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Abstract. Committing security of authenticated encryption (AE) is an
emerging area of research motivated by real-world attacks. In particular,
constructing AEs satisfying CMT-4, a security notion considering an ad-
versary who generates multiple inputs for encryption that result in the
same ciphertext, is an ongoing research challenge. In this paper, we pro-
pose a new mode KIVR, which transforms existing AEs to have CMT-4
security without increasing the ciphertext size by exploiting plaintext
redundancy found in practical use cases. KIVR uses a collision-resistant
hash to convert a tuple of key, nonce, and associated data into a tem-
porary key, an initial value (or nonce), and a masking value applied to
redundant data used by an underlying AE. Unlike the conventional HtE
and CTX conversions limited by the birthday bounds of the key and tag
sizes, the security of KIVR linearly increases with the number of redun-
dant bits r and can achieve the beyond-birthday-bound (BBB) security.
Combined with GCM, KIVR’s security becomes r

2
bits. In practical use

cases with a sufficiently large r, KIVR salvages GCM for BBB security
while preserving the ciphertext size and respecting GCM’s interface. Fur-
thermore, if we can use modified AEs, KIVR combined with CAU-SIV-C1
(a variant of GCM-SIV for committing security) achieves r

2
+ 64 bits,

enabling higher security with fewer redundant bits.

Keywords: Key Commitment, Context Commitment, Modes of Oper-
ation, Authenticated Encryption, Security Proof

1 Introduction

Authenticated encryption with associated data (AE) schemes that achieve confi-
dentiality and authenticity are essential components in symmetric-key cryptog-
raphy. The security of AE is well-studied, and the schemes usually come with
security proofs based on a formal security notion. However, AE schemes are
sometimes misused in a way beyond their promise, resulting in security prob-
lems. Committing security of AEs falls in this category and has been actively
studied in the last few years [1, 3, 4, 6, 7, 9, 10, 16, 17].
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Farshim et al. initiated the theoretical study in 2017 [9], followed by the
real-world attacks, including the multi-recipient integrity attack that delivers
malicious content to a targeted user [10, 7, 1] and the partitioning oracle at-
tack that achieves efficient password brute-force attacks [16]. Missing commit-
ment to a secret key is the root cause of these problems. An AE encryption
ΠEnc receives a secret key K, nonce N , associated data A, and plaintext M
and generates a ciphertext ΠEnc(K,N,A,M). Without key-committing secu-
rity, an adversary can efficiently find a ciphertext decrypted with multiple keys,
i.e., ΠEnc(K,N,A,M) = ΠEnc(K

′, N,A,M) with K ̸= K ′. Unfortunately, the
conventional AE security notions do not support key commitment, and there
are O(1) attacks on GCM [10, 7], GCM-SIV [16], CCM [8, 17], and ChaCha20-
Poly1305 [18, 10].

Addressing the issue, researchers are studying AE schemes with committing
security [10, 7, 1, 16]. In the meantime, standardization bodies are starting to
support committing security in AEs. For example, the recent RFC draft on
usage limits on AEs considers key-committing security [13]. Similarly, NIST is
organizing a workshop for updating the federal standard of block-cipher modes,
wherein key commitment is explicitly noted as an additional security feature [19].

Although key commitment was originally on finding distinct keys K and
K ′ that decrypt the same ciphertext while using the same N and A, some
applications should also consider a stronger attacker who can modify any of
(K,N,A,M) [3]. The generalization is called context commitment, and Bellare
and Hoang defined the security notions in 2022, including CMT-1 and CMT-
4 [4]. The security game is about finding a ciphertext ΠEnc(K,N,A,M) =
ΠEnc(K

′, N ′, A′,M ′), and CMT-1 refers to the conventional key-committing se-
curity with K ̸= K ′. Meanwhile, CMT-4 refers to the security with (K,N,A,M) ̸=
(K ′, N ′, A′,M ′) [4]. An AE scheme with CMT-4 guarantees more robust security
than CMT-1 and prevents misuse in broader use cases. Consequently, construct-
ing an AEs with CMT-4 security is an ongoing research challenge [4, 6, 17].

While it is possible to design a dedicated scheme with committing security [7],
many studies aim at extending conventional AEs for committing security, in-
cluding HtE [4] and CTX [6] for CMT-4 security. Fig. 1-(left) shows HtE that
converts a CMT-1-secure AE to CMT-4-secure one. It generates a temporary
key L ← H(K,N,A) using a collision-resistant (CR) hash function H, then
L is used as the key of an underlying AE. Combined with the generic conver-
sions for realizing CMT-1 security (UtC and RtC), any AE can be transformed
into a CMT-4-secure one [4]. Since UtC and RtC require ciphertext overhead
as a drawback, the same authors also proposed the efficient CMT-1 variants of
GCM and GCM-SIV [12, 11], namely CAU-C1 and CAU-SIV-C1. CAU-C1 (resp.
CAU-SIV-C1) adds the feed-forward to BC computed in the tag generation of
GCM (resp. GCM-SIV), and changes the XOR position of GMAC from the out-
put of BC to the input. On the other hand, CTX converts arbitrary AEs to
CMT-4 secure ones. After computing a ciphertext C and tag T ′ using an under-
lying AE, it generates a new tag T by T ← H(K,N,A, T ′). The verification is
done with T .
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Fig. 1. HtE [4] (left) and KIVR (right). The function FKIVR generates a tuple of tem-
porary key, IV, and redundant data. The function Frdd generates redundant data. The
function Pmix generates a plaintext with redundancy from masked redundant data and
a plaintext without redundancy.

1.1 Research Goal, Approach, and Challenges

Research Goal. We aim to construct CMT-4 secure AEs by using standardized
AEs as a base. The target AEs are two CTR-based AE schemes CTRAE and
CTRSIV. CTRAE is an Enc-then-MAC AE scheme (including GCM and CAU-C1,
Section 3.2), and CTRSIV is an AE scheme following the SIV paradigm [20]
(including GCM-SIV and CAU-SIV-C1, Section 3.3). By following the previous
works [1], the ciphertext size should be preserved to maintain compatibility with
the hardware, databases, and communication protocols already designed and
deployed in the field. Commitment security is determined by an offline attack
because the attacker can choose keys. The generic off-line attack is a brute-force
search for the key, and its security is k bits. Hence, the bit-security level for
committing security must be k-bits, or at least greater than k

2 , i.e., the BBB of
the key size.

Our Approach. The considerable difficulty is, as we will show later in Propo-
sition 1, the CMT-4 security of CTRAE and CTRSIV is limited by t

2 bits with a
t-bit tag and often t ≤ k. We approach the problem by exploiting redundancy
in plaintexts. It is a natural extension of Albertini et al.’s approach of achieving
CMT-1 security by padding a message with zeroes [1], which inevitably increases
the ciphertext size. We can increase the security without increasing the cipher-
text size by exploiting plaintext redundancy already present in file formats [15,
21]. For example, PNG and XML files have 8 and 24 bytes of redundancy, re-
spectively. Similar magic numbers are present in the practical network protocols.
In HTTP, for example, it starts with "HTTP/1.1", which can be used as an 8-
byte redundancy. HTTP2 has an even longer 24-byte magic number, "PRI *
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Table 1. Comparison of CMT-4 security for modes with r-bit redundancy.

Conversion AE CMT-4 Security Prop.

CTX [6] + Redundancy CTRAE t
2

Prop. 3

HtE [4] + Redundancy CTRAE, CTRSIV κ
2

Prop. 4

KIVR + Redundancy CTRAE max{ r
2
, tag-col} Thm. 1

KIVR + Redundancy CTRSIV r
2
+ tag-col Thm. 4

tag-col is the security against tag-collision attacks by changing any of K,N,A.

HTTP/2.0\r\n\r\nSM\r\n\r\n". The recipient who decrypts the message can
check the decrypted message for these known values.

Challenges. Unfortunately, as we will show with the attack in Section 4, sim-
ply adding plaintext redundancy (Albertini et al.’s approach) is insufficient for
CMT-4 security, and CR hash is somehow necessary. To make matters more
complicated, our analyses (Proposition 3 and 4) shows that the effect of CR
hash does not simply add up with plaintext redundancy; Table 1 summarizes
CMT-4 security of CTX and HtE with r-bit redundancy. CMT-4 security of
CTX is independent of r and limited by t

2 (as shown in Proposition 3), with
which BBB security is unachievable. In contrast, HtE’s security is limited by κ

2
wherein κ is the AE’s key length. This is too short for common cases, e.g., κ = n
in AES-GCM, and can be even smaller considering concrete AEs, as we will see
in Table 2. In summary, a method to achieve BBB security for CMT-4 without
increasing the ciphertext size is a meaningful research challenge. However, only
t
2 -bit or κ

2 -bit security can be obtained with the conventional methods even with
redundancy in plaintext if the ciphertext size is not increased.

1.2 Contributions

New Mode. We propose a KIVR mode, a generalization of HtE. In HtE, a
temporary key L was generated by H(K,N,A). In KIVR, instead of the tempo-
rary key, a tuple of temporary values (KT, IVT, RT) is generated by H(K,N,A)
with sufficiently large outputs so that the output size of H avoids becoming a
bottleneck of the security bound. A diagram of encryption/decryption in KIVR
is depicted in Fig. 1-(right). For encryption, to generally handle redundancy in
plaintexts, we first perform the function Frdd that extracts the redundant bits
R from (K,N,A). R is then masked by RT, and the function Pmix is performed
to derive the plaintext that is a mixture of R and M . Finally, the original AE
is computed by using KT, IVT, and an empty string as a key, a nonce, and an
associated data, respectively. Decryption is naturally defined with the exception
that we additionally check whether or not the valid R is correctly recovered. Note
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Table 2. CMT-4 security of the instantiations with r-bit redundancy.

Conversion AE CMT-4 Security w/ k = 128 Ref.

CTX [6] + Redundancy GCM, CAU-C1 64 Prop. 3†

HtE [4]+ Redundancy GCM min{ r
2
, 64} Prop. 5†

HtE [4]+ Redundancy CAU-C1 64 Prop. 6†

HtE [4]+ Redundancy GCM-SIV min{ r
2
, 64} Prop. 7†

HtE [4]+ Redundancy CAU-SIV-C1 64 Prop. 8†

KIVR + Redundancy GCM r
2

Cor. 2‡

KIVR + Redundancy CAU-C1 max{ r
2
, 64} Cor. 3‡

KIVR + Redundancy GCM-SIV r
2

Cor. 5‡

KIVR + Redundancy CAU-SIV-C1 r
2
+ 64 Cor. 6‡

†The security determined by an attack, ‡the security determined by a proof.

that security is dependent on the size of RT instead of R. If R is sufficiently long,
e.g., 1000 bits, and the desired bit-security is much lower, e.g., 128 bits, then RT

can be shorter than R, i.e., does not need to mask all the bits in R, which saves
the computational cost of H and broadens primitive choices.

The actual CMT-4 security that can be proved depends on an underlying AE.
When the underlying AE is CTRAE, we prove that the CMT-4 security bound
is max{ r2 , tag-col}, where tag-col is the security against tag-collision attacks by
changing any of K,N,A. Also, when AE is CTRSIV, we prove that the CMT-
4 security bound improves to r

2 + tag-col. Given that commitment is a setting
where the adversary chooses the key, it is natural that security bound for the
commitment is independent of the key size. In fact, even if an adversary is
allowed to perform an exhaustive search of 2k keys and 2n plaintexts for a block
cipher, it is difficult to break the committing security. KIVR’s security bound is
simple; consisting only of the redundancy size and tag-col, and thus is natural
for committing security.

It is also necessary to ensure that the converted scheme by KIVR does not
negatively affect the security as an ordinary AE. We prove that the AE security
after applying KIVR is reduced to the multi-user security of the original AE.

Salvaging GCM, GCM-SIV, and Their Variants. Table 2 summarizes KIVR’s
CMT-4 security with r-bit redundancy instantiated with GCM, CAU-C1, GCM-SIV,
and CAU-SIV-C1 for k = 128, e.g., AES-128. In all the combinations, KIVR’s se-
curity increases linearly with r. This is in contrast to CTX and HtE which are
limited by 64 bits, i.e., the birthday bound of either the tag or key sizes. KIVR
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with GCM is suitable when AES-GCM’s interface should be strictly respected,
e.g., in a hardware security module. For XML and HTTP2 with r = 192, KIVR
with GCM achieves 96-bit security. With a moderate amount of r, on the other
hand, the combination of KIVR and CAU-SIV-C1 is the best choice because it
achieves ( r2 + 64)-bit security, enjoying the benefits from both CR hash and
redundancy. Applying this method for PNG and HTTP with r = 64 enables
96-bit CMT-4 security. In this case, AES and GHASH accelerators/instructions
are reusable for realizing CAU-SIV-C1.

1.3 Organization

We begin by preliminaries in Section 2. We define CTRAE and CTRSIV in Sec-
tion 3. Section 4 recalls HtE and CTX, and their limitations with plaintext
redundancy. We introduce the KIVR conversion in Section 5. Sections 6 and 7
give security proofs of KIVR combined with CTRAE and CTRSIV. We further
analyze HtE with plaintext redundancy in Section 8. Section 9 is a conclusion.

