rounds and related constants are given in Table 1.

Table 1: Round constants and number of rounds for ASCON

ρ12 ρ8 ρ6 Constant ρ12 ρ8 ρ6 Constant

0 000000000000000000f0 6 2 0 00000000000000000096

1 000000000000000000e1 7 3 1 00000000000000000087

2 000000000000000000d2 8 4 2 00000000000000000078

3 000000000000000000c3 9 5 3 00000000000000000069

4 0 000000000000000000b4 10 6 4 0000000000000000005a

5 1 000000000000000000a5 11 7 5 0000000000000000004b

Substitution Layer This layer implements the 5-bit SBox operation of the ASCON which is the only
non-linear operation within the permutation. The SBox is applied to each bit-slice comprising of 5
bits from all the registers, where x0 acts as MSB and x4 acts as LSB.

The ASCON SBox can be given by the following look-up table: (4, b, 1f, 14, 1a, 15, 9, 2, 1b, 5, 8,
12, 1d, 3, 6, 1c, 1e, 13, 7, e, 0, d, 11, 18, 10, c, 1, 19, 16, a, f, 17).

Linear Diffusion Layer This layer is used to shuffle the bits of each register internally with the
help of right rotation and XOR. It is performed as per the equations given here:

x0 = x0 ⊕ (x0 ≫ 19) ⊕ (x0 ≫ 28)
x1 = x1 ⊕ (x1 ≫ 61) ⊕ (x1 ≫ 39)
x2 = x2 ⊕ (x2 ≫ 1) ⊕ (x2 ≫ 6)
x3 = x3 ⊕ (x3 ≫ 10) ⊕ (x3 ≫ 17)
x4 = x4 ⊕ (x4 ≫ 7) ⊕ (x4 ≫ 41)
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2.2 Encryption + Tag Generation and Decryption + Tag Verification

ASCON is a family of authenticated encryption and verified decryption parameterized by 4 variables,
key (k), rate (r) and internal number of rounds (a and b) for the permutation computation. The
key length is, k ≤ 128 bits and other parameters vary depending on the type of ASCON. Inputs for
the authenticated encryption are plaintext P , associated data A, key K, and nonce N (k-bits), and
outputs are the ciphertext C and tag T . Inputs for the verified decryption are key k, nonce N (k-bits),
ciphertext C, and tag T and output is plaintext P if the tag is successfully verified else ⊥.

The operation of ASCON can be divided into four sub-routines, namely:

1. Initialization
2. Processing associated data
3. Processing plaintext/ciphertext
4. Finalization
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Figure 1: ASCON encryption and tag generation
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Figure 2: ASCON decryption and tag verification

At initialization, the algorithm is initialized by creating a state of 320 bits by concatenating the
fixed initialization vector, key, and the nonce, which are then passed through a rounds of permutation
and xor operation of the least significant (320 − r) bits with the key padded with 0’s (on the left)
before proceeding to the next stage.

In the next stage, associated data is absorbed in the algorithm by dividing it into datasets of r bits
each and the last dataset is padded with a 1 followed by 0’s to make the length equal to r.

The next stage processes the plaintext in a similar way and in addition, it generates ciphertexts in
encryption and does the opposite for decryption. Processing of associated data and plaintext both
have b rounds of the permutation.

The finalization stage generates a tag in encryption which is used in the finalization stage of
decryption to verify if the processed data is correct. Pictorial description can be found in Figures 1
and 22.

2We acknowledge “TikZ for Cryptographers” [Jea16].



4

2.3 Hashing

ASCON Hashing is based on Sponges and is parameterized by 4 variables — maximal output length (h),
rate (r), and internal number of rounds (a and b) for the permutation computation. The input for the
hashing algorithm is message data M and the output is the hash data H.

The operation of ASCON can be divided into four sub-routines, namely:

1. Initialization

2. Absorbing message

3. Squeezing

At the initialization stage, the algorithm is initialized by creating a state of 320 bits by padding
the fixed initialization vector with 0’s on the LSB side, which is then passed through a rounds of
permutation.

In the next stage, the message data is absorbed into the algorithm similar to the plain text
processing stage mentioned above. It uses b rounds of permutation.

In the last stage, the ASCON state is first passed through a permutation rounds which generates the
first block of hash data. The output is then passed through b rounds of permutations till all the blocks
of hash data are generated.

