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This talk will argue that the privacy attributes of current AEAD schemes are weaker than desirable
in some important contexts. It suggests that we standardize schemes meeting a stronger definition
called AE2. The content here is based on [2].

NBE1 and AE1-security. We refer to the syntax of the current form of symmetric encryption [21,
23] as NBE1. An NBE1 scheme SE1 specifies a deterministic encryption algorithm SE1.Enc that
takes the key K, a nonce N , message M and a header (also called associated data) H to return
what we call a core ciphertext C1. Deterministic decryption algorithm SE1.Dec takes K,N,C1, H
to return either a message or ⊥.

Security asks for privacy of M and integrity of both M and H as long as nonces are unique,
meaning not re-used. Rogaway’s formalization [21] asks that an adversary given oracles for en-
cryption (taking nonce, message and header) and decryption (taking nonce, core ciphertext and
header) be unable to distinguish between the case where they perform their prescribed tasks under
a hidden key, and the case where the former returns random strings and the latter returns ⊥, as
long as the adversary does not repeat a nonce across its encryption queries. We will refer to this
as basic AE1-security.

NBE1 providing basic AE1-security has been the goal of recent schemes, standards and proposed
standards, as witnessed by GCM [17, 8] (used in TLS), OCB [25, 22, 15], CAESAR candidates [4]
and RFC 5116 [16]. The security of NBE1, which we revisit, is thus of some applied interest.

The gap. Our concern is a gap between theory and usage that can result in privacy vulnerabilities
in the latter. Recall that the decryption algorithm SE1.Dec, to be run by the receiver, takes as
input not just the key K, core ciphertext C1 and header H, but also the nonce N . The theory
says that how the receiver gets the nonce is “outside of the model” [21] or that it is assumed to
be communicated “out-of-band” [23]. Usage cannot so dismiss it, and must find a way to convey
the nonce to the receiver. The prevailing understanding, reflected in the following quote from
RBBK [25], is that this is a simple matter— if the receiver does not already have the nonce N , just
send it in the clear along with the core ciphertext C1:

The nonce N is needed both to encrypt and to decrypt. Typically it would be communicated,
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in the clear, along with the (core) ciphertext.

RFC 5116 is a draft standard for an interface for authenticated encryption [16]. It also considers
it fine to send the nonce in the clear:

... there is no need to coordinate the details of the nonce format between the encrypter and the
decrypter, as long the entire nonce is sent or stored with the ciphertext and is thus available to
the decrypter ... the nonce MAY be stored or transported with the ciphertext ...

To repeat and summarize, the literature and proposed standards suggest transmitting what we call
the “full” ciphertext, consisting of the nonce and the core ciphertext. Yet, as we now explain, this
can be wrong.

Nonces can compromise privacy. We point out that communicating a nonce in the clear with
the ciphertext can damage, or even destroy, message privacy. One simple example is a nonce N =
F (M) that is a hash —under some public, collision-resistant hash function F— of a low-entropy
message M , meaning one, like a password, which the attacker knows is likely to fall in some small
set or dictionary D. Given a (full) ciphertext C2 = (N,C1) consisting of the core ciphertext C1

= SE1.Enc(K,N,M,H) together with the nonce N = F (M), the attacker can recover M via “For
M ′ ∈ D do: If F (M ′) = N then return M ′.” To take a more extreme case, consider that the nonce
is some part of the message, or even the entire message, in which case the full ciphertext clearly
reveals information about the message.

The concern that (adversary-visible) nonces compromise privacy, once identified, goes much
further. Nonces are effectively meta-data. Even recommended and innocuous-seeming choices like
counters, device identities, disk-sector numbers or packet headers reveal information about the
system and identity of the sender. For example, the claim that basic-AE1-secure NBE1 provides
anonymity —according to [24, Slide 19/40], this is a dividend of the requirement that core cipher-
texts be indistinguishable from random strings— is moot when the nonce includes sender identity.
Yet the latter is not only possible but explicitly recommended in RFC 5116 [16], which says: “When
there are multiple devices performing encryption ... use a nonce format that contains a field that is
distinct for each one of the devices.” As another concrete example, counters are not a good choice
of nonce from a user privacy perspective, as pointed out by Bernstein [5] and the ECRYPT-CSA
Challenges in Authenticated Encryption report [1].