2 Preliminaries

Notation. For integers 0 ≤ i ≤ j, let [i, j] := {i, i + 1, . . . , j}, (j] := [0, j], and
[j] := [1, j]. If i > j then [i, j] := ∅. Let ε be an empty string, ∅ an empty set,
and {0, 1}∗ be the set of all bit strings. For an integer n ≥ 0, let {0, 1}n be the
set of all n-bit strings, {0, 1}0 := {ε}, and {0, 1}≤n := ∪i∈(n]{0, 1}i. Let 0i be
the bit string of i-bit zeros. For X ∈ {0, 1}j , let |X| := j. The concatenation of
two bit strings X and Y is written as X∥Y or XY when no confusion is possible.
For integers i ≥ 0 and 0 ≤ X ≤ 2i − 1, let stri(X) be the i-bit representation of
X. For integers 0 ≤ j ≤ i and X ∈ {0, 1}i, let msbj(X) (resp. lsbj(X)) be the
most (resp. least) significant j bits of X. For integers 0 ≤ i, j and X ∈ {0, 1}i,
let zpj(X) := X∥0⌈i/j⌉·j−i be a zero-padding function such that the lengths of

padded values become multiples of j. For a non-empty set T , T $←− T means
that an element is chosen uniformly at random from T and assigned to T . For
two sets T and T ′, T ∪←− T ′ means that T ← T ∪ T ′. For an integer l ≥ 0

and X ∈ {0, 1}∗, (X1, . . . , Xℓ)
l←− X means parsing of X into fixed-length l-bit

strings, where if X ̸= ε then X = X1∥ · · · ∥Xℓ, |Xi| = l for i ∈ [ℓ − 1], and
0 < |Xℓ| ≤ l; if X = ε then ℓ = 1 and X1 = ε.

Block Cipher (BC). The bit-lengths of block and key of BC are denoted by
n and k, respectively. A BC is a set of n-bit permutations indexed by a k-bit
key. An encryption of BC is denoted by E : {0, 1}k × {0, 1}n → {0, 1}n, and its
decryption is denoted by E−1 : {0, 1}k ×{0, 1}n → {0, 1}n. Let BC be the set of
all encryptions of k-bit key and n-bit block BCs.

Ideal Cipher (IC). An IC is an ideal BC and defined as E $←− BC. An IC E can
be implemented by lazy sampling. Let TIC be a table that is initially empty and
keeps query-response tuples of E and E−1. Let TIC,2[W ] := {Y | (W,X, Y ) ∈ TIC}
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and TIC,1[W ] := {X | (W,X, Y ) ∈ TIC} be tables that respectively keep ciphertext
and plaintext blocks defined in TIC such that the key elements are W . For a new
forward query (W,X) to E (resp. inverse query (W,Y ) to E−1), the response is
defined as Y

$←− {0, 1}n\TIC,2[W ] (resp. X $←− {0, 1}n\TIC,1[W ]), and the query-
response tuple (W,X, Y ) is added to TIC: TIC

∪←− {(W,X, Y )}. For a query stored
in the table TIC, the same response is returned.

Hash Function. LetM⊆ {0, 1}∗ and h be a positive integer. Let H[Ψ ] :M→
{0, 1}h be a hash function with a primitive Ψ that on an input message in M
returns an h-bit hash value. In this paper, we use the following security notions
for hash function, where Ψ is ideal.
υ-Collision Resistance. H[Ψ ] is υ-collision resistant if it is hard to find υ pairs
of distinct messages such that for each pair the hash values are the same. The
υ-collision-resistant advantage function of A with access to an ideal primitive Ψ
against H[Ψ ] is defined as

Advcolls
H,υ(A) := Pr

[
((M (1),M ′(1)), . . . , (M (υ),M ′(υ)))← AΨ s.t.(
∀i : H[Ψ ](M (i)) = H[Ψ ](M ′(i)) ∧M (i) ̸= M ′(i)

)
∧(

∀i, j s.t. i ̸= j : {M (i),M ′(i)} ≠ {M (j),M ′(j)}
) ]

.

If υ = 1 then, the notion is for the standard collision resistance. Let Advcoll
H (A) :=

Advcolls
H,1(A) be a collision-resistant advantage function of A.

Random Oracle (RO). An RO is an ideal hash function. Let H be the set
of all hash functions from M to {0, 1}h. An RO is defined as R $←− H. An RO
can be realized by lazy sampling. Let TRO be a table that is initially empty and
keeps query-response pairs of R. Let TRO,2 := {Y | (X,Y ) ∈ TRO} be a table
that keeps outputs defined in TRO. For a new query X to R, the response is
defined as Y

$←− {0, 1}h, and the query-response pair (X,Y ) is added to TRO:
TRO

∪←− {(X,Y )}. For a query stored in the table TRO, the same response is
returned.

Authenticated Encryption (AE). Let Π[Ψ ] be a (tag-based) AE scheme
using a primitive (or primitives) Ψ . Π[Ψ ] is a pair of encryption and decryption
algorithms (ΠEnc[Ψ ], ΠDec[Ψ ]). K, N , M, C, A, and T are the sets of keys,
nonces, plaintexts, ciphertexts, associated data (AD), and tags, respectively.
Let ν and t be respectively nonce and tag sizes, i.e., N = {0, 1}ν and T =
{0, 1}t. The encryption algorithm ΠEnc[Ψ ] : N × A × M → C × T takes a
tuple (N,A,M), and returns, deterministically, a pair (C, T ). The decryption
algorithm ΠDec[Ψ ] : N×A×C×T → {reject}∪M takes a tuple (N,A,C, T ′) and
returns, deterministically, either the distinguished invalid symbol reject ̸∈ M
or a plaintext M ∈M. We require that for any (K,N,A,M), (K ′, N ′, A′,M ′) ∈
K×N ×A×M, |ΠEnc[Ψ ](K,N,A,M)| = |ΠEnc[Ψ ](K

′, N ′, A′,M ′)| is satisfied if
|M | = |M ′|. We also require that for any K ∈ K, N ∈ N , A ∈ A, and M ∈ M,
ΠDec[Ψ ](K,N,A,ΠEnc[Ψ ](K,N,A,M)) = M .
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Committing Security [4]. We use functions WiCi (i ∈ {1, 3, 4}) that on input
tuple (K,N,A,M) of key, nonce, AD, and plaintext, returns the first i elements
to which a ciphertext is committed: WiC1(K,N,A,M) = K, WiC3(K,N,A,M) =
(K,N,A), and WiC4(K,N,A,M) = (K,N,A,M).

Let Π[Ψ ] be an AE scheme with an ideal primitive(s) Ψ . In the CMT-i-
security game where i ∈ {1, 3, 4}, the goal of an adversary A with access to Ψ
is to return two tuples of key, nonce, AD, and plaintext on which the outputs
of ΠEnc[Ψ ] are the same. The CMT-i-security advantage of an adversary A for
i ∈ {1, 3, 4} is defined as

Advcmt-i
Π (A) := Pr

[
(K†, N†, A†,M†), (K‡, N‡, A‡,M‡)← AΨ s.t.(
WiCi(K

†, N†, A†,M†) ̸= WiCi(K
‡, N‡, A‡,M‡)

)
∧
(
ΠEnc[Ψ ](K

†, N†, A†,M†) = ΠEnc[Ψ ](K
‡, N‡, A‡,M‡)

)]
.

In this paper, we consider computationally unbounded adversaries.

Tool for Security Proofs in the IC Model. Our proofs of committing
security of AE schemes are given in the IC model. In the proofs, to ensure the
randomnesses of the outputs of an IC E or E−1, we use the technique given
in [2].

Definition 1 (Full-block queries). In a security game in the IC model, for a
key element W of an IC, after A makes 2n−1 queries with W to E or E−1, we
permit an adversary A to obtain the remaining input-output tuples of E with W ,
i.e., A obtains all input-output tuples with W . The additional queries, which we
call full-block queries, ensure that the outputs of E or E−1 are chosen uniformly
at random from 2n−1 elements in {0, 1}n.4 Specifically, fixing Y ∗, for a full-block
query (W,X), the probability that the output Y is equal to Y ∗ is (2n−1−1)!

(2n−1)! = 1
2n−1 .

Without loss of generality, full-block queries are forward ones.

3 Specifications of GCM and Its Variants

We show the specifications of GCM and its variants, the AE schemes with the
counter (CTR) mode. Firstly, we show the specification of CTR that is the encryp-
tion algorithms of GCM and its variants. Secondly, we show the specification of
CTRAE, which is an Enc-then-MAC AE with CTR. Thirdly, we show the specifi-
cations of GCM and its variants, which are the special cases of CTRAE. Fourthly,
we show the specification of CTRSIV, which follows the SIV paradigm [20] and
uses CTR. Finally, we show the specifications of GCM-SIV and its variant, which
are the special cases of CTRSIV.

4 In [2], the additional queries are called super queries.
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Algorithm 1 Counter Mode
Encryption/Decryption CTR[E](Kbc, IV,D)
1: for i = 1, . . . , ⌈|D|/n⌉ do KSi ← E(Kbc, add(IV, i)) end for
2: KS ← KS1∥ · · · ∥KS⌈|D|/n⌉; D′ ← D ⊕msb|D|(KS); return D′

Algorithm 2 CTR-based AE
Encryption CTRAEEnc[E,Ψtag]((Kbc,Ktag), N,A,M)
1: C ← CTR[E](Kbc, zpn(N),M); T ← CTRAETGen[Ψtag](Ktag, N,A,C)
2: return (C, T )

Decryption CTRAEDec[E,Ψtag]((Kbc,Ktag), N,A,C, T ′)

1: M ← CTR[E](Kbc, zpn(N), C); T ← CTRAETGen[Ψtag](Ktag, N,A,C)
2: if T = T ′ then return M ; else return reject end if

Algorithm 3 CTR-based SIV
Encryption CTRSIVEnc[E,Ψtag, Ψkdf ](K,N,A,M)
1: (Kbc,Ktag)← KDsiv[Ψkdf ](K,N)
2: T ← CTRSIVTGen[Ψtag](Ktag, N,A,M); C ← CTR[E](Kbc, T,M); return (C, T )

Decryption CTRSIVDec[E,Ψ2, Ψkdf ](K,N,A,C, T ′)

1: (Kbc,Ktag)← KDsiv[Ψkdf ](K,N)
2: M ← CTR[E](Kbc, T

′, C); T ← CTRSIVTGen[Ψtag](Ktag, N,A,M)
3: if T ′ = T then return M ; else return reject end if

E

add(IV,1)

Kbc

⊕

D'
D

E

add(IV,2)

Kbc E

add(IV,l)

Kbc

KS1 KS2 KSl

KS = KS1||KS2||      ||KSl

msb|D|

CTR[E]

CTRAETGen[𝛹𝛹Tag]

Kbc,N,M

Ktag,N||0n-ν,A,C

T

C

(2) CTRAEEnc(1) CTR

CTR[E]

Ktag,N,M

Kbc,T,A,M

C

(3) CTRSIVEnc

T

CTRSIVTGen[𝛹𝛹Tag]

Fig. 2. (1) CTR Mode where ℓ = ⌈|D|/n⌉ and (D,D′) is a pair of plaintext and ci-
phertext or of ciphertext and plaintext; (2) CTRAEEnc; (3) CTRSIVEnc where a pair of
temporary keys are defined as (Kbc,Ktag)← KDsiv[Ψkdf ](K,N).

3.1 Counter Mode

The specification of the counter mode CTR is given in Algorithm 1 and Fig. 2(1),
where E is the underlying BC. Let c be the counter size such that c ≤ n.
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Algorithm 4 Tag Generation of Π ∈ {CAU,CAU-C1}
Tag Generation ΠTGen[E]((Kbc, L), N,A,C)
1: H ← Hash(L,A,C); X ← N∥0c−11
2: if Π = CAU then T ← msbt(H ⊕ E(Kbc, X)); return T end if
3: if Π = CAU-C1 then X ← X ⊕H; T ← msbt(X ⊕ E(Kbc, X)); return T end if

Algorithm 5 GHASH

GHASH GHASH(L,A,C)
1: X1, . . . , Xl

n←− zpn(A)∥zpn(C)∥strn/2(|A|)∥strn/2(|C|)
2: Y ← X1 • Ll ⊕X2 • Ll−1 ⊕ · · ·Xl • L; return Y

Algorithm 6 Tag Generation ΠTGen ∈ {GMAC+,GMAC2}
Tag Generation ΠTGen[E]((Kbc, L), N,A,M)
1: X ← 0∥lsbn−1(H)⊕ (0c∥N); T ← E(Kbc, X)
2: if Π = CAU-SIV-C1 then T ← T ⊕X end if
3: return T

Let D ⊂ {0, 1}∗ be the plaintext/ciphertext space. {0, 1}k is the key space.
CTR[E] : {0, 1}k × {0, 1}n × D → D takes a tuple of key Kbc, initial value IV ,
and data D, and returns encrypted/decrypted data D′. If D is a plaintext (resp.
ciphertext), then D′ is the ciphertext (resp. plaintext). KS1∥ · · · ∥KS⌈|D|/n⌉ is
a key stream with which a ciphertext (resp. plaintext) is defined by XORing a
plaintext (resp. ciphertext). add : {0, 1}n × (2c − 1]→ {0, 1}n is a function that
on the input pair of IV and counter, returns an input block of E. add is defined
for each AE scheme.

3.2 CTR-based AE

CTRAE. CTRAE[E,Ψtag] is a tag-based AE scheme with CTR and the under-
lying primitives E and Ψtag. The specification of CTRAE[E,Ψtag] is given in
Algorithm 2 and Fig. 2(2). Let Ktag be the key space of the tag-generation
function. Hence, K := {0, 1}k × Ktag is the key space of CTRAE. The en-
cryption/decryption function is the counter mode CTR[E]. CTRAETGen[Ψtag] :
Ktag × N × A × C → {0, 1}t is a tag-generation function with a primitive Ψtag.
The parameters ν and c are such that n = ν + c. The function add is defined
as add(IV, i) := (msbν(IV ))∥(lsbc(IV ) + i + 1 mod 2c) where in the evaluation
lsbc(IV ) is considered as an integer, and the result of the evaluation is regarded
as a c-bit string.