3 (Unprotected) Hardware Implementation

3.1 Substitution Layer

The substitution layer employs a 5-bit SBox (see Section 2). Possibly the most straightforward approach
to implementing the SBox is by utilizing a look-up table. However, this method incurs a significant
area cost.

An alternative approach involves using the coordinate functions. In general, it can be stated that
the coordinate function-based implementation takes much less area than what would be required for a
look-up-based implementation. Expressed in the algebraic normal form, the coordinate functions of
the ASCON SBox are as given:

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0

y1 = x4 ⊕ x2x3 ⊕ x3 ⊕ x3x1 ⊕ x2 ⊕ x1x2 ⊕ x1 ⊕ x0

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1

y3 = x4x0 ⊕ x3x0 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1

3.2 Linear Layer

The linear layer, which is discussed in Section 2, can be realized using right rotation and XOR. In our
implementation, we opted to use only XOR operation. This approach requires 2 XOR operations for
each row, resulting in a total of 640 XOR operations for the entire layer3. Although both methods
needs same area, XOR implementation is more flexible in terms of code. Additionally, it is easier to
transform it into the threshold implementation of the linear layer using the latter method.

3Equivalently, the linear layer can also be implemented using 320 XOR3 operations. The problem of
implementation with higher input XOR gates is studied in the literature [BFI21,BDK+21,LWS+22]. Also note
that the same binary matrix is considered in [RBC23].
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4 Protection Against Side Channel Attacks

Side channel attacks, particularly those relying on information from power consumption or elec-
tromagnetic emanation, are of prominent concern while dealing with the physical security of the
ciphers [MOP07,Pee13,Bil15,Lom10]. It has been systematically shown that a cipher with sufficient
classical security claims falls short against an adversary equipped with a side channel attack set-up. It,
therefore, goes without saying, understanding the attacks and finding low-cost countermeasures are
among the top research priorities by/for the community.

Side channel attacks are based on the connection between a (a priori or learned) model and any
intermediate variable in the implementation that might be leaking. Therefore, the countermeasures
attempt to destroy the linkage of the model and the intermediate variables. Masking [MOP07, Chapter
9] is considered a prominent countermeasure. A masking scheme randomly distributes each intermediate
to introduce randomness in a way that the overall algorithmic flow in the cipher is unchanged, but the
randomized operations make the side channel leakage free from the intermediate variables. Depending
on the strength of the attacker, various degrees of masking can be adopted.

4.1 Threshold Implementation

The threshold implementation (TI) is a form of masking, and is among the top recommendations
against the side channel attacks [NRR06,Bil15,KNP12,JGC+20,BNN+15,NRS11,NNR19] specially
for protecting the hardware implementation.

Typically, the TI of an affine function is considered straightforward, while that of a non-linear (in
most block ciphers, the only non-linear component is the SBox) function is considered a strenuous
task to accomplish. The TI of a given SBox can be realized either through without decomposition (the
SBox is implemented as a combinational circuit) or with decomposition (the SBox is implemented as a
sequential circuit) [JGC+20,BGST23].

4.2 Hardware Implementation of Threshold

The Threshold Implementation technique is renowned for its hardware implementation simplicity.
Each phase in this method is concealed by the utilization of random numbers generated through an
external entropy source such as a True Random Number Generator (TRNG). In the unprotected
ASCON, the ASCON State is partitioned into three shares, namely S0, S1, and S2, with S representing
the ASCON State. The three shares must meet the following condition: S = S0 ⊕ S1 ⊕ S2.

All three shares undergo separate processing and are subsequently combined at the end. The
ASCON permutation, for instance, consists of three stages as mentioned in Section 2.1. Each share
has a distinct constant addition layer, substitution layer, and linear layer that are cleverly designed
so that the output of all three shares can be merged at the conclusion of the permutation phase to
yield the same state value as in unprotected ASCON. Figure 3 shows the flow of ASCON permutation
with threshold implementation; where the 3 individual shares for the each of round constant addition,
substitution layer and the linear diffusion layer are shown.

The schematic of the ASCON permutation with threshold is presented in Figure 3, which demonstrates
how state S is divided into three shares. Each of the shares is then processed with distinct permutation
processes, where RCi represents the round constant layer, SBOXi represents the substitution layer,
and LLi represents the linear layer for share i. See Figure 7 for the flowchart representation of ASCON
permutation.