The above issues apply to all NBE1 schemes and do not contradict their (often, proven) AE1-
security. They are not excluded by the unique nonce requirement or by asking for misuse resis-
tance [26], arising in particular for the encryption of a single message with a single corresponding
nonce.

A natural critique is that the privacy losses we have illustrated occur only for “pathological”
choices of nonces, and choices made in practice, such as random numbers or counters, are “fine.”
This fails, first, to recognize the definitional gap that allows the “pathological” choices. With regard
to usage, part of the selling point of NBE1 was exactly that any (non-repeating, unique) nonce
is fine, and neither existing formalisms [21] nor existing standards [16] preclude nonce choices of
the “pathological” type. Also, application designers and users cannot, and should not, carry the
burden of deciding which nonces are “pathological” and which are “fine,” a decision that may not
be easy. (And as discussed above, for example, counters may not be fine.) Finally, Section ??
indicates that poor choices can in fact arise in practice.

Perspective. Our perspective is that the above issues reflect a gap between the NBE1 formalism
and the privacy provided by NBE1 in usage. We next discuss how to bridge it, following [2]. This
involves a modified syntax for nonce-based encryption, called NBE2, in which decryption does not
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get the nonce, a corresponding framework of security definitions called AE2 that guarantee nonce
privacy in addition to authenticity and message privacy, and simple ways to turn NBE1 AE1-secure
schemes into NBE2 AE2-secure schemes.

AE2-secure NBE2 obviates application designers and users from the need to worry about privacy
implications of their nonce choices, simplifying design and usage. With AE2-secure NBE2, one can
use any nonce, even a message-dependent one such as a hash of the message, without compromising
privacy of the message. And the nonces themselves are hidden just as well as messages, so user-
identifying information in nonces doesn’t actually identify users.

The NBE2 syntax. In an NBE2 scheme SE2, the inputs to the deterministic encryption algorithm
SE2.Enc continue to be key K, nonce N , message M and header H, the output C2 now called a
ciphertext rather than a core ciphertext. The deterministic decryption algorithm SE2.Dec no longer
gets a nonce, taking just key K, ciphertext C2 and header H to return either a message M or ⊥.

Just as an interface, NBE2 already benefits application designers and users, absolving them
of the burden they had, under NBE1, of figuring out and architecting a way to communicate the
nonce from sender to receiver. The NBE2 receiver, in fact, is nonce-oblivious, not needing to care,
or even know, that something called a nonce was used by the sender. By reducing choice (how to
communicate the nonce), NBE2 reduces error and misuse.

The AE2-security framework. The AE2 game gives the adversary an encryption oracle Enc
(taking nonce N , message M and header H to return a ciphertext C2) and decryption oracle Dec (as
per the NBE2 syntax, taking ciphertext C2 and header H but no nonce, to return either a message
M or ⊥). When the challenge bit is b = 1, these oracles reply as per the encryption algorithm
SE2.Enc and decryption algorithm SE2.Dec of the scheme, respectively, using a key chosen by the
game. When the challenge bit is b = 0, oracle Enc returns a ciphertext that is drawn at random
from a space SE2.CS(|N |, |M |, |H|) that is prescribed by the scheme SE2 and that depends only
on the lengths of the nonce, message and header, which guarantees privacy of both the nonce and
message. (This space may be, but unlike for AE1 need not be, the set of all strings of some length,
because NBE2 ciphertexts, unlike NBE1 core ciphertexts, may have some structure.) In the b = 0
case, decryption oracle Dec returns ⊥ on any non-trivial query. The adversary eventually outputs
a guess b′ as to the value of b, and its advantage is 2 Pr[b = b′]− 1.