CAU (Generalization of GCM). GCM (resp. its generalization CAU) is a
single-key CTRAE scheme with the tag-generation function GMAC (resp. CAUTGen).
Hence, the key of the tag generation function is equal to that of CTR, i.e.,
Ktag = Kbc and Ktag = {0, 1}k. The specification of CAUTGen is given in Algo-
rithm 4 and Fig. 3(1)(2). Hash is a universal hash function with a key L, and the
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CAU: add(N,i)=N+i
CAU-C1: add(N,i)=N+i
CAU-SIV: add(N,i)=1||lsbn-1(N)+i
CAU-SIV-C1: add(N,i)=1||lsbn-1(N)+i

(3) CAU-C1

E

0n-ν||N

Kbc

T

⊕0||lsbn-1(H)

(4) CAU-SIV

E

0n-ν||N

Kbc

⊕

T

⊕0||lsbn-1(H)

N||0n-ν-11

Fig. 3. Tag-generation functions of CAU (1)(2), of CAU-C1 (1)(3), of CAU-SIV (1)(4),
and of CAU-SIV-C1 (1)(5). The hash key of CAU and CAU-C1 is defined as L ←
E(K, 0n). D is a ciphertext (resp. plaintext) in CAU and CAU-C1 (resp. CAU-SIV and
CAU-SIV-C1).

hash key is defined as L← E(K, 0n). GMAC is CAUTGen with the hash function
GHASH defined in Algorithm 5. GHASH uses field multiplications. Let F be a
finite field of 2n elements. We can interpret a string in {0, 1}n as an element in
F, and the addition in F is the same as ⊕ in {0, 1}n. Let • be the finite-field
multiplication in F.

The multi-user AE (mu-AE) security of CAU (and GCM) was proven in the
IC model [14]. On the other hand, several works e.g. [1, 10, 1, 16] show that GCM
is not CMT-1 secure, i.e., there exists an adversary that breaks the CMT-1-
security of GCM.

CAU-C1. CAU-C1 [4], a variant of CAU, is a single-key CTRAE scheme with
the tag-generation function CAU-C1TGen. Hence, Ktag = Kbc and Ktag = {0, 1}k.
CAU-C1TGen uses the Davies-Meyer (DM) mode instead of the plain BC encryp-
tion, and the hash value H is taken before the DM call. The specification of
CAU-C1TGen is given in Algorithm 6 and Fig. 3(1)(3). Hash is a universal hash
function with a key L, and the key is defined as L← E(K, 0n). We call CAU-C1
with the hash function GHASH “GCM-C1”.

In [4], the mu-AE-security of CAU-C1 was proven under the assumption that
the underlying BCs are pseudorandom functions, and it was proven that CAU-C1
is CMT-1 secure as long as DM is collision resistant.

3.3 CTR-based SIV

CTRSIV. CTRSIV[E,Ψtag, Ψkdf ], a tag-based AE scheme with CTR[E], is de-
fined by following the GCM-SIV design [12, 11], and thus uses a nonce-based key
derivation function (KDF). The specification of CTRSIV[E,Ψtag, Ψkdf ] is given
in Algorithm 3 and Fig. 2(3). Let Ktag be the key space of the tag-generation
function. CTRSIVTGen[Ψtag] : Ktag ×N ×A×M→ {0, 1}n is the tag-generation
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function. The tag size is n, i.e., t = n. KDsiv[Ψkdf ] : K × {0, 1}ν → {0, 1}k ×Ktag

is the nonce-based KDF that on an input tuple (K,N) of an original key and
nonce, returns a pair of temporary keys (Kbc,Ktag). Kbc (resp. Ktag) is a tem-
porary key of CTR (resp. CTRSIVTGen). The function add of CAU-SIV is defined
as add(IV, i) := (1∥(msbn−c−1(IV ))∥(lsbc(IV ) + i mod 2c)), where in the eval-
uation lsbc(IV ) is considered as an integer, and the result of the evaluation is
regarded as a c-bit string.

CAU-SIV (a Generalization of GCM-SIV). CAU-SIV[E] [5] is CTRSIV with
the tag-generation function GMAC+[E] and the KDF KD1[E]. The specification
is given in Algorithm 6 and Fig. 3(1)(4). (Kbc, L) is a pair of (temporary) keys
of GMAC+[E], where Kbc is equal to the key of CTR. GMAC+[E] : {0, 1}k ×
{0, 1}n ×A ×M → {0, 1}n takes an input tuple (Kbc, L,N,A,M) and returns
an n-bit tag T . Hash : {0, 1}n×A×M→ {0, 1}n is a universal hash function that
on input tuple (L,A,M), returns a hash value H. The key derivation KD1[E] is
a concatenation of truncated BC calls where each BC call takes input tuple of
key, nonce, and counter.

The mu-AE-security of CAU-SIV was proven in the IC model. On the other
hand, as the attacks on GCM [1, 10, 1, 16], GCM-SIV is not CMT-1 secure.

CAU-SIV-C1. CAU-SIV-C1 [4], a variant of CAU-SIV, is CTRSIV with the tag-
generation function GMAC2[E] and the KDF KD1[E]. The specification of GMAC2
is given in Algorithm 6 and Fig. 3(1)(5). GMAC2 uses the DM mode instead of
the plain BC’s encryption, and the hash value H is taken before the DM call.
We call CAU-SIV-C1 with the hash function GHASH “GCM-SIV-C1”.

In [4], the mu-AE-security of CAU-SIV-C1 was proven under the assumptions
that the underlying BCs are pseudorandom permutations and the key derivation
functions are pseudorandom functions. In [4], it was proven that CAU-SIV-C1 is
CMT-1 secure as long as DM and KD1 are collision resistance.

4 Plaintext Redundancy and Limitations of Committing
AE

In this section, we define functions for plaintext redundancies and then show
limitations of the existing conversions HtE and CTX with plaintext redundancies.

4.1 Limitations for Committing Security of CTRAE and CTRSIV

The following proposition shows that even when the tag-generation functions are
ROs, the CMT-1 (resp. CMT-3) security of CTRAE (resp. CTRSIV) is broken
by O(2t/2) computations when there is no plaintext redundancy.
Proposition 1. Let Π ∈ {CTRAE,CTRSIV}. Assume that E is an encryption
of IC and the tag-generation function ΠTGen is an RO. Then, there exists an
adversary A such that the number of queries to E, E−1, or ΠTGen is p and
Advcmt-i

Π (A) = O
(

p2

2t

)
where i = 1 if Π = CTRAE; i = 3 if Π = CTRSIV.
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Algorithm 7 CMT-1 Adversary A against CTRAE

1: Choose p − 2 distinct keys of CTR K
(1)
bc , . . . ,K

(p−2)
bc ∈ {0, 1}k, p − 2 distinct keys

of CTRAETGen K
(1)
tag , . . . ,K

(p−2)
tag ∈ Ktag, (N,A) ∈ {0, 1}ν ×A, and C ← 0n

2: for i = 1, . . . , p− 2 do T (i) ← CTRAETGen(K
(i)
tag , N,A,C) end for

3: if ∃α, β ∈ [p− 2] s.t. α ̸= β ∧ T (α) = T (β) then
4: M (α) ← CTR[E](K

(α)
bc , N∥0n−ν , C); M (β) ← CTR[E](K

(β)
bc , N∥0n−ν , C)

5: return (((K
(α)
bc ,K

(α)
tag ), N,A,M (α)), ((K

(β)
bc ,K

(β)
tag ), N,A,M (β)))

6: end if
7: return (((K

(1)
bc ,K

(1)
tag ), N,A, 0), ((K

(2)
bc ,K

(2)
tag ), N,A, 1))

Algorithm 8 CMT-3 Adversary A against CTRSIV

1: Choose p distinct AD A(1), . . . , A(p) ∈ A and (K,N,M) ∈ K × {0, 1}ν ×M
2: (Kbc,Ktag)← KDsiv[Ψkdf ](K,N)
3: for i = 1, . . . , p do T (i) ← CTRSIVTGen(Ktag, N,A(i),M) end for
4: if ∃α, β ∈ [p] s.t. α ̸= β ∧ T (α) = T (β) then

return ((K,N,A(α),M), (K,N,A(β),M)) end if
5: return ((K,N,A(1),M), (K,N,A(2),M))

Proof. An adversary A breaking the CMT-1-security of CTRAE is defined in
Algorithm 7. A fixes a nonce, AD, and a ciphertext, and varies keys. By the birth-
day analysis, the probability that a tag collision occurs is O(p2/2t). Hence, the
adversary breaks the CMT-1-security of CTRAE with the probability O(p2/2t).

An adversary A breaking the CMT-3-security of CTRSIV is defined in Al-
gorithm 8. The adversary fixes a tuple of key, nonce, and ciphertext, and varies
AD values. By the birthday analysis, the probability that a tag collision occurs
is O(p2/2t). Since AD is not an input to CTR, the ciphertexts in the adversary’s
output are the same, and the adversary breaks the CMT-3-security of CTRSIV
with the probability O(p2/2t). ⊓⊔

4.2 Plaintext Redundancy

In order to overcome the birthday-bound limitation regarding the tag size in
Proposition 1, we use plaintext redundancy, which adversaries cannot control. To
handle plaintext redundancy in our proofs, we define the functions that capture
the properties of plaintext redundancy.

Definition 2 (Plaintext Redundancy). Let r be the length of redundant
data. Let Frdd : K × N × A → {0, 1}r be a redundant-data-derivation (RDD)
function that derives an r-bit redundant data from an input tuple of key, nonce,
and AD. Let Pmix : {0, 1}r ×M → M is a mixing function that on input tu-
ple (R,M) of r-bit redundant data and plaintext, returns a plaintext with the
redundant data M∗ such that |M∗| = |M | + r. Pmix is a (ω, n)-mixing linear
function if the function is linear and bijection, and the number of n-bit blocks
with redundant bits is at most ω, i.e., for any plaintext M and r-bit redundant



14 Yusuke Naito, Yu Sasaki, and Takeshi Sugawara

data R, the number of n-bit blocks of Pmix(R,M) depending on R is at most ω.5
For an AE, encryption, CTR, or a tag-generation scheme Π let ΠPmix,Frdd be Π
with the redundant functions Frdd and Pmix.

The above definition captures plaintext redundancy found in the real-world
applications. As described in the introduction, practical file formats (e.g., PNG
and XML) and network protocols (e.g., HTTP and HTTP2) have known con-
stant strings, or magic numbers, to distinguish a particular format or protocol
from others [15, 21]. We can use them as plaintext redundancy to increase the
committing security without increasing the ciphertext size. In these cases, the
RDD function is a constant map Frdd : (K,N,A) 7→ const and Pmix is simple
string concatenation. Frdd and Pmix cover even wider range of redundancy, in-
cluding non-consecutive constant values and the ones depend on associated data
and other parameters.

Property of CTR with Plaintext Redundancy. The following lemma shows
that a collision of CTR with plaintext redundancy implies that the sum of the
key streams meets the sum of the plaintext redundancies.

Lemma 1. Let Pmix be a (ω, n)-mixing linear function. Let (K ′, IV ′,M ′, R′)
and (K ′′, IV ′′,M ′′, R′′) be tuples of key, IV, plaintext, and r-bit redundant data
such that (K ′, IV ′) ̸= (K ′′, IV ′′) and |M ′| = |M ′′|. For □ ∈ {′, ′′}, let C□ :=
CTR[E](K□, IV □,Pmix(R

□∥M□)) and KS□ the key stream defined in the pro-
cess of CTR. Then, we have

C ′ = C ′′ ⇒ msbr
(
P−1

mix

(
msb|C′| (KS′ ⊕KS′′)

))
= R′ ⊕R′′.

The property is used to derive a probability of a collision of ciphertexts in our
committing security proofs. Intuitively, KS′ and KS′′ are (almost) r-bit random
values and the probability of the ciphertext collision is O(1/2r).

Proof (Lemma 1). The relation in the lemma is obtained as follows.

C ′ = C ′′ ⇒ msb|C′| (KS′ ⊕KS′′) = Pmix(R
′∥M ′)⊕ Pmix(R

′′∥M ′′)

⇒ msb|C′| (KS′ ⊕KS′′) = Pmix ((R
′ ⊕R′′) ∥ (M ′ ⊕M ′′))

⇒ msbr
(
P−1

mix

(
msb|C′| (KS′ ⊕KS′′)

))
= R′ ⊕R′′.

4.3 Committing Insecurity of GCM and Its Variants with Plaintext
Redundancy

The following proposition shows that plaintext redundancy does not improve the
committing security of GCM, GCM-SIV, GCM-C1, and GCM-SIV-C1.

5 When (X1, . . . , Xℓ)
n←− Pmix(R,M), the number of blocks in (X1, . . . , Xℓ) that depend

on R is at most ω.
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Algorithm 9 CTX[CTRAE]
Encryption CTX[CTRAEEnc[E,Ψ ]]((Kbc,Ktag), N,A,M)
1: C ← CTR[E](Kbc, N,M); T † ← CTRAETGen[Ψtag](Ktag, N,A,C)
2: T ← FCTX(K,N,A, T †); return (C, T )

Decryption CTX[CTRAEDec[E,Ψ ]]((Kbc,Ktag), N,A,C, T ′)

1: M ← CTR[E](Kbc, N,C); T † ← CTRAETGen[Ψtag](Ktag, N,A,C)
2: T ← FCTX(K,N,A, T †); if T = T ′ then return M ; else return ⊥ end if

Proposition 2. For each of Π ∈ {GCM,GCM-SIV,GCM-C1,GCM-SIV-C1}, there
exists a RDD function Frdd, a (ω, n)-mixing function Pmix, and an adversary A
making (ω + 1) queries to an IC such that Advcmt-3

ΠFrdd,Pmix (A) = 1.

Proof (Outline). We consider the RDD function Frdd that is independent of
AD, i.e., ∀(K,N) ∈ K × N , (A†, A‡) ∈ A2 : Frdd(K,N,A†) = Frdd(K,N,A‡).
For CTRAETGen (resp. CTRSIVTGen), if a collision of the tag-generation function
CTRAETGen (resp. CTRSIVTGen) is found such that the AD values are distinct,
the tuples of key, nonce, and ciphertext (resp. plaintext) are the same, and the
plaintext redundancy is included, then the CMT-3 security of CTRAE (resp.
CTRSIV) is broken, since CTR does not take AD. When using GHASH as an
underlying hash function, the linearity of GHASH offers a tag collision with a
constant complexity, breaking the CMT-3 security of CTRAE and CTRSIV, i.e.,
GCM, GCM-SIV, GCM-C1, and GCM-SIV-C1. The formal proof is given in Sup-
porting Material C. ⊓⊔

4.4 CTX and Its Limitation with Plaintext Redundancy

CTX [6] converts AE schemes, except for SIV-based ones, to CMT-4-secure AE
schemes by adding a hash function FCTX : K×{0, 1}ν×A×{0, 1}t → {0, 1}t′ that
on an input tuple (K,N,A, T ′) of a key, nonce, AD, and tag (of the underlying
AE), generates a t′-bit tag. CTX ensures that the AE schemes with CTX are
CMT-4 secure as long as FCTX is collision resistant. The specification of CTRAE
with CTX is given in Algorithm 9.