4.3 ASCON SBox Sharing (for Threshold)

The SBox, being the only non-linear component, is considered the hardest to implement in threshold.
The minimum number of shares needed is 1 more than the algebraic degree of the SBox (thus, we
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Figure 3: ASCON permutation under 3-share threshold (schematic)

need at least 3 shares), and the total number of monomials in the shares is related to the product of
the number of shares and total number of monomials in the coordinate functions.

We show two sharing options for the ASCON SBox subsequently. Both the options use 3 shares
and are available in our implementation (either one can be chosen). Given the coordinate functions

(Section 3.1), note that, the following relationships hold: yi =
⊕2

j=0 yij given xi =
⊕2

j=0 xij for
i = 0, 1, . . . , 4.

SBox Threshold 1 The corresponding benchmark is shown in Table 2.

Share 0:

y00 = x00 ⊕ x01x11 ⊕ x01x12 ⊕ x01 ⊕ x11x21 ⊕ x11x41 ⊕ x11x02 ⊕ x11x22 ⊕ x11x42

⊕ x11 ⊕ x21x12 ⊕ x21 ⊕ x31 ⊕ x41x12 ⊕ x02x12 ⊕ x12x22 ⊕ x12x42 ⊕ x12 ⊕ x22 ⊕ x32

y10 = x10 ⊕ x01 ⊕ x11x21 ⊕ x11x31 ⊕ x11x22 ⊕ x11x32 ⊕ x11 ⊕ x21x31 ⊕ x21x12

⊕ x21x32 ⊕ x21 ⊕ x31x12 ⊕ x31x22 ⊕ x31 ⊕ x41 ⊕ x02 ⊕ x12x22 ⊕ x12x32 ⊕ x22x32

⊕ x22 ⊕ x32 ⊕ x42

y20 = x20 ⊕ x11 ⊕ x21 ⊕ x31x41 ⊕ x31x42 ⊕ x41x32 ⊕ x41 ⊕ x12 ⊕ x32x42 ⊕ x42 ⊕ 1

y30 = x30 ⊕ x01x31 ⊕ x01x41 ⊕ x01x32 ⊕ x01x42 ⊕ x01 ⊕ x11 ⊕ x21 ⊕ x31x02

⊕ x31 ⊕ x41x02 ⊕ x41 ⊕ x02x32 ⊕ x02x42 ⊕ x02 ⊕ x12 ⊕ x22 ⊕ x42

y40 = x40 ⊕ x01x11 ⊕ x01x12 ⊕ x11x41 ⊕ x11x02 ⊕ x11x42 ⊕ x11 ⊕ x31 ⊕ x41x12

⊕ x41 ⊕ x02x12 ⊕ x12x42 ⊕ x12 ⊕ x32
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Share 1:

y01 = x00x10 ⊕ x00x11 ⊕ x00x12 ⊕ x10x20 ⊕ x10x40 ⊕ x10x01 ⊕ x10x21 ⊕ x10x41

⊕ x10x02 ⊕ x10x22 ⊕ x10x42 ⊕ x10 ⊕ y20x11 ⊕ x20x12 ⊕ x20 ⊕ x30 ⊕ x40x11 ⊕ x40x12

y11 = x00 ⊕ x10x20 ⊕ x10x30 ⊕ x10x21 ⊕ x10x31 ⊕ x10x22 ⊕ x10x32 ⊕ x20x30 ⊕ x20x11

⊕ x20x31 ⊕ x20x12 ⊕ x20x32 ⊕ x20 ⊕ x30x11 ⊕ x30x21 ⊕ x30x12 ⊕ x30x22 ⊕ x30 ⊕ x40

y21 = x10 ⊕ x30x40 ⊕ x30x41 ⊕ x30x42 ⊕ x40x31 ⊕ x40x32 ⊕ x40

y31 = x00x30 ⊕ x00x40 ⊕ x00x31 ⊕ x00x41 ⊕ x00x32 ⊕ x00x42 ⊕ x00 ⊕ x10 ⊕ x20

⊕ x30x01 ⊕ x30x02 ⊕ x40x01 ⊕ x40x02 ⊕ x40

y41 = x00x10 ⊕ x00x11 ⊕ x00x12 ⊕ x10x40 ⊕ x10x01 ⊕ x10x41 ⊕ x10x02 ⊕ x10x42

⊕ x10 ⊕ x30 ⊕ x40x11 ⊕ x40x12

Share 2:

y02 = x02

y12 = x12

y22 = x22

y32 = x32

y42 = x42

SBox Threshold 2

Share 0:

y00 = x01x30 ⊕ x01x31 ⊕ x01x32 ⊕ x01 ⊕ x02x30 ⊕ x02x31 ⊕ x02x32 ⊕ x02 ⊕ x11 ⊕ x12

