Security Verification:
From High Level Design to Physical Layout

Mark M. Tehranipoor
Sachio Semmoto Chair, ECE Department
Intel Charle E. Young Endowed Chair Professor
SDL: Security Development Lifecycle

Risk/Security Assessment
Includes definition of assets, threat model, adversaries, and security policies

Secure Architecture
Threat Modeling; Define architecture support for security; Review architecture level security Policies

Pre-silicon Security Verification:
Threat Modeling; Design review; Security verification against attacks at different stages of the design process;

Offered by Caspia Technologies – www.caspiatehnologies.com
Need Automation

PASS:
Power, Area, Speed, Security

Revenue / Transistor

Cost Security

Semiconductor Revenue per Transistor

Revenue / Transistor

Cost Security

Semiconductor Revenue per Transistor

EDA

$\$$
Challenges: Security Assets

Asset: A resource of value worth protecting from an adversary

Security Assets in SoCs:

- On-device keys (developer/OEM)
- Device configuration
- Manufacturer Firmware
- Application software
- On-device sensitive data
- Communication credentials
- Random number or entropy
- E-fuse,
- PUF, and more…

Source: Intel
Challenges: Vulnerabilities - Growing

- Fault Injection
- Privilege Escalation
- Trojan Insertion
- Trace Buffer
- EM Side-Channel
- CLKSCREW
- Denial-of-Service
- Vector Rewrite
- Rowhammer
- Power Side-Channel
- Direct Memory Access
- BranchScope
- Bitstream Encryption Cracking
- Plundervolt
- Access Control
- Meltdown and Spectre
- Machine Learning
- Information Leakage
- Trusted Execution Environment Breaking
- Reset and Flush
- Branch Shadowing
- Bitstream Tampering
- Reverse Engineering
- Timing Side-Channel
- Integrity

Strong Algorithm & Architecture

Weak Implementation & Execution

People: the weakest link!
Unique to Physical Layout

- Protect against untrusted foundry
- Address IP piracy
 - Physical Locking
- Protect crypto cores
 - Power side channels; EM Side channels; Fault injection
- Protect physical attacks
 - Contactless probing attacks; Contactless optical attacks; Laser fault injection attacks; X-ray attacks; Electromigration
Chip Backside Is A New Backdoor

- Device under Test (DUT): Xilinx Kintex 7 development board
 - Chip’s technology: 28 nm
 - No chip preparation (e.g., depackaging, silicon polishing, etc.)
- Optical Setup: Hamamatsu PHEMOS-1000
 - Laser wavelength: 1.3 μm
 - Laser spot size: >1 μm

- Non-destructive
- Non-invasive
- No Footprint
Localizing the Configuration Logic

Xilinx Kintex 7 in flip-chip package

Image acquisition with a infra-red laser scanning microscope

Localizing Decryption Engine

Random Logic

Clock activity for unencrypted bitstream

Locations in AES output port

Clock activity for unencrypted bitstream
Key Extraction

- Protection
 - Circuit Level Solutions
 - Device Level solutions
 - Material Level Solutions

FPGA

OBIRCH (TLS)

NVM

Encrypted bitstream

AES Decryptor

Bitstream

10110101010

key = 0xd781b86f274630b561f39c9736f512eb0adf714f0d5c836c7a76ff627aca4923