However, the following proposition shows that plaintext redundancy does not
enhance the CMT-3 security of CTRAE with CTX.

Proposition 3. Let Π∗ := CTX[CTRAEFrdd,Pmix ]. Assume that the tag-generation
function CTRAETGen[Ψtag] is an RO. Then, there exists a RDD function Frdd, a
mixing function Pmix, and an adversary A breaking the CMT-3-security of Π∗

such that the number of queries to an RO is p and Advcmt-3
Π∗ (A) = O

(
p2

2t′

)
.

Proof (Outline). The attack finds a collision by the birthday attack on the hash
function FCTX with distinct AD, breaking the CMT-3 security of CTRAE with
CTX and with plaintext redundancy as CTR is independent of AD. By the birth-
day analysis, the collision probability is O

(
p2

2t′

)
. The formal proof is given in

Supporting Material D. ⊓⊔
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Algorithm 10 HtE
Encryption HtE[ΠEnc](K,N,A,M)
1: L← FHtE(K,N,A); (C, T )← ΠEnc(L,N, ε,M); return (C, T )

Decryption HtE[Π].Dec(K,N,A,C, T ′)

1: L← FHtE(K,N,A); M ← ΠDec(L,N, ε, C, T ′); return M

4.5 HtE and Its Limitation with Plaintext Redundancy

HtE [4] converts a CMT-1-secure AE to a CMT-4-secure one by adding a key-
derivation function FHtE that on an input tuple of a key, nonce, and AD, returns
a temporary key of the underlying AE. Let κ be the key length of the underlying
AE. In this conversion, there is a security loss by the birthday bound for the
output length of FHtE. The specification of HtE is given in Algorithm 10.

The following proposition shows that HtE does not enhance the committing
security of any AE scheme with a plaintext redundancy when κ is small, e.g.,
κ = n.

Proposition 4. Assume that FHtE is an RO. For any AE scheme Π, RDD func-
tion Frdd, and mixing function Pmix, there exists an adversary A on HtE[ΠFrdd,Pmix ]

making p queries to FHtE such that Advcmt-3
HtE[ΠFrdd,Pmix ]

(A) = O
(

p2

2κ

)
.

Proof (Outline). The attack uses the property that a collision of FHtE yields a
collision of an AE scheme with HtE. The formal proof is given in Supporting
Material E. ⊓⊔

5 KIVR Transform

The previous section shows that plaintext redundancy do not enhance the com-
mitting security of AE schemes with CTX or HtE. In this section, we present
KIVR, a generalization of HtE that enhances the committing security by using
plaintext redundancy. KIVR, on an input tuple of a key, nonce, and AD, gener-
ates a temporary key, a temporary nonce, and a mask value are generated by
using a hash function FKIVR. The mask value is applied to redundant data.

5.1 Specification of KIVR

The specification of KIVR with an AE scheme Π, an RDD function Frdd, and a
mixing function Pmix is given in Algorithm 11 and Fig. 1. Let Ψ (resp. ΨKIVR) be
the underlying primitive of Π (resp. FKIVR). Let rT be the length of the mask
values defined by FKIVR. Let FKIVR : K × N × A → K × {0, 1}ν × {0, 1}rT be
a function of KIVR that on an input tuple (K,N,A) of a key, nonce, and AD,
derives a tuple (KT, IVT, RT) of a temporary key, an IV (or nonce), and a mask
value. For CTRAE and CTRSIV, let KT := (KbcT,KtagT). KbcT is the temporary
key of CTR, and KtagT is the temporary key of the tag-generation function.

Hereafter, we use the following notations.
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Algorithm 11 KIVR Transform

Encryption KIVR[ΠFrdd,Pmix
Enc ][Ψ, ΨKIVR](K,N,A,M)

1: R← Frdd(K,N,A); (KT, IVT, RT)← FKIVR[ΨKIVR](K,N,A); R← R⊕ (RT∥0r−rT)
2: (C, T )← ΠEnc[Ψ ](KT, IVT, ε,Pmix(R∥M)); return (C, T )

Decryption KIVR[ΠFrdd,Pmix
Dec ][Ψ, ΨKIVR](K,N,A,C, T ′)

1: (KT, IVT, RT)← FKIVR[ΨKIVR](K,N,A); R← Frdd(K,N,A); R← R⊕ (RT∥0r−rT)
2: M ′ ← ΠDec[Ψ ](KT, IVT, ε, C, T

′) if M∗ = reject then return reject end if
3: M ′′ ← P−1

mix(M
′); M ← lsb|M′′|−r(M

′′);
4: if R = lsbr(M

′′) then return M else return reject end if

– Let KIVR[ΠFrdd,Pmix
TGen ] be the tag-generation function of KIVR[ΠFrdd,Pmix ], i.e.,

ΠTGen with FKIVR, Frdd, and Pmix, where ΠTGen is the tag-generation function
of Π.

– Let FKbcIVR be a function such that FKbcIVR[ΨKIVR](K,N,A) := (KbcT, IVT, RT),
i.e., FKbcIVR returns a tuple of a temporary key used in CTR[E], IV, and mask
value.

– Let FKbcR be a function such that FKbcR[ΨKIVR](K,N,A) := (KbcT, RT), i.e.,
FKbcR returns a tuple of a temporary key used in CTR[E] and mask value.

– Let FKbc
be a function such that FKbc

[ΨKIVR](K,N,A) := KbcT, i.e., FKbc

returns a temporary key used in CTR[E].
– Let FR be a function such that FR[ΨKIVR](K,N,A) := RT, i.e., FR returns a

mask value.
– Let F⊕Frdd

KbcR
be a function such that F⊕Frdd

KbcR
[ΨKIVR](K,N,A) := (KbcT, RT ⊕

msbrT(Frdd(K,N,A))).
– For S := ({K(i), N (i), A(i), D(i)), (K [i], N [i], A[i], D[i]})i∈υ, υ pairs of tuples

of a key, a nonce, an AD value, and data, Boolean functions diffK and diffKNA

are defined as follows. Let S[i] := {(K(i), N (i), A(i), D(i)), (K [i], N [i], A[i], D[i])},
where K

(i)
bc (resp. K [i]

bc ) is a part of K(i) (resp. K [i]).
• diffKNA(S) = 1 if ∀i ∈ [υ] : (K(i), N (i), A(i)) ̸= (K [i], N [i], A[i])

and ∀i ∈ [υ], j ∈ [i− 1] : S[i] ̸= S[j];
diffKNA(S) = 0 otherwise.

• diffK(S) = 1 if ∀i ∈ [υ] : K
(i)
bc ̸= K

[i]
bc

and ∀i ∈ [υ], j ∈ [i−1] : {K(i)
bc ,K

[i]
bc} ≠ {K

(j)
bc ,K

[j]
bc };

diffK(S) = 0 otherwise.

5.2 Security of KIVR

Regarding the mu-AE security of AE schemes Π with KIVR, Frdd, and Pmix,
assuming that FKIVR is a pseudorandom function secure in the mu-setting, for
each tuple of a key, nonce, and AD, the temporary key is chosen uniformly at
random from K. Hence, the mu-AE security of KIVR[ΠFrdd,Frdd ] is reduced to the
mu-AE security of the underlying AE scheme Π. The detail is given in Supporting
Material F.
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Regarding committing security, in Sections 6 and 7, we show that KIVR with
plaintext redundancy enhances the committing security of GCM and its variants.
The security bounds for CTRAE and the special cases GCM, CAU, and CAU-C1
are given in Section 6. The security bounds for CTRSIV and the special cases
GCM-SIV, CAU-SIV, and CAU-SIV-C1 are given in Section 7.

6 Committing Security of KIVR[CTRAE] with Plaintext
Redundancy

Let Frdd be an RDD function and Pmix be a (ω, n)-mixing linear function. Let
ℓkivr := k + ν + rT.

In this section, we first derive the CMT-4-security bound of KIVR[CTRAEFrdd,Pmix ]
where the tag-generation function CTRAETGen is a black-box. We then apply the
CMT-4-security bound to KIVR[GCMFrdd,Pmix ] and KIVR[CAU-C1Frdd,Pmix ]. We as-
sume that the underlying primitives E, Ψtag, and ΨKIVR are ideal.

6.1 CMT-4-Security of KIVR[CTRAEFrdd,Pmix ]

Main Theorem. The following theorem shows an upper-bound of the CMT-4-
security of KIVR[CTRAEFrdd,Pmix ].

Theorem 1. Let Π∗ := KIVR[CTRAEFrdd,Pmix ] and Π∗
TGen := KIVR[CTRAEFrdd,Pmix

TGen ].
For any CMT-4 adversary A making pic queries to E or E−1, ptag queries to
Ψtag, and pkivr queries to ΨKIVR, there exists adversaries A1, A2, and A3 such
that

Advcmt-4
Π∗ (A) ≤ 2ω · (υ − 1)

2r
+Advcolls

Π∗
TGen,υ

(A1) +Advcoll
FKbcIVR

(A2) +Advcoll

F
⊕Frdd
KbcIVR

(A3)

and for the A1’s output S1, diffKNA(S1) = 1. For each i ∈ [3], Ai makes pic
queries to E or E−1, ptag queries to Ψtag, and pkivr queries to ΨKIVR.

The proof is given in Section 6.4.

Study of Theorem 1. We study the above bound by using ideal functions,
that is, FKIVR and CTRAETGen are ROs. By the birthday analysis, the colli-
sion probability of CTRAETGen is at most 0.5p2

tag

2t , Advcoll
FKbcIVR

(A2) ≤ 0.5p2
kivr

2ℓkivr
, and

Advcoll

F
⊕Frdd
KbcIVR

(A3) ≤ 0.5p2
kivr

2ℓkivr
. By Markov’s inequality, we have Advcolls

Π∗
TGen,υ

(A1) ≤
0.5p2

tag

υ2t . Then, we choose υ such that 2ω·(υ−1)
2r ≃ 0.5p2

tag

υ2t , i.e., υ =
ptag

2
t−r+ω

2

, provid-
ing the following corollary.

Corollary 1. Let Π∗ := KIVR[CTRAEFrdd,Pmix ] and Π∗
TGen := KIVR[CTRAEFrdd,Pmix

TGen ].
Assume that FKIVR and CTRAETGen are ROs. For any CMT-4 adversary making
pic queries to E or E−1, ptag queries to CTRAETGen, and pkivr queries to FKIVR,

Advcmt-4
Π∗ (A) ≤

(
3·2ω·p2

tag

2r+t

) 1
2

+
p2
kivr

2ℓkivr
.
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The above bound shows that if 2ω is a constant and ℓkivr ≥ r + t, then Π∗ is
CMT-4-secure up to O(2

r+t
2 ) query complexity.

6.2 Application to KIVR[CAUFrdd,Pmix ]

Let Π∗ := KIVR[CAUPmix,Frdd ] and Π∗
TGen := KIVR[CAUFrdd,Pmix

TGen ]. We first derive
the CMT-4-security bound of Π∗ by using the bound in Theorem 1. Then, we
show that the bound is tight.

Upper-Bound. The following bound is obtained by choosing υ = 0.5p2ic+1, as
Advcolls

Π∗
TGen,υ

(A1) = 0.

Corollary 2. For any CMT-4 adversary A making pic queries to E or E−1,
and ptag queries to Ψtag, there exist adversaries A2 and A3 such that Advcmt-4

Π∗ (A) ≤
2ω−1·p2

ic

2r +Advcoll
FKbcIVR

(A2)+Advcoll

F
⊕Frdd
KbcIVR

(A3), and for i ∈ [2, 3], Ai makes pic queries

to E or E−1, ptag queries to Ψtag, and pkivr queries to ΨKIVR.

Assume that t ≤ n ≤ k, FKIVR is an RO and 2ω−1 is a small constant. Then,
we have Advcoll

FKbcIVR
(A2) ≤ 0.5p2

kivr

2ℓkivr
and Advcoll

F
⊕Frdd
KbcIVR

(A3) ≤
0.5p2

tag

2ℓkivr
. Hence, Π∗ is

CMT-4 secure up to O(min{2 r
2 , 2

ℓkivr
2 }) query complexity. Assuming r ≥ k + ν

and using FKIVR such that ℓkivr ≥ r, the term 2
r
2 becomes dominant.

Tightness. We show that the above bound is tight if the underlying AE scheme
is GCM and the underlying function FKIVR is an RO. The following theorem shows
that the CMT-1 security of KIVR[GCMFrdd,Pmix ] is broken with O(min{2 r

2 , 2
k+ν
2 })

query complexity, which matches the above bound.

Theorem 2. Let CAU := GCM, i.e., the hash function of Π∗ is GHASH. Assume
that FKIVR is an RO. Then, there exists a RDD function Frdd, a (ω, n)-mixing
linear function Pmix, and an adversary A making p queries to an IC or an RO
such that Advcmt-1

Π∗ (A) = O
(
min

{
p2

2r ,
p2

2ℓkivr

})
.

Proof (Outline). The first bound is obtained by an attack that finds a pair of
input tuples of a key, nonce, and AD to CTR such that the key streams satisfy the
condition in Lemma 1. Using the pair, one can find plaintexts with a ciphertext
collision. Note that the tag collision is found with the probability 1 by using the
linearity of GHASH. The second bound is obtained by an attack using a collision
of FKIVR. The formal proof is given in Supporting Material G. ⊓⊔

6.3 Application to KIVR[CAU-C1Frdd,Pmix ]

Let Π∗ := KIVR[CAU-C1Frdd,Pmix ] and Π∗
TGen := KIVR[CAU-C1Frdd,Pmix

TGen ]. We first
derive the CMT-4-security bound of Π∗ by using the bound in Theorem 1.
Then, we show that the bound is tight.
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Upper-Bound. We first show an upper-bound of the υ-collision advantage
Advcolls

Π∗
TGen,υ

(A1) with υ = 1, which is the bound of the probability of finding a
collision of Π∗

TGen with the condition diffKNA.