⊕ x30x40 ⊕ x30x41 ⊕ x30x42 ⊕ x30 ⊕ x31x40 ⊕ x31x41 ⊕ x31x42 ⊕ x31 ⊕ x32x40

⊕ x32x41 ⊕ x32x42 ⊕ x32

y10 = x01x40 ⊕ x01x41 ⊕ x01x42 ⊕ x01 ⊕ x02x40 ⊕ x02x41 ⊕ x02x42 ⊕ x02 ⊕ x11x40

⊕ x11x41 ⊕ x11x42 ⊕ x11 ⊕ x12x40 ⊕ x12x41 ⊕ x12x42 ⊕ x12 ⊕ x21 ⊕ x22 ⊕ x30 ⊕ x31

⊕ x32 ⊕ x40 ⊕ x41 ⊕ x42

y20 = x01x11 ⊕ x01x12 ⊕ x01 ⊕ x02x11 ⊕ x02x12 ⊕ x02 ⊕ x21 ⊕ x22 ⊕ x30 ⊕ x31 ⊕ x32 ⊕ 1

y30 = x01 ⊕ x02 ⊕ x11x21 ⊕ x11x22 ⊕ x11x30 ⊕ x11x31 ⊕ x11x32 ⊕ x11 ⊕ x12x21

⊕ x12x22 ⊕ x12x30 ⊕ x12x31 ⊕ x12x32 ⊕ x12 ⊕ x21x30 ⊕ x21x31 ⊕ x21x32 ⊕ x21 ⊕ x22x30

⊕ x22x31 ⊕ x22x32 ⊕ x22 ⊕ x30 ⊕ x31 ⊕ x32 ⊕ x40 ⊕ x41 ⊕ x42

y40 = x01x30 ⊕ x01x31 ⊕ x01x32 ⊕ x02x30 ⊕ x02x31 ⊕ x02x32 ⊕ x11 ⊕ x12 ⊕ x21x30

⊕ x21x31 ⊕ x21x32 ⊕ x21 ⊕ x22x30 ⊕ x22x31 ⊕ x22x32 ⊕ x22 ⊕ x30x40 ⊕ x30x41 ⊕ x30x42

⊕ x30 ⊕ x31x40 ⊕ x31x41 ⊕ x31x42 ⊕ x31 ⊕ x32x40 ⊕ x32x41 ⊕ x32x42 ⊕ x32 ⊕ x40 ⊕ x41 ⊕ x42

Share 1:

y01 = x00x30 ⊕ x00x31 ⊕ x00x32 ⊕ x00

y11 = x00x40 ⊕ x00x41 ⊕ x00x42 ⊕ x00 ⊕ x10x40 ⊕ x10x41 ⊕ x10x42 ⊕ x10

y21 = x00x10 ⊕ x00x12 ⊕ x00 ⊕ x02x10 ⊕ x20

y31 = x00 ⊕ x10x20 ⊕ x10x22 ⊕ x10x30 ⊕ x10x31 ⊕ x10x32

⊕ x10 ⊕ x12x20 ⊕ x20x30 ⊕ x20x31 ⊕ x20x32 ⊕ x20

y41 = x00x30 ⊕ x00x31 ⊕ x00x32 ⊕ x10 ⊕ x20x30 ⊕ x20x31 ⊕ x20x32
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Share 2:

y02 = x10

y12 = x20

y22 = x00x11 ⊕ x01x10

y32 = x10x21 ⊕ x11x20

y42 = x20

5 Protection Against Fault Injection Attacks

Since fault injection attacks [BBB+23] rely on some form of error propagation, the idea is to use
redundancy. The same circuit is replicated (could be in the temporal domain or in the spatial domain)
and depending on the power, we may need to duplicate or triplicate:

• Duplicate and compare works against Differential Fault Attack (DFA).
• Triplicate and take majority works against Statistical Ineffective Fault Attack (SIFA), although
duplication-based SIFA countermeasures do exist.