We say that SE2 is AE2[A]-secure if practical adversaries in the class A have low advantage.
Let Aae2

u-n be the class of unique-nonce adversaries, meaning ones that do not reuse a nonce across
their Enc queries. We refer to AE2[Aae2

u-n]-security as basic AE2-security. As the nonce-hiding
analogue of basic AE1-security, it will be our first and foremost target.

Building AE2 schemes. Towards AE2 schemes for standardization, we have two options. One
is to build such schemes from scratch. BNT [2] give an easier path. They provide simple, cheap
transforms that turn a given AE1-secure NBE1 schemes into an AE2-secure NBE2 scheme. We
currently have a portfolio of efficient AE1-secure NBE1 schemes supported by proofs of security
with good concrete bounds [25, 17, 4, 15, 13, 28, 19, 10, 20, 9, 6, 12]. Standards can leverage this,
using transforms from [2] to obtain options for AE2-secure NBE2 schemes. We now overview the
transforms.

Since NBE2 schemes effectively take care of nonce communication, we expect ciphertext length
to grow by at least SE1.nl, the nonce length of the base NBE1 scheme. The ciphertext overhead
is defined as the difference between the ciphertext length and the sum of plaintext length and
SE1.nl. All the transforms from [2] have zero ciphertext overhead. One challenge in achieving this
is that nonce lengths like SE1.nl = 96 are widely-used but short of the block length 128 of many
blockciphers, precluding inclusion of an extra blockcipher output in the ciphertext. With regard to
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NBE2 scheme
AE2-security provided

Basic Advanced

HN1[SE1,F] Yes Yes

HN2[SE1, `,E, Spl] Yes Yes if ` ≥ 128

HN3[SE1,F] Yes No

HN4[SE1, `,F] Yes

HN5[TE, `, `z] Yes

Figure 1: Security attributes of the NBE2 schemes defined by the Hide-Nonce (HN) transforms.
In the table SE1 denotes an NBE1 scheme, F a PRF, E a block cipher, and TE a variable-length
tweakable block cipher. Spl is a splitting function, and `, `z are non-negative integer parameters.
A blank entry in the Basic column means the transform is not for that purpose. Note that HN1’s
advanced security only holds when ciphertexts have sufficiently large (e.g. 128 bits) minimum
length, and HN2’s depends on the length of the stolen ciphertext.

computational overhead, the challenge is that it should be constant, meaning independent of the
lengths of the message and header for encryption, and of the ciphertext and header for decryption.
All the transforms also have constant computational overhead.

The following discussion first considers achieving basic security and then advanced security,
meaning the misuse resistance goal of [26]. Security attributes of the corresponding “Hide-Nonce
(HN)” transforms are summarized in Figure 1.

Basic HN transforms. All the following transforms from [2] turn a basic-AE1-secure NBE1
scheme SE1 into a basic-AE2-secure NBE2 scheme SE2. (Recall basic means nonces are unique,
never reused across encryption queries.)

Having first produced a core ciphertext C1 under SE1, the idea of scheme SE2 = HN1[SE1,F] is
to use C1 itself as a nonce to encrypt the actual nonce in counter mode under PRF F. A drawback
is that this requires the minimal core-ciphertext length SE1.mccl to be non-trivial, like at least 128,
which is not true for all SE1. Scheme SE2 = HN2[SE1, `,E, Spl] turns to the perhaps more obvious
idea of enciphering the nonce with a PRF-secure blockcipher E. The difficulty is the typicality of
96-bit nonces and 128-bit blockciphers, under which näıve enciphering would add a 32-bit ciphertext
overhead, which is resolved by ciphertext stealing, ` representing the number of stolen bits (32 in
our example) and Spl an ability to choose how the splitting is done. Scheme SE2 = HN3[SE1,F]
uses the result of PRF F on the actual nonce as a derived nonce under which to run SE1. This is
similar to SIV [26, 19]; the difference is to achieve AE2 rather than AE1 and to apply the PRF only
to the nonce (rather than nonce, message and header) to have constant computational overhead.