Lemma 2. Let S1 be an A1’s output with pairs of the tuples of a key, a nonce,
AD, and a plaintext. For any adversary A1 making pic queries to E or E−1 and
pkivr queries to ΨKIVR such that diffKNA(S1) = 1, there exists an adversary A1,1

finding a collision of FKbc
such that Advcolls

Π∗
TGen,1

(A1) ≤ p2
ic

2t +Advcoll
FKbc

(A1,1), and
A1,1 makes queries to pic queries to E or E−1, and pkivr queries to ΨKIVR.

Proof. The condition of diffKNA ensures that the collision probability is reduced
to that of finding a collision of DM (the finalization function of Π∗

TGen). Assuming
that no collision on FKbc

occurs which offers the term Advcoll
FKbc

(A1,1), inputs to
DM are all distinct, and thus by the birthday analysis, the collision probability
is at most

(
pic

2

)
2
2t ≤

p2
ic

2t . ⊓⊔

If υ = 0.5p2ic + 1, then we have Advcolls
Π∗

TGen,υ
(A1) = 0. Hence, putting the param-

eters υ = 0.5p2ic + 1, υ = 1 and the above bound into the one in Theorem 1, we
obtain the following bound of the CMT-4-security of Π∗.

Corollary 3. For any CMT-4 adversary A making pic queries to E or E−1,
and pkivr queries to ΨKIVR, there exist adversaries A1,1, A2, and A3 such that

Advcmt-4
Π∗ (A) ≤ min

{2ω−1 · p2ic
2r

,
p2ic
2t

+Advcoll
FKbc

(A1,1)
}

+Advcoll
FKbcIVR

(A2) +Advcoll

F
⊕Frdd
KbcIVR

(A3)

and A1,1, A2, and A3 respectively make queries to pic queries to E or E−1 and
pkivr queries to ΨKIVR.

Assume that t ≤ n ≤ k, FKIVR is an RO, and 2ω−1 is a constant. Then, we have
Advcoll

FKbc
(A1,1) ≤ p2

2k
, Advcoll

FKbcIVR
(A2) ≤ p2

2ℓkivr
, and Advcoll

F
⊕Frdd
KbcIVR

(A3) ≤ p2

2ℓkivr
. Thus,

Π∗ is CMT-4 secure up to O
(
min

{
max

{
2

r
2 , 2

t
2

}
, 2

ℓkivr
2

})
query complexity.

Choosing rT such that ℓkivr ≥ r, the terms max
{
2

r
2 , 2

t
2

}
become dominant.

Tightness. We show that the above bound is tight if the underlying function
FKIVR is an RO and the hash function is GHASH, i.e., the underlying AE scheme
is GCM-C1. The following theorem shows that the CMT-1 security of Π∗ with
GHASH is broken with O

(
max

{
2

r
2 , 2

t
2

})
query complexity, which matches the

above bound.

Theorem 3. Assume that the hash function of Π∗ is GHASH, FKIVR is an RO,
and ω is a constant. Then, there exists an RDD function Frdd, a (ω, n)-mixing
linear function Pmix, and an adversary A′ making p queries to an IC or an RO
such that Advcmt-1

Π∗ (A′) = O
(
min

{
p2

2r , 1
}
· p

2

2t

)
.
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Proof (Outline). The adversary first finds a pair of inputs to CTR[E] such that
the key streams satisfy the condition in Lemma 1 (i.e., a ciphertext collision oc-
curs). By the birthday analysis, the probability that the pair is found is O

(
p2

2r

)
.

By the pairs of temporary key and IV that yield a ciphertext collision, the key
elements of DM that is the finalization function of Π∗

TGen are fixed. Then, by
using the linearity of GHASH and ciphertext blocks that are independent of the
plaintext redundancy, one can choose any n-bit input block to DM. By the birth-
day attack, a collision of DM is found with the probability O

(
p2

2t

)
. Hence, we

obtain the lower-bounds in the theorem. The formal proof is given in Supporting
Material H. ⊓⊔

6.4 Proof of Theorem 1

We first use the following notations.

– Π∗
Enc := KIVR[CTRAEFrdd,Pmix

Enc ]
– For an input tuple (K□, N□, A□,M□),

(C□, T□) := Π∗
Enc[E,Ψtag, ΨKIVR](K

□, N□, A□,M□), M□∗ := Pmix(R
□,M□),

R□ := Frdd(K
□, N□, A□), (K□

bcT, IV
□
T , R□

T ) := FKbcIVR(K
□, N□, A□),

KS□ is the key stream of CTR[E](K□
T , IV □

T ,M□).

In the following proof, the symbol □ is replaced with (i), ′, ′′, †, and ‡ where
i is an integer.

– IKIVR: the set of all possible input tuples of FKIVR[ΨKIVR] derived from query-
response tuples of ΨKIVR.

– ITGen: the set of all possible input tuples of Π∗
TGen derived from query-

response tuples of Ψtag and ΨKIVR.
– (K†, N†, A†,M†), (K‡, N‡, A‡,M‡): A’s outputs.

In this proof, we evaluate the CMT-3-security advantage of A for Π∗:
Advcmt-3

Π∗ (A) = Pr[(C†, T †) = (C‡, T ‡)], as CMT-3-security and CMT-4-security
are equivalent [4].

We next define the following collision event for FKIVR:

– coll2: ∃X,X ′ ∈ IKIVR s.t. X ̸= X ′ ∧ FKbcIVR(X) = FKbcIVR(X
′).

– coll3: ∃X,X ′ ∈ IKIVR s.t. X ̸= X ′ ∧ F⊕Frdd
KbcIVR

(X) = F⊕Frdd
KbcIVR

(X ′).

Let coll := coll2 ∨ coll3. Using the events, we have

Advcmt-3
Π∗ (A) ≤ Pr[coll2] + Pr[coll3] + Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll] .

These bounds are given in Eqs. (1) and (2), providing the bound in Theorem 1.

Bounds of Pr[coll2] and of Pr[coll3]. The event coll2 (resp. coll3) implies
that there exists an adversary A2 (resp. A3) finding a collision of FKbcIVR (resp.
F⊕Frdd
KbcIVR

). We thus have

Pr[coll1] ≤ Advcoll
FKbcIVR

(A2) and Pr[coll2] ≤ Advcoll

F
⊕Frdd
KbcIVR

(A3) . (1)
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Bound of Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]. We evaluate the probability
Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]. We consider the following event.6

colls :∃S = {{(K ′(i), N ′(i), A′(i), C ′(i)), (K ′′(i), N ′′(i), A′′(i), C ′′(i))} ∈ (ITGen)2 | i ∈ [υ]}

s.t.
(
∀i ∈ [υ] : Π∗

TGen(K
′(i), N ′(i), A′(i), C ′(i)) = Π∗

TGen(K
′′(i), N ′′(i), A′′(i), C ′′(i))

)
∧ (diffKNA(S) = 1).

Using the event, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]
≤ Pr[colls] + Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll ∧ ¬colls]
≤ Pr[colls] + Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)].

Regarding Pr[colls], colls implies that there exists an adversary A1 finding
υ-collisions of Π∗

TGen with the condition of diffKNA. We thus have Pr[colls] ≤
Advcolls

Π∗
TGen,υ

(A1).
We next evaluate Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)]. Regarding the

ciphertext collision, by Lemma 1, we have

C† = C‡ ⇒ msbr
(
P−1

mix

(
KS† ⊕KS‡)) = (R† ⊕ zpr(R

†
T))⊕ (R‡ ⊕ zpr(R

‡
T)),

where KS† and KS‡ are respectively determined from (K†, N†, A†) and (K‡, N‡, A‡).
By ¬colls, there are at most υ−1 pairs of tuple of key, nonce, and AD with which
tag collisions occur. Fix distinct tuples (K ′, N ′, A′), (K ′′, N ′′, A′′) ∈ IKIVR and
assume that coll does not occur. We then consider the following two cases.

– If (K ′
bcT, IV

′
T) = (K ′′

bcT, IV
′′
T ), then KS′ = KS′′ but R′ ⊕ R′

T ̸= R′′ ⊕ R′′
T.

Hence, we have

Pr[C ′ = C ′′]

≤ Pr
[
msbr

(
P−1

mix (KS′ ⊕KS′′)
)
= (R′ ⊕ zpr(R

′
T))⊕ (R′′ ⊕ zpr(R

′′
T))

]
= 0 .

– If (K ′
bcT, IV

′
T) ̸= (K ′′

bcT, IV
′′
T ), then in the processes of CTR, the IC’s input-

output tuples are defined by E or E−1. Due to full-block queries, for Z ∈
{0, 1}n and j ∈ {0, 1}c,

Pr[E(K ′
bcT, add(IV ′

T, j) = Z] ≤ 2

2n
, Pr[E−1(K ′

bcT, Z) = add(IV ′
T, j)] ≤

2

2n
,

Pr[E(K ′′
bcT, add(IV ′′

T , j) = Z] ≤ 2

2n
, Pr[E−1(K ′′

bcT, Z) = add(IV ′′
T , j)] ≤ 2

2n
.

As there are ω blocks that depend on redundant data, we have

Pr[C ′ = C ′′] ≤ 2ωn−r ·
(

2

2n

)ω

=
2ω

2r
.

6 The event implies that υ-collisions of Π∗
TGen occur such that for each of the υ-collision

input pairs, the tuples of key, nonce, and AD are distinct, and any of the υ pairs is
distinct from the other pairs.
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As the number of key streams is at most pic, the probability that for some of the
(υ−1) pairs, the key streams KS′ and KS′′ satisfy the relation msbr

(
P−1

mix (KS′ ⊕KS′′)
)
=

(R′ ⊕ zpr(R
′
T))⊕ (R′′ ⊕ zpr(R

′′
T)) is at most (υ − 1) · 2

ω

2r , i.e.,

Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)] ≤ 2ω · υ − 1

2r
.

Using these bounds, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll] ≤ 2ω · υ − 1

2r
+Advcolls

Π∗
TGen,υ

(A1) . (2)

7 Committing Security of KIVR[CTRSIV] with Plaintext
Redundancy

Let Frdd be an RDD function and Pmix be a (ω, n)-mixing linear function. Let
ℓkivr := k + n+ rT.

We first derive the CMT-4-security bound of KIVR[CTRSIVFrdd,Pmix ] where
the tag-generation function CTRSIVTGen is a black-box. We then apply the
CMT-4-security bound to KIVR[CAU-SIVFrdd,Pmix ] and (a variant of) KIVR[CAU-SIV-C1Frdd,Pmix ].
We assume that the underlying primitives E, Ψtag, and ΨKIVR are ideal.

7.1 CMT-4-Security of KIVR[CTRSIVFrdd,Pmix ]

Main Theorem. Let Π∗ := KIVR[CTRSIVFrdd,Pmix ] and Π∗
TGen := KIVR[CTRSIVFrdd,Pmix

TGen ].
The following theorem shows an upper-bound of the CMT-4-security of Π∗.

Theorem 4. For any Frdd,Pmix, and CMT-4 adversary A making pic queries to
E or E−1, ptag queries to Ψtag, and pkivr queries to ΨKIVR, there exists adversaries
A1, A2, and A3 such that

Advcmt-4
Π∗ (A) ≤ 2ω · (υ − 1)

2r
+Advcolls

Π∗
TGen,υ

(A1)

+Advcoll

F
⊕Frdd
KbcR

(A2) +Advcoll
FKbcR

(A3) ,

the A1’s output S1 is such that diffK(S1) = 1, and for each i ∈ [3], Ai makes pic
queries to E or E−1, ptag queries to Ψtag, and pkivr queries to ΨKIVR.

The proof is given in Section 7.4.

Study of Theorem 4. We study the above bound by using ideal functions,
that is, FKIVR and CTRAETGen are ROs. By the birthday analysis, we have
Advcoll

F
⊕Frdd
KbcR

(A2) ≤ 0.5p2
kivr

2k+rT
and Advcoll

FKbcR
(A3) ≤ 0.5p2

kivr

2k+rT
. The probability that a

collision of Π∗ occurs is at most 0.5p2
tag

2n , and by using Markov’s inequality, we

have Advcolls
ΠTGen,υ

(A1) ≤
0.5p2

tag

υ2n . Then we choose υ such that 2ω·(υ−1)
2r ≃ 0.5p2

tag

υ2n ,
i.e., υ =

ptag

2
n−r+ω

2

, providing the following corollary.
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Corollary 4. Let Frdd be a RDD function and Pmix a (ω, n)-mixing linear func-
tion. Assume that CTRSIVTGen and FKIVR are ROs. For any CMT-4 adversary
making pic queries to E or E−1, ptag queries to CTRAETGen, and pkivr queries to

FKIVR, Advcmt-4
Π∗] (A) ≤

(
3·2ω·p2

tag

2r+n

) 1
2

+
p2
kivr

2k+rT
.

The above bound shows that if 2ω is a constant, then KIVR[CTRSIVFrdd,Pmix ]

is CMT-4-secure up to O(min{2 r+n
2 , 2

k+rT
2 }) query complexity. Choosing the

parameter rT such that k+ rT ≥ r+ n, KIVR[CTRSIVFrdd,Pmix ] is CMT-4-secure
up to O(2

r+n
2 ) query complexity.

7.2 Application to KIVR[GCM-SIVFrdd,Pmix ]

Let Π∗ := KIVR[GCM-SIVFrdd,Pmix ]. We first derive the CMT-4-security bound
of Π∗ by using the bound in Theorem 4. Then, we show that the bound is tight.

Upper-Bound. When the number of queries to an IC is pic, the number of

pairs in A1’s outputs is at most
(
pic

2

)
≤ 0.5p2

ic

2 . Choosing υ :=
0.5p2

ic

2 + 1, we have
Advcolls

ΠTGen,υ
(A1) = 0. We then obtain the following corollary.