In our implementation, we employed triplication and majority-based countermeasure techniques.
Specifically, all the procedures are executed thrice, and the final output is determined by selecting the
majority output from the three. In cases where all three outputs differ, a random number is produced
as the output. Figure 4 shows the illustrates the working of the triplication countermeasure. F1, F2
and F3 are the three instances of ASCON whose output is finally combined with the majority operation.

Majority Operation

F1 F2 F3

Top Module

Figure 4: Triplicattion based countermeasure (schematic)

Note that we considered triplication-based SIFA countermeasure for the interest of simplicity. The
overall area can be reduced by using a more complicated duplication-based SIFA countermeasure as
explained in [BKK+20,BBB+20].

6 Architecture and Interface

The input data consist of the key, 128-bit nonce, associated data (AD), plain text (PT), control signals
and random numbers (generated using an external entropy source, which is not considered within the
scope). The output data consists of the cipher text (CT), 128-bit tag and ready signals to indicate the
end of the processing. Some of the important signals are explained below:

• keyxSI signal is of width 3 bits. The LSB bit carries the key information, and the other 2 bits
carry random numbers, which is utilised for threshold implementation.
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Figure 5: Finite state diagram for ASCON permutation (with round counter)

• noncexSI, plain_textxSI, associated_dataxSI signals are of width 3 bits, and the distribu-
tion of the bits is similar to key.
• encryption_startxSI and decryption_startxSI are 1-bit control pulses that signal the start
of encryption/decryption, respectively.
• rxSI signals is of width 7 bits carrying random numbers which is utilized for threshold implemen-
tation.

Figure 6 represents the top-level diagram of the proposed ASCON architecture, which includes all
the signals mentioned above.

The followings parameters can be tuned to any specific configuration:

• k is the key size
• r is the rate or the block size
• a and b internal number of rounds which vary based on the ASCON variant
• l is the length of associated data
• y is the length of plain text
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Figure 6: Top level diagram of ASCON

• TI is set to 1 for threshold implementation; else 0
• FP is set 1 for fault protection; else 0

Figure 5 shows a flowchart representation of the ASCON Permutation, which begins with a reset
state where the round counter is set to 0. The state then waits for the permutation_start signal
to be activated before proceeding to divide the ASCON state S into five registers, which are updated
after every round. Each round consists of three stages, namely round constant addition, substitution
layer, and linear layer, as described in section 2. At the end of each round, the counter variable ctr is
incremented by 1.

Figure 7 depicts the finite state diagram for the ASCON encryption process, which begins with the
RESET state, where all signals are reset to 0. The process then proceeds to the IDLE state, where the
ASCON state is initialized based on the key, nonce, and cipher configuration. The system remains in
this state until the encryption_start pulse is activated.

Upon receiving the start pulse, the system enters the INITIALIZE state, where the initialization
process occurs (as shown in Figure 1). The next state, ASSOCIATED_DATA, is where the associated
data is processed. The associated data is processed in multiple blocks, and the permutation process
runs on each block one after the other. Once all the blocks are processed, the system enters the PTCT
state, where the plain text is processed, and cipher text is generated. This stage is similar to the
ASSOCIATED_DATA stage. The final stage is the FINALIZE state, where the tag is generated. After this,
the system enters the DONE state, where it waits for new data and the next start signal.

7 ASIC and FPGA Benchmarks

In Table 2, we show the ASIC (STM 130nm) benchmark for the ASCON SBox with threshold imple-
mentation and the linear layer. The corresponding 3 shares of the SBox is given in Section 4.3 (‘SBox
Threshold 1’).

In Table 3a, we show the benchmark results for both unprotected and protected ASCON encryption
and decryption on an ASIC (STM 130nm) platform and in Table 3b on Xilinx based Kintex-7 FPGA.
The results indicate that the threshold implementation version occupies approximately 3.7 times the
area of (α) in ASIC, while in FPGA, it occupies approximately 4.2 times the area of (α).
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Figure 7: Finite state diagram for ASCON hardware

In Table 4 we show the benchmark results for the following configurations on ASIC (STM 130nm)
platform: (α) unprotected ASCON, (β) ASCON with TI, (γ) ASCON with fault protection, (δ) ASCON

with TI and fault protection. The results indicate that the implementation of ASCON with threshold
requires approximately 3.7× the area of (α), while the implementation with fault protection requires
approximately 2.7× the area of (α), and the implementation with both threshold and fault protection
requires approximately 9.7× the area (α).