Advanced HN transforms. Unique nonces are easier to mandate in theory than assure in prac-
tice, where nonces may repeat due to errors, system resets, or replication. In that case (returning
here to NBE1), not only does basic AE1-security give no security guarantees, but also damaging
attacks are possible for schemes including CCM and GCM [14, 27]. Rogaway and Shrimpton’s
misuse resistant NBE1, which we refer to as advanced-AE1-secure NBE1, minimizes the damage
from reused nonces, retaining AE1-security as long as no nonce, message, header triple is re-
encrypted [26]. This still being for the NBE1 syntax, however, the concerns with adversary-visible
nonces compromising message and user privacy are unchanged. We seek the NBE2 analogue, corre-
spondingly defining and achieving advanced-AE2-secure NBE2 to provide protection against reused
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nonces while also hiding them.

With the above framework, the definition is easy, calling for no new games; the goal is sim-
ply AE2[Aae2

u-nmh]-security where Aae2
u-nmh is the class of unique-nonce, message, header adversaries,

meaning ones that do not repeat a query to their Enc oracle. The presence of well-analyzed
advanced-AE1-secure NBE1 schemes [26, 11, 10, 9, 6] again motivates transforms rather than
from-scratch designs.

We start by revisiting the above basic-security preserving transforms, asking whether they also
preserve advanced security, meaning, if the starting NBE1 scheme is advanced-AE1-secure, is the
transformed NBE2 scheme advanced-AE2-secure? For HN1, the answer is YES. It is YES also for
HN2 as long as the amount ` of stolen ciphertext is large enough. (In practical terms, at least
128.) For HN3, the answer is NO.

That HN1 and HN2 have these properties is good, but there are limitations. (Namely HN1
puts a lower bound on SE1.mccl that is not always met, and setting ` = 128 in HN2 with typical
96-bit nonces will call for a 224-bit blockcipher.) Better methods are HN4 and HN5 [2]. Scheme
SE2 = HN4[SE1, `,F] uses the result of PRF F on the actual nonce, message and header as a derived
nonce for SE1. The difference with SIV [26, 19] is that what is encrypted under SE1 includes the
actual nonce in order to hide it. The computational overhead stays constant because SE1 need
provide only privacy, which it can do in one pass. Scheme SE2 = HN5[TE, `, `z] is different, using
the encode-then-encipher paradigm [3] to set the ciphertext to an enciphering, under an arbitrary-
input-length, tweakable cipher TE, of the nonce, message and `t-bits of redundancy, with the header
as tweak. Instantiating TE via the very fast AEZ tweakable block cipher [11] yields correspondingly
fast, advanced-AE2-secure NBE2.

Dedicated transform for GCM. While the above generic transforms are already able, with low
overhead, to immunize GCM [17, 8] —by this we mean turn this basic-AE1-secure NBE1 scheme
into a basic-AE2-secure NBE2 scheme— there is a dedicated transform —one that exploits the
structure of GCM— that does even better. The goal is not just even lower cost overhead, but
minimization of software changes. It is shown in [2] that simply pre-pending a block of 0s, of length
equal to the nonce length, to the message, and then GCM-encrypting, provides basic-AE2-security.
This means no new key materiel needs to be added, and existing encryption software can be used
in a blackbox way. Ciphertext overhead remains zero. Decryption software does however need a
change.

Discussion. In a 2013 mailing list message, Bernstein [5] argues that the security definitions
for authenticated encryption fail to fully capture practical requirements, giving sequence privacy
leakage via sequence-number nonces as an explicit example. AE2-secure NBE2 addresses these
concerns. Bernstein also proposed a solution that can be seen as a specific instantiation of our
HN2 transformation.

The CAESAR competition’s call for authenticated encryption schemes describes a syntax where
encryption receives, in place of a nonce, a public message number (PMN) and a secret message
number (SMN), decryption taking only the former [7]. The formalization of Namprempre, Rogaway
and Shrimpton (NRS) [18] dubs this “AE5.” In this light, an NBE1 scheme is a AE5 scheme without
a SMN and an NBE2 scheme is an AE5 scheme without a PMN.
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