Corollary 5. For any CMT-4 adversary making pic queries to E or E−1, and
pkivr queries to ΨKIVR, there exists adversaries A2 and A3 such that Advcmt-4

Π∗ (A) ≤
2ω−1·p2

ic

2r +Advcoll

F
⊕Frdd
KbcR

(A2)+Advcoll
FKbcIVR

(A3), and A2 and A3 respectively make pic

queries to E or E−1, ptag queries to Ψtag, and pkivr queries to ΨKIVR.
Assume that FKIVR is an RO and 2ω is a constant. Then, by the birthday analysis,
we have Advcoll

F
⊕Frdd
KbcR

(A2) ≤ 0.5p2
kivr

2k+rT
and Advcoll

FKbcR
(A3) ≤ 0.5p2

kivr

2k+rT
. Hence, Π∗ is

CMT-4 secure up to O(2min{ r
2 ,

k+rT
2 }) query complexity. Choosing the parameter

rT such that r ≤ rT + k, the bound becomes O(2
r
2 ).

Tightness. We show that the above bound is tight, assuming the underlying
hash function of Π∗ is GHASH and FKIVR is an RO. The following theorem shows
that the CMT-1 security of KIVR[GCM-SIVFrdd,Pmix ] is broken with O(2

r
2 ) query

complexity, which matches the above bound with r ≤ rT+k. Note that showing
the tightness for r < n/2 is an open problem.
Theorem 5. Let the underlying hash function of Π∗ is GHASH. Assume that E
is an IC and FKIVR is a random oracle. There exists Frdd, Pmix, and an adversary
breaking the CMT-1-security of Π∗ making p queries to E, E−1, Ψtag, or FKIVR

such that Advcmt-1
Π∗ (A) = O

(
p2

2r

)
.

Proof (Outline). The proof is the same as that of Theorem 2. The bound is
obtained by an attack that finds a pair of input to CTR such that the key
streams satisfy the condition in Lemma 1 (i.e., a ciphertext collision occurs).
Note that the tag collision is found with the probability 1 by using the linearity
of GHASH. The formal proof is given in Supporting Material I. ⊓⊔
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7.3 Application to (Variant of) KIVR[CAU-C1Frdd,Pmix ]

We apply the bound in Theorem 4 to a variant of GCM-SIV. In CAU-SIV-C1, a
temporary key is derived by a key derivation function KD1 taking a pair of key
and nonce. Combining CAU-SIV-C1 with KIVR, the temporary key is derived by
two function calls KD1◦FKIVR, but one of which is redundant. Hence, we consider
CAU-SIV-C1 without KD1, which we call CAU-SIV-DM. The key of CAU-SIV-DM
is a pair (Kbc, L) of BC and hash keys and is directly input to CTR and GMAC2.
In KIVR[CAU-SIV-DMFrdd,Pmix ], FKIVR returns a tuple ((KbcT, LT), IVT, RT), and
the pair of BC and hash keys (KbcT, LT) is used instead of (Kbc, L).

Let Π∗ := KIVR[CAU-SIV-DMFrdd,Pmix ]. The following corollary shows the
CMT-4-security bound of Π∗ obtained from Theorem 4. Regarding the term
Advcolls

Π∗
TGen,υ

(A1) where Π∗
TGen = KIVR[GMAC2], by the condition of diffK, the

term is upper-bounded by the υ-collision probability of DM in the IC model.
The collision probability of DM is at most

(
p2
ic

2n

)
2
2n ≤

p2
ic

2n . By Markov’s inequality,

we have Advcolls
GMAC2,υ(A1) ≤ p2

ic

υ2n . Choosing υ = pic

2
n−r+ω

2

, we obtain the following
corollary.

Corollary 6. Assume that FKIVR is an RO. Let Π∗ := KIVR[CAU-SIV-DMFrdd,Pmix ].
For any CMT-4 adversary making pic queries to E or E−1, and pkivr queries to

FKIVR, we have Advcmt-4
Π∗ (A) ≤

(
2ω+2 · p2

ic

2r+n

) 1
2

+Advcoll

F
⊕Frdd
KbcR

(A2)+Advcoll
FKbcIVR

(A3),

and A2 and A3 respectively make pic queries to E or E−1, ptag queries to Ψtag,
and pkivr queries to ΨKIVR.

Assume that FKIVR is an RO and 2ω is a constant. By the birthday analysis, we
have Advcoll

F
⊕Frdd
KbcR

(A2) ≤ 0.5p2
kivr

2k+rT
and Advcoll

FKbcIVR
(A3) ≤ 0.5p2

kivr

2k+rT
. The above bound

shows that Π∗ is CMT-4-secure up to O(2min{ r+n
2 ,

rT+k

2 }) query complexity.
Choosing the parameter rT such that r+n ≤ rT+k, the bound becomes O(2

r+n
2 ).

7.4 Proof of Theorem 4

In this proof, we use the following notations.

– Π∗
Enc := KIVR[CTRSIVFrdd,Pmix

Enc ]
– For an input tuple (K□, N□, A□,M□),
• (C□, T□) := Π∗

Enc[E,Ψtag, ΨKIVR](K
□, N□, A□,M□),

• R□ := Frdd(K
□, N□, A□),

• (K□
bcT, IV

□
T , R□

T ) := FKbcIVR(K
□, N□, A□),

• M□
T := Pmix(zpr(R

□)⊕R□
T ,M

□), and
• KS□ is the key stream of CTR[E](K□

bcT, T
□,M□

T ).
In the following proof, the symbol □ is replaced with (i), [i], ′, ′′, †, and ‡.

– IKIVR: the set of all possible input tuples of FKIVR[ΨKIVR] derived from query-
response tuples of ΨKIVR.

– ITGen: the set of all possible input tuple to Π∗
TGen derived from query-response

tuples of Ψtag and ΨKIVR.
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– (K†, N†, A†,M†), (K‡, N‡, A‡,M‡): A’s outputs.

In this proof, we evaluate the following probability for the CMT-3-security
of Π, as CMT-3-security and CMT-4-security are equivalent.

Advcmt-3
Π∗ (A) = Pr[(C†, T †) = (C‡, T ‡) s.t. (K†, N†, A†) ̸= (K‡, N‡, A‡)] .

We next define the following collision event:

– coll1: ∃X ′, X ′′ ∈ IKIVR s.t. X ′ ̸= X ′′ and FKbcR(X
′) = FKbcR(X

′′).
– coll2: ∃X ′, X ′′ ∈ IKIVR s.t. X ′ ̸= X ′′ and F⊕Frdd

KbcR
(X ′) = F⊕Frdd

KbcR
(X ′′).

– tcolls: ∃STGen =
{
{(K(i), N (i), A(i),M (i)), (K ′(i), N [i], A[i],M [i])} ∈ (ITGen)2 |

i ∈ [υ]
}

s.t. diffK(STGen) = 1 and ∀i ∈ [υ] : T (i) = T [i].

bad := coll1 ∨ coll2 ∨ tcolls. Using these events, we have

Advcmt-3
Π∗ (A) ≤ Pr[coll1] + Pr[coll2] + Pr[tcolls] + Pr[(C†, T †) = (C‡, T ‡) ∧ ¬bad] .

These bounds are given in Eqs. (3), (4), and (5), offering the bound in Theorem 4.

Bounds of Pr[coll1] and Pr[coll2]. The event coll1 (resp. coll2) implies that
there exists an adversary A3 (resp. A2) finding a collision of FKbcR (resp. F⊕Frdd

KbcR
).

We thus have

Pr[coll1] ≤ Advcoll
FKbcR

(A3) and Pr[coll1] ≤ Advcoll

F
⊕Frdd
KbcR

(A2) . (3)

Bounds of Pr[tcolls]. The event tcolls implies that there exists an adversary
A1 finding υ-collisions of Π∗

TGen such that the A1’s output satisfies the condition
of diffK. We thus have

Pr[tcolls] ≤ Advcolls
Π∗

TGen,υ
(A1) . (4)

Bound of Pr[(C†, T †) = (C‡, T ‡)∧¬bad]. We first define the following two
sub-sets Q(1)

KIVR ⊆ (IKIVR)
2 and Q(2)

KIVR ⊆ (IKIVR)
2.

Q(1)
TGen := {{(K

′, N ′, A′), (K ′′, N ′′, A′′)} | T ′ = T ′′ ∧K ′
bcT ̸= K ′′

bcT∧
{(K ′, N ′, A′,M ′), (K ′′, N ′′, A′′,M ′′)} ∈ (ITGen)2}.

Q(2)
TGen := {{(K

′, N ′, A′), (K ′′, N ′′, A′′)} | T ′ = T ′′ ∧K ′
bcT = K ′′

bcT∧
{(K ′, N ′, A′,M ′), (K ′′, N ′′, A′′,M ′′)} ∈ (ITGen)2}.

By Lemma 1,

C† = C‡ ⇒ Cond†‡ :=
(
msbr

(
P−1

mix

(
KS† ⊕KS‡)) = zpr(R

†
T ⊕R‡

T)⊕R† ⊕R‡
)
.
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Using these sets and the relation, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬bad]
≤ Pr[Cond†‡ ∧ T † = T ‡ ∧ ¬bad]

= Pr[Cond†‡ ∧ ({(K†, N†, A†), (K‡, N‡, A‡)} ∈ Q(1)
TGen ∪Q

(2)
TGen) ∧ ¬bad]

= Pr[Cond†‡ ∧ {(K†, N†, A†), (K‡, N‡, A‡)} ∈ Q(1)
TGen ∧ ¬bad]︸ ︷︷ ︸

=:δ1

+ Pr[Cond†‡ ∧ {(K†, N†, A†), (K‡, N‡, A‡)} ∈ Q(2)
TGen ∧ ¬bad]︸ ︷︷ ︸

=:δ2

.

The bounds of δ1 and δ2 are given in the following.

– Bound of δ1. For each pair ((K ′, N ′, A′), (K ′′, N ′′, A′′)) ∈ Q(1)
TGen, as K ′

bcT ̸=
K ′′

bcT, KS′ and KS′′ are independently defined. In the processes of CTR, the
IC’s input-output tuples are defined by E or E−1. Due to full-block queries,
for Z ∈ {0, 1}n and j ∈ {0, 1}c,

Pr[E(K ′
bcT, add(IV ′

T, j) = Z] ≤ 2

2n
, Pr[E−1(K ′

bcT, Z) = add(IV ′
T, j)] ≤

2

2n
,

Pr[E(K ′′
bcT, add(IV ′′

T , j) = Z] ≤ 2

2n
, Pr[E−1(K ′′

bcT, Z) = add(IV ′′
T , j)] ≤ 2

2n
.

By using the bounds, we have

Pr
[
msbr

(
P−1

mix (KS′ ⊕KS′′)
)
= zpr(R

′
T ⊕R′′

T)⊕R′ ⊕R′′]
≤ 2ωn−r ·

(
2

2n

)ω

=
2ω

2r
.

By ¬tcolls, |Q(1)
KIVR| ≤ υ − 1 is satisfied. We thus have δ1 ≤ 2ω · υ−1

2r .
– Bound of δ2. For each pair {(K ′, N ′, A′), (K ′′, N ′′, A′′)} ∈ Q(2)

KIVR, if KS′ =
KS′′, then we have C ′ = C ′′ ⇒ zpr(R

′
T ⊕ R′′

T) ⊕ R′ ⊕ R′′ = 0n. Hence, we
have Pr[K ′

bcT = K ′′
bcT ∧ zpr(R′

T⊕R′′
T)⊕R′⊕R′′ = 0n | ¬bad]. By ¬coll2, we

have δ2 = 0.

Using these bounds, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬bad] ≤ 2ω · υ − 1

2r
. (5)

8 Further Limitations of HtE with Plaintext Redundancy

In this section, we show that there exist functions Frdd and Pmix with which the
CMT-1 security of HtE with GCM or its variants is broken.
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8.1 Functions for Plaintext Redundancy

We consider the following functions: ∀(K,N,A,M) ∈ K ×N ×A×M :

Frdd(K,N,A) = 0r and Pmix(0
r∥M) = 0r∥M. (6)

Let ((K†, N†, A†), (K‡, N‡, A‡)) be a pair of the tuples of a key, nonce, and AD.
Let (KS†,KS‡) be a pair of key streams of HtE[CTRFrdd,Pmix ] obtained from the
pair. If the key streams KS† and KS‡ satisfy the following relation:

msbr
(
KS† ⊕KS‡) = 0r, (7)

then by choosing plaintexts M† and M‡ such that msbr(M
†) = msbr(M

‡) = 0r

and lsb|M†|−r(M
† ⊕ KS†) = msb|M†|−r(M

‡ ⊕ KS‡), we obtain the ciphertext
collision C† = C‡. The following attack uses the property.

8.2 Lower-Bound for HtE[GCMFrdd,Pmix ]

Let Π∗ := HtE[GCMFrdd,Pmix ] and Π∗
TGen := HtE[GMACFrdd,Pmix ]. The following

proposition shows that the CMT-1-security of Π∗ is broken by O
(
2min{r,k}/2)

query complexity.

Proposition 5. Assume that E is an IC and FHtE is an RO. For Frdd and Pmix
defined in Eq. (6), there exists an adversary A making p queries to E, E−1, or
FHtE such that Advcmt-1

Π∗ (A) = O
(
max

{
p2

2r ,
p2

2k

})
.

Proof. The first attack is to find a collision of FHtE with distinct keys. By the
birthday analysis, the collision probability is O

(
p2

2k

)
. Using the collision, one

can break the CMT-1 security of HtE[GCMFrdd,Pmix ]. Assume that no collision
occurs for FHtE.

The second attack is the same as the attack in Theorem 2. The attack first
finds key streams with the relation in Eq. (7). For a pair of nonce and AD
(N,A), if a pair ((K†, N,A), (K‡, N,A)) of the tuples of a key, nonce, and AD
such that the relation in Eq. (7) and K† ̸= K‡ are satisfied is found, then one
can obtain a collision of ciphertexts. By the birthday attack on the r-bit parts of
the key streams, the relation in Eq. (7) is satisfied with the probability O

(
p2

2r

)
.