In Table 5, we show the benchmark for ASCON hash on Kintex-7 FPGA. We include unprotected
hash and hash with threshold in the benchmark. The results indicate that the threshold implementation
leads to a significant increase in the number of registers, with a 196.7% increase compared to the
unprotected hash.

8 Conclusion and Outlook

This work presents a full-stack hardware suite for ASCON hash and AEAD [DEMS19]. There seems to
be no comprehensive side channel and fault attack protected hardware implementation of this cipher,
so we expect our work would become useful in the forthcoming future.

We only use triplication-majority based fault countermeasure in this work for simplicity, duplication-
based fault countermeasure does exist [BKK+20]. This can be covered in a future scope.

A hardware interface for LWC is proposed by GMU [KDT+22]. It is possible to make our code
compliant to the API (somewhat comparable to [SRBP22]), and this task is left as a future work.
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Table 2: ASIC benchmarks (STM 130nm)

Design SBox TI Linear Layer

Gates 56 320

Surface (µm2) 524.472 9037.056

Delay (fs) 1686 424

Table 3: Benchmarks for protected and unprotected ASCON

(a) ASIC (STM 130nm)

Design Cells Area (µm2) Critical Path (ps)
Power (nW)

Leakage Dynamic

Encryption + Tag generation 5426 73803 8595 0 827861.117

Decryption + Tag verification 5025 71873 8586 0 644860.995

Encryption + Tag generation TI 20364 273857 10001 0 3522435.310

Decryption + Tag verification TI 20191 274688 9981 0 3647338.988

(b) FPGA (Kintex-7)

Design LUT F/F Max. Freq. (MHz)

Encryption + Tag generation 944 734 181

Decryption + Tag verification 1058 735 181

Encryption + Tag generation TI 3977 2174 166

Decryption + Tag verification TI 3795 2179 156

Finally, one may be interested in evaluating the effect of side channel attack on the unprotected
implementation and how the protected implementation protects against it.
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Adhikari, Ralf Küsters, and Bart Preneel, editors, Progress in Cryptology - INDOCRYPT 2021
- 22nd International Conference on Cryptology in India, Jaipur, India, December 12-15, 2021,
Proceedings, volume 13143 of Lecture Notes in Computer Science, pages 141–158. Springer, 2021.
4

BFI21. Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. Further results on efficient implementations
of block cipher linear layers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 104-
A(1):213–225, 2021. 4

BGST23. Anubhab Baksi, Sylvain Guilley, Ritu-Ranjan Shrivastwa, and Sofiane Takarabt. From substitution
box to threshold. Cryptology ePrint Archive, Paper 2023/633, 2023. https://eprint.iacr.org/
2023/633. 5

Bil15. Begül Bilgin. Threshold Implementations As Countermeasure Against Higher-Order Differential
Power Analysis. PhD thesis, Katholieke Universiteit Leuven and University of Twente, 2015.
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf. 5

BKK+20. Anubhab Baksi, Vinay B. Y. Kumar, Banashri Karmakar, Shivam Bhasin, Dhiman Saha, and
Anupam Chattopadhyay. A novel duplication based countermeasure to statistical ineffective fault

https://eprint.iacr.org/2020/1542
https://eprint.iacr.org/2020/1542
https://eprint.iacr.org/2023/633
https://eprint.iacr.org/2023/633
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf


13

Table 4: ASIC benchmarks for protected and unprotected ASCON (STM 130nm)

Design Cells Area (µm2) Critical Path (ps)
Power (nW)

Leakage Dynamic

Unprotected ASCON 7157 98524 8520 0 762520.083

ASCON with Fault protection 19150 258224 8518 0 2346943.378

ASCON with TI 26248 364320 9830 0 4369303.426

ASCON with Fault protection and TI 69692 948544 9832 0 11124794.73

Table 5: FPGA benchmarks for unprotected and protected versions of ASCON hash (Kintex-7)

Design LUT Registers Slice LUT Logic Max. Freq. (MHz)

Hash 870 912 313 870 203

Hash TI 3930 2706 1169 3930 171

analysis. Cryptology ePrint Archive, Report 2020/1268, 2020. https://eprint.iacr.org/2020/
1268. 8, 11

BNN+15. Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia Tokareva, and Valeriya
Vitkup. Threshold Implementations of Small S-boxes. Cryptography and Communications,
7(1):3–33, 2015. 5

DEMS19. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. As-
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