
Efficient Implementation of Permutation-Based 
Hash Functions for the RISC-V Architecture 

Issam Jomaa, Hao Cheng, Johann Großschädl, and Peter Y. A. Ryan 

DCS and SnT, University of Luxembourg, 
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg 

issam.jomaa.001@student.uni.lu 
{hao.cheng,johann.groszschaedl,peter.ryan}@uni.lu 

Abstract. The National Institute of Standards and Technology has re-
cently finished an evaluation of algorithms for authenticated encryption 
and hashing aimed at resource-restricted devices. Benchmarking results 
published during this evaluation show that the three permutation-based 
AEAD algorithms Ascon, Schwaemm, and Xoodyak perform very well 
in software, especially on 32-bit microcontroller architectures like ARM 
and RISC-V. While there exist numerous benchmarks for authenticated 
encryption algorithms, relatively little is known about the performance 
of permutation-based hash functions on RISC-V. We fill this gap in the 
present paper by describing optimized RISC-V implementations of the 
three hash functions Ascon-Hash, Esch256, and Xoodyak, which we 
benchmarked on a Nuclei Systems RV-STAR development board. The 
underlying permutations are written in RISC-V Assembly, whereby we 
developed implementations based on the core RV32I instruction set as 
well as variants using the RV32B BitManip extension. Our experiments 
show that, although the three permutations are based on different design 
principles, they achieve roughly the same execution time (around 1500 
clock cycles) on our RV-STAR prototyping board. In addition, all three 
permutations can be significantly accelerated by the dedicated rotation 
instructions of the BitManip extension. However, when it comes to the 
execution time of the full hash, Ascon-Hash and Esch256 introduce 
higher overhead than Xoodyak, mainly due to auxiliary operations like 
the conversion to (resp. from) bit-interleaved representation in the case 
of Ascon-Hash or the “indirect” injection of data blocks into the state 
of Esch256. We describe how the performance penalty caused by these 
auxiliary operations can be minimized on RISC-V microcontrollers. 

mailto:hao.cheng,johann.groszschaedl,peter.ryan}@uni.lu
mailto:issam.jomaa.001@student.uni.lu