Then, by using the linearity of GHASH and the invertibility of the finalization
function of GMAC, A can find a ciphertext C that offers a tag collision with
((K†, N,A), (K‡, N,A)). Then, by choosing M† := C⊕KS† and M‡ := C⊕KS‡,
A can find a pair of tuples ((K†, N,A,M†), (K‡, N,A,M‡)) that breaks the
CMT-1 security of Π∗. Hence, the probability that the CMT-1 security of Π∗

is broken is O
(

p2

2r

)
. ⊓⊔
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8.3 Lower-Bound for HtE[CAU-C1Frdd,Pmix ]

We consider HtE[CAU-C1Frdd,Pmix ] with GHASH, i.e., HtE[GCM-C1Frdd,Pmix ]. Let
Π∗ := HtE[GCM-C1Frdd,Pmix ] and Π∗

TGen := HtE[CAU-C1Frdd,Pmix
TGen ] with GHASH.

The following proposition shows that the CMT-1-security of Π∗ is broken by
O
(
2min{max{r,t},k}/2) query complexity.

Proposition 6. Assume that E is an encryption of IC and FHtE is an RO. For
Frdd and Pmix defined in Eq. (6), there exists an adversary A making p queries
to E, E−1, or FHtE such that Advcmt-1

Π∗ (A) = O
(
max

{
min

{
p2

2r , 1
}
· p

2

2t ,
p2

2k

})
.

Proof. The bound can be obtained by combining the proofs of Proposition 5
and of Theorem 3. The difference from Proposition 5 is non-invertibility of the
finalization function of GMAC+, i.e., DM. As the proof of Theorem 3, due to
DM, the probability of finding a tag collision is improved to O

(
p2

2t

)
. Hence, by

multiplying min
{

p2

2r , 1
}

by p2

2t , the collision probability of DM, we obtain the
above bound. ⊓⊔

8.4 Lower-Bound for HtE[CAU-SIVFrdd,Pmix ]

We consider HtE[CAU-SIVFrdd,Pmix ] with the hash function GHASH, i.e., HtE[GCM-SIVFrdd,Pmix ].
Let Π∗ := HtE[GCM-SIVFrdd,Pmix ]. The following proposition shows that the
CMT-1-security of Π∗ is broken by O

(
2max{r,k}/2) query complexity.

Proposition 7. Assume that E is an IC and FHtE is a RO. For Frdd and Pmix
defined in Eq. (6), there exists an adversary A making p queries to E, E−1, or
FHtE such that Advcmt-1

Π∗ (A) = O
(
max

{
p2

2r ,
p2

2k

})
.

Proof. The term p2

2k
is obtained by a birthday attack on FHtE, since the collision

yields a collision of pairs of ciphertext and tag.
The term p2

2r is obtained by a birthday attack of finding a pair of key streams
with the relation in Eq. (7), which yield a collision of ciphertexts. As the proof
of Theorem 5, by using the linearity of GHASH and the invertibility of the final-
ization function of GMAC, a tag collision is found with the probability 1. ⊓⊔

8.5 Lower-Bound for HtE[CAU-SIV-C1Frdd,Pmix ]

We consider HtE[CAU-SIV-C1Frdd,Pmix ] with GHASH, i.e., HtE[GCM-SIV-C1Frdd,Pmix ].
Let Π∗ := HtE[GCM-SIV-C1Frdd,Pmix ]. The following proposition shows that the
CMT-1-security of Π∗ is broken by O

(
2min{r+n,k}/2) query complexity.

Proposition 8. Assume that E is an IC and FHtE is an RO. For Frdd and Pmix
defined in Eq. (6), there exists an adversary A making p queries to E, E−1, or
FHtE such that Advcmt-1

Π∗ (A) = O
(
min

{
p2

2r+n ,
p2

2k

})
.
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Proof. The term p2

2k
comes from a collision of FHtE. The term p2

2r+n is obtained by
the probability of finding pairs of tag and key stream such that the tag collision
occurs and the key streams satisfy the relation in Eq. (7). By the birthday
analysis, we obtain the term p2

2r+n . ⊓⊔

9 Conclusion

We proposed the KIVR conversion that constructs context-committing AEs sat-
isfying CMT-4 security from CTRAE (resp. CTRSIV), including GCM (resp.
GCM-SIV). KIVR achieves BBB security without increasing the ciphertext size
by exploiting plaintext redundancy in practical use cases. KIVR uses a collision-
resistant hash to convert a tuple of key, nonce, and associated data into a tempo-
rary key, an initial value (or nonce), and a masking value applied to redundant
data used by an underlying AE. KIVR combined with CTRAE (resp. CTRSIV)
achieves max{ r2 , tag-col} (resp. r

2 + tag-col) bits of security wherein r is the
number of redundant bits and tag-col is the tag-collision security of the un-
derlying AE. With sufficiently large r, KIVR achieves higher security than the
conventional conversions (HtE and CTX) limited by the birthday bounds of the
tag and key sizes. There are interesting open research questions. In particu-
lar, analyzing/salvaging other popular AEs, including CCM [8] and ChaCha20-
Poly1305 [18] for committing security is open for future research.
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Supplementary Material

A Multi-User Security for AE

Multi-user-AE (mu-AE) security is the indistinguishability between the real and
ideal worlds. Let Π = (ΠEnc, ΠDec) be an AE scheme that has encryption and
decryption algorithms. Let u be the number of users. In the mu-AE-security
game, an adversary A has access to either real-world oracles (ΠK1 , . . . ,ΠKu)
or ideal-world ones (($1,⊥), . . . , ($u,⊥)). K1, . . . ,Ku are user’s keys defined as
Ki

$←− K where i ∈ [u]. $ξ is a random-bit oracle of the ξ-th user that takes
an input tuple (N,A,M) of nonce, AD, and plaintext, and returns a pair of
random ciphertext and tag defined as (C, T )

$←− {0, 1}|ΠEnc[E](K,N,A,M)|. ⊥ is a
reject oracle that returns reject for each query. At the end of this game, A
return a decision bit in {0, 1}. If the underlying primitive is ideal, then A has
access to the ideal primitive. Let AO ∈ {0, 1} be an output of A with access to
a set of oracles O. Then, the mu-AE-security advantage function of A is defined
as

Advmu-ae
Π (A) := Pr

[
AΠK1

,...,ΠKu = 1
]
− Pr

[
A($1,⊥),...,($u,⊥) = 1

]
.

We consider nonce-respecting adversaries where for each user, all nonces in
queries to the encryption oracle are distinct. In this game, making a trivial
query (ξ,N,A,C, T ′) to the decryption oracle is forbidden, which was received
by some previous query to the encryption one.

B Multi-User PRF Security

The mu-AE security of KIVR-based schemes relies on multi-user pseudo-random-
function (mu-PRF) security. Let FK :M → {0, 1}s be a keyed function with a
key K ∈ KF whereM⊆ {0, 1}∗ is the input space, s is the output length, and KF

is the key space. Let u be the number of users. Let Func be the set of all functions
fromM to {0, 1}s. In the mu-PRF-security game, an adversary A has access to
either real-world oracles (FK1

, . . . ,FKu
) or ideal-world ones (R1, . . . ,Ru), where

Ki is the i-th user’s key defined as Ki
$←− {0, 1}K and Ri is a random function of

the i-th user defined as Ri
$←− Func. At the end of this game, A return a decision

bit. Let AO1,...,Ou be an output of A with access to oracles (O1, . . . ,Ou). Then,
the mu-PRF-security advantage function of A is defined as

Advmu-prf
F (A) := Pr

[
AFK1

,...,FKu = 1
]
− Pr

[
AR1,...,Ru = 1

]
.

C Proof of Proposition 2

Let Pmix be any mixing function. Let Frdd be an RDD function that is inde-
pendent of AD, i.e., ∀(K,N) ∈ K × N , (A†, A‡) ∈ A2 : Frdd(K,N,A†) =



KIVR: Context-Committing AE Using Plaintext Redundancy 33

Algorithm 12 CMT-3 Adversary A on GCM,GCM-C1 with Plaintext Redun-
dancy
1: Choose a pair (Kbc, N) ∈ {0, 1}k × {0, 1}n × {0, 1}ν of BC’s key and nonce
2: Choose AD A† ∈ {0, 1}2n and a plaintext M ∈ {0, 1}
3: R← Frdd(Kbc, N,A†); M∗ ← Pmix(R∥M); C ← CTR[E](Kbc,M

∗); L← E(Kbc, 0
n)

4: Derive AD A‡ ∈ {0, 1}2n
such that A† ̸= A‡ and GHASH(L,A†, C) = GHASH(L,A‡, C)

5: return ((Kbc, N,A†,M), (Kbc, N,A‡,M))

Algorithm 13 CMT-3 Adversary A on GCM-SIV,GCM-SIV-C1 with Plaintext
Redundancy
1: Choose a tuple (Kbc, L,N) ∈ {0, 1}k ×{0, 1}n ×{0, 1}ν of BC’s key, hash key, and

nonce, AD A† ∈ {0, 1}2n, and a plaintext M ∈ {0, 1}
2: R← Frdd(K,N,A†); M∗ ← Pmix(R∥M)
3: Derive AD A‡ ∈ {0, 1}2n

such that A† ̸= A‡ and GHASH(L,A†,M∗) = GHASH(L,A‡,M∗)
4: return ((K,N,A†,M), (K,N,A‡,M))

Frdd(K,N,A‡). We define adversaries breaking the CMT-3 security of GCM and
GCM-C1 in Algorithm 12 and of GCM-SIV and GCM-SIV-C1 in Algorithm 13. By
the linearity of GHASH, AD A‡ that offers a collision of GHASH is found by
solving the equation GHASH(L,A†, D) = GHASH(L,A‡, D) where D = C for
GCM and GCM-C1; D = M∗ for GCM-SIV and GCM-SIV-C1. In GHASH, let

X†
1 , X

†
2 , X3, . . . , Xl

n←− zp(A†)∥zp(D)∥strn/2(|A†|)∥strn/2(|D|) and

X‡
1 , X

‡
2 , X3, . . . , Xl

n←− zp(A‡)∥zp(D)∥strn/2(|A‡|)∥strn/2(|D|),

where A† = X†
1∥X

†
2 and A‡ = X‡

1∥X
‡
2 . Then,

GHASH(L,A†, D) = GHASH(L,A‡, D)

⇔ X†
1 • Ll ⊕X†

2 • Ll−1 = X‡
1 • Ll ⊕X‡

2 • Ll−1

Hence, one can choose A† and A‡ such that A† ̸= A‡ and the above equation is
satisfied. Using the collision of GHASH, we obtain tag collisions.

D Proof of Proposition 3

Let Pmix be any mixing function. Let Frdd be an RDD function that is inde-
pendent of AD, i.e., ∀(K,N) ∈ K × N , (A†, A‡) ∈ A2 : Frdd(K,N,A†) =
Frdd(K,N,A‡). The attack is a simple collision attack on the tag-generation
function of CTX[CTRAE]. The attack uses the property that the encryption
CTR[E] is independent of AD. An adversary A is defined in Algorithm 14. By
the birthday analysis on the tag-generation function, the adversary breaks the
CMT-3-security of Π∗ with the probability O

(
p2

2t′

)
.
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Algorithm 14 CMT-3 Adversary A on CTX[CTRAE]
1: Choose a tuple (K,N) ∈ K ×N of key and nonce
2: Choose p−ω−1

2
distinct AD A(1), . . . , A( p−ω−1

2
) ∈ A

3: R← Frdd(K,N,A(1)); C ← CTR[E](K,N,Pmix(R, 0)) ▷ The plaintext is 0
4: for i = 1, . . . , p−ω−1

2
do

T †(i) ← ΠTGen[Ψtag](K,N,A(i), C); T (i) ← FCTX(K,N,A(i), T †(i)) end for
5: if ∃α, β ∈ [ p−ω−1

2
] s.t. α ̸= β ∧ T (α) = T (β) then

return ((K,N,A(α), 0), (K,N,A(β), 0)) end if
6: return ((K,N, 0,M), (K,N, 1,M))

Algorithm 15 CMT-3 Adversary A on HtE-based AE
1: Choose p distinct AD A(1), . . . , A(p) ∈ A
2: Choose a tuple (K,N,M) ∈ K × {0, 1}ν ×M of key, nonce, and plaintext
3: for i = 1, . . . , p do L(i) ← FHtE(K,N,A(i)) end for
4: if ∃α, β ∈ [p] s.t. α ̸= β ∧ L(α) = L(β) then

return ((K,N,A(α),M), (K,N,A(β),M)) end if
5: return ((K,N, 0,M), (K,N, 1,M))

E Proof of Proposition 4

The attack is a simple collision attack on the key-derivation function FHtE that
searches a collision with p distinct AD values. An adversary A is defined in Al-
gorithm 15. By the birthday analysis, the adversary breaks the CMT-3-security
of HtE[ΠFrdd,Pmix ] with the probability O

(
p2

2κ

)
.

F mu-AE Security of AE Schemes with KIVR

The definition of mu-AE, multi-user security of AE, is given in Supporting Ma-
terial A.

F.1 mu-AE Security of AE with KIVR

The following theorem shows that the mu-AE security of an AE scheme Π with
KIVR is reduced to the mu-AE-security of the underlying AE scheme Π and the
mu-PRF security of FKIVR. Note that in the theorem, FKIVR is a keyed function.

Theorem 6. Let Π be an AE scheme. Let Frdd be an RDD function and Pmix a
(ω, n)-mixing linear function. For any mu-AE adversary A against KIVR[ΠFrdd,Pmix ]
making at most q queries and running in time T , there exists an mu-AE adver-
sary A1 against Π and a mu-PRF adversary A2 against FKIVR such that

Advmu-ae
KIVR[Π](A) ≤ Advmu-ae

Π (A1) +Advmu-prf
FKIVR

(A2) ,

where A makes at most q construction queries and runs in time T , and A1 and
A2 respectively make at most q construction queries and runs in time T +O(q).
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Algorithm 16 Adversary A1 Breaking the CMT-1-Security of
KIVR[GCMFrdd,Pmix ]

1: p1 ← ⌈ p
ω+1
⌉ − 4

2: Choose p1 distinct keys K(1), . . . ,K(p1) ∈ {0, 1}k
3: Choose pair (N,A) ∈ NKIVR ×AKIVR of nonce and AD
4: for i = 1, . . . , p1 do
5: R(i) ← Frdd(K

(i), N,A); (K(i)
T , IV

(i)
T , R

(i)
T )← FKIVR(K

(i), N,A); KS(i) ← ε

6: for j = 1, . . . , ω + 1 do KS(i) ← KS(i)∥E(K
(i)
T , add(IV (i)

T , j)) end for
7: end for
8: if ∃α, β ∈ [⌈ pic

ω+1
⌉ − 4] s.t.

α ̸= β ∧msbr(KS(α) ⊕KS(β)) = R(α) ⊕ zpr(R
(α)
T )⊕R(β) ⊕ zpr(R

(β)
T ) then

9: Z(α) ← E(K
(α)
T , IV

(α)
T ∥0n−ν−11)); Z(β) ← E(K

(β)
T , IV

(β)
T ∥0n−ν−11)

10: L(α) ← E(K
(α)
T , 0n); L(β) ← E(K

(β)
T , 0n)

11: Find C s.t. |C| = n(ω + 1)
and GHASH(L(α), ε, C)⊕ GHASH(L(β), ε, C) = Z(α) ⊕ Z(β)

12: M (α) ← C ⊕KS(α); M (β) ← C ⊕KS(β)

13: return ((K(α), N,A,M (α)), (K(β), N,A,M (β)))
14: end if
15: return ((K(1), N,A,KS(1)), (K(2), N,A,KS(2)))

F.2 Proof of Theorem 6

Firstly, the keyed functions FKIVR(K1, ·, ·), . . . ,FKIVR(Ku, ·, ·) are replaced with
random functions R1, . . . ,Ru. Then, the mu-PRF-advantage function of A2 is
introduced in the mu-AE-security bound.

We next consider the mu-AE-security of KIVR[ΠFrdd,Pmix ] where FKIVR is a
random function Ri. By random functions, for each of tuples of a key, nonce,
and AD, the temporary key is chosen uniformly at random from K, the mu-AE-
security of KIVR[ΠFrdd,Pmix ] is reduced to the mu-AE-security of ΠFrdd,Pmix , i.e.,
for any adversary breaking the mu-AE-security of KIVR[ΠFrdd,Pmix ], there exists
an adversary A1 breaking the mu-AE-security of ΠFrdd,Pmix .

By the above evaluations, we have

Advmu-ae
KIVR[Π](A) ≤ Advmu-ae

Π (A1) +Advmu-prf
FKIVR

(A2) .

G Proof of Theorem 2
(CMT-1 Attack on KIVR[GCMFrdd,Pmix])

We consider any RDD function Pmix and the following (ω, n)-mixing linear func-
tion Frdd: ∀R ∈ {0, 1}r,M ∈ M : Frdd(R,M) = R∥M . Then, we have ω = ⌈ rn⌉.
In this proof, we define two adversaries A1 and A2, and the term p2

2r (resp. p2

2ℓkivr
)

comes from the first (resp. second) adversary A1 (resp. A2).
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Adversary A1. The adversary A1 is defined in Algorithm 16. The goal of
the adversary is to break the CMT-1-security of KIVR[GCMFrdd,Pmix ]. The ad-
versary returns pairs ((K(α), N (α), A(α),M (α)), (K(β), N (β), A(β),M (β))) of tu-
ples of key, nonce, AD, and plaintext such that (N (α), A(α)) = (N (β), A(β)),
K(α) ̸= K(β), and M (α) ̸= M (β).

In the steps 4-7, A1 calculates key streams where pairs of nonce and AD are
the same and the keys are distinct. Then, in the step 8, A1 searches a pair (α, β)
with the following relation.

msbr
(
P−1

mix

(
KS(α) ⊕KS(β)

))
= R(α) ⊕ zpr(R

(α)
T )⊕R(β) ⊕ zpr(R

(β)
T ).

By the birthday analysis, the probability that the relation is satisfied is O
(

p2

2r

)
.

If such pair is found, then one can find the ciphertext collision C(α) = C(β) by
using the freeness of plaintext blocks that are independent of the key streams.
In the steps 8-14, A1 calculates a pair of plaintexts (M (α),M (β)) such that
(C(α), T (α)) = (C(β), T (β)). As the proof of Proposition 2, using the linearity
of GHASH, a ciphertext C that yields a tag collision is found by solving the
equation GHASH(L(α), ε, C) ⊕ GHASH(L(β), ε, C) = Z(α) ⊕ Z(β). The step 11
calculates the ciphertext.

Hence, the probability that A1 breaks the CMT-1-security of KIVR[GCMFrdd,Pmix ]

is at least O
(

p2

2r

)
.

Adversary A2. The second adversary A2 that breaks the CMT-1-security of
KIVR[GCMFrdd,Pmix ] by using a collision of FKIVR. By the birthday analysis, the col-
lision probability is O

(
p2

2ℓkivr

)
). If the collision is found: FKIVR(K

(α), N (α), A(α)) =

FKIVR(K
(β), N (β), A(β)) such that K(α) ̸= K(β) and (N (α), A(α)) = (N (β), A(β)),

then by choosing the same plaintexts M (α) = M (β), we obtain the output colli-
sion (C(α), T (α)) = (C(β), T (β)).

H Proof of Theorem 3
(CMT-1 Attack on KIVR[GCM-C1Frdd,Pmix])

We consider any RDD function Pmix and the following (ω, n)-mixing linear func-
tion Frdd: For each R ∈ {0, 1}r and M ∈ M, Pmix(R,M) := R∥M . Then, we
have ω = ⌈ rn⌉.

We define an adversary A in Algorithm 17. The goal of the adversary is
to break the CMT-1-security of KIVR[GCM-C1Frdd,Pmix ]. The adversary returns
pairs ((K(α), N,A,M (α)), (K(β), N,A,M (β))) of tuples of a key, a nonce, AD,
and a plaintext such that K(α) ̸= K(β).

In the steps 4-7, A calculates key streams where pairs of nonce and AD are
the same and the keys are distinct. In the step 8, A searches a pair (α, β) with
the following relation.

msbr
(
KS(α) ⊕KS(β)

)
= R(α) ⊕ zpr(R

(α)
T )⊕R(β) ⊕ zpr(R

(β)
T ).



KIVR: Context-Committing AE Using Plaintext Redundancy 37

Algorithm 17 Adversary A Breaking the CMT-1-Security of
KIVR[GCM-C1Frdd,Pmix ]

1: p1 ← min{2n, ⌈ p
3
⌉}; p2 ← ⌈ p

ω+3
⌉ − 2p1 − 4

2: Choose p2 distinct keys K(1), . . . ,K(p2) ∈ KKIVR

3: Choose pair (N,A) ∈ NKIVR ×AKIVR of nonce and AD
4: for i = 1, . . . , p2 do
5: R(i) ← Frdd(K

(i), N,A); (K(i)
T , IV

(i)
T , R

(i)
T )← FKIVR(K

(i), N,A); KS(i) ← ε

6: for j = 1, . . . , ω + 2 do KS(i) ← KS(i)∥E(K
(i)
T , add(IV (i)

T , j)) end for
7: end for
8: if ∃α, β ∈ [p2] s.t. α ̸= β ∧ msbr(KS(α) ⊕ KS(β)) = R(α) ⊕ zpr(R

(α)
T ) ⊕ R(β) ⊕

zpr(R
(β)
T ) then

9: for i = 1, . . . , p1 do
10: T (α,i) ← E(K

(α)
T , strn(i− 1))⊕ strn(i− 1)

11: T (β,i) ← E(K
(β)
T , strn(i− 1))⊕ strn(i− 1)

12: end for
13: if ∃iα, iβ ∈ [p1] s.t. T (α,iα) = T (β,iβ) then
14: Z(α) ← E(K

(α)
T , IV

(α)
T ∥0n−ν−11)); Z(β) ← E(K

(β)
T , IV

(β)
T ∥0n−ν−11)

15: L(α) ← E(K
(α)
T , 0n); L(β) ← E(K

(β)
T , 0n)

16: Find C s.t. |C| = n(ω + 2), GHASH(L(α), ε, C)⊕ Z(α) = strn(iα − 1),
and GHASH(L(β), ε, C)⊕ Z(β) = strn(iβ − 1)

17: M (α) ← C ⊕msb|C|(KS(α)); M (β) ← C ⊕msb|C|(KS(β))

18: return ((K(α), N,A,M (α)), (K(β), N,A,M (β)))
19: end if
20: end if
21: return ((K(1), N,A, 0), (K(2), N,A, 1))

By the birthday analysis, the probability that the relation is satisfied is O
(

p2

2r

)
.

If such pair is found, then one can find the ciphertext collision C(α) = C(β) by
using the freeness of plaintext blocks that are independent of the key streams.
In the steps 9-12, A calculates DM’s outputs T (α,i) and T (β,i) whose input pairs
are respectively (K

(α)
T , strn(i − 1)) and (K

(β)
T , strn(i − 1)) which are candidates

of tags. In the step 13, A searches a pair ((α, iα), (β, iβ)) such that a collision of
DM, T (α,iα) = T (β,iβ), occurs. By the birthday analysis, the collision probability
is O

(
p2

2t

)
. If such pair is found, then as the proof of Proposition 2, using the

linearity of GHASH, a ciphertext C that offers the tag collision is found by solving
the equations GHASH(L(α), ε, C)⊕Z(α) = strn(iα− 1) and GHASH(L(β), ε, C)⊕
Z(β) = strn(iβ − 1). The step 16 calculates the ciphertext.

Hence, we have Advcmt-1
Π∗ (A) = O

(
min

{
p2

2r , 1
}
· p

2

2t

)
.

I Proof of Theorem 5

We consider any RDD function Pmix and the following (ω, n)-mixing linear func-
tion Frdd: For each R ∈ {0, 1}r and M ∈ M, Pmix(R,M) := R∥M . Then, we
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Algorithm 18 Adversary A Breaking the CMT-1-Security of
KIVR[GCM-SIVFrdd,Pmix ]

1: ω ← ⌈ r
n
⌉; T ← 0n; p1 ← ⌈ p

ω+3
⌉

2: Choose p1 distinct keys K(1), . . . ,K(p1) ∈ KKIVR

3: Choose a pair (N,A) ∈ NKIVR ×AKIVR of nonce and AD and a tag T ∈ {0, 1}n
4: for i = 1, . . . , p1 do
5: ((K

(i)
bcT, L

(i)
T ), L

(i)
T ), IV

(i)
T , R

(i)
T )← FKIVR(K

(i), N,A); R(i) ← Frdd(K
(i), N,A)

6: X(i) ← E−1(K
(i)
bcT, T )

7: for j = 1, . . . , ω + 2 do KS(i) ← KS(i)∥E(K
(i)
bcT, add(T, j)) end for

8: end for
9: if ∃α, β ∈ [p1] s.t. α ̸= β ∧msb1(X

(α)) = msb1(X
(β)) = 0∧

msbr
(
KS(α) ⊕KS(β)

)
= R(α) ⊕ zpr(R

(α)
T )⊕R(β) ⊕ zpr(R

(β)
T ) then

10: H(α) ← X(α) ⊕ 0n−ν∥IV (α)
T ; H(β) ← X(β) ⊕ 0n−ν∥IV (β)

T

11: Find ω + 2 block plaintexts M (α),M (β) s.t.
C(α) = C(β),
lsbn−1(GHASH(L

(α)
T , A,M (α))) = lsbn−1(H

(α)), and
lsbn−1(GHASH(L

(β)
T , A,M (β))) = lsbn−1(H

(β))
12: return ((K(α), N,A,M (α)), (K(β), N,A,M (β)))
13: end if
14: return ((K(1), N,A, 0), (K(2), N,A, 0))

have ω = ⌈ rn⌉. For the sake of simplicity, we assume that KD1 is included in
FKIVR.

We define an adversary A in Algorithm 18. The goal of the adversary is
to break the CMT-1-security of KIVR[GCM-SIVFrdd,Pmix ]. The adversary returns
a pair ((K(α), N,A,M (α)), (K(β), N,A,M (β))) of tuple of key, nonce, AD, and
plaintext such that K(α) ̸= K(β).

In the steps 4-8, A calculates key streams where pairs of nonce and AD are
the same and the keys are distinct. In the step 9, A searches a pair (α, β) with
the following relation.

msb1(X
(α)) = msb1(X

(β)) = 0 and

msbr
(
KS(α) ⊕KS(β)

)
= R(α) ⊕ zpr(R

(α)
T )⊕R(β) ⊕ zpr(R

(β)
T ).

If such pair is found, then A can find the pair ((K(α), N,A,M (α)), (K(β), N,A,M (β)))
such that (C(α), T (α)) = (C(β), T (β)) by solving the equations C(α) = C(β)

(⇔ M (α) ⊕ M (β) = KS(α) ⊕ KS(β)), GHASH(L(α), A(α),M (α)) = H(α), and
GHASH(L(β), A(β),M (β)) = H(β). In the equations, there are 2(ω + 2) plaintext
blocks and there are ω + 4 equations in block. Fixing the 2ω message blocks
with redundant data blocks such that msbωn(C

(α)) = msbωn(C
(β)) is satisfied,

the remaining 4 message blocks are uniquely determined from lsb2n(C
(α)) =

lsb2n(C
(β)), lsbn−1(GHASH(L

(α)
T , A(α),M (α))) = lsbn−1(H

(α)), and lsbn−1(GHASH(L
(β)
T , A(β),M (β))) =

lsbn−1(H
(β)). Hence, the probability that A win the CMT-1 game is O

(
p2

2r

)
.


