

Using Metrics to Drive a Proactive Hardware Security Program

Jason Oberg (jason@cycuity.com)

Co-founder and CTO

© Cycuity, Inc. | 2024

About Me

- Co-founder Chief Technology Officer of Cycuity
 - Cycuity provides software products to increase security assurance in semiconductor designs
- PhD in Hardware Security from UC San Diego
- 15+ years in semiconductors and security
- Member of the Common Weakness Enumeration (CWE) board

Using Metrics to Drive a Security Development Lifecycle

Security Requirements

Collected before or during early stage of system development

Security Verification

Regularly applied as chip and system is developed

Cycuity helps customers to...

Align stakeholders on business needs and verifiable security requirements

Apply automated security verification at each stage of the design process

Security Signoff

Confirmed before manufacturing

Document **security compliance** by providing verification evidence

What is CWE?

Common root-cause weaknesses that can lead to vulnerabilities

1194 - Hardware Design View

https://cwe.mitre.org/data/definitions/1194.html

	Manufacturing and Life Cycle Management Concerns - (1195)	
	 Defects that arise in the semiconductor-manufacturing process. 	
± C	<u>Security Flow Issues - (1196)</u>	
	 Full-system security flows, including secure boot, secure update, and hardware- 	
	device attestation.	
	Integration Issues - (1197)	
	 Integration of multiple IP cores, from SoC subsystem interactions, or from 	
	hardware platform subsystem interactions.	
÷C	Privilege Separation and Access Control Issues - (1198)	
	 Hardware-based isolation and access control (e.g., identity, policy, locking 	
	control) of sensitive shared hardware resources such as registers and fuses.	
±C	General Circuit and Logic Design Concerns - (1199)	
	 Hardware-circuit design and logic as well as issues related to hardware 	
	description languages such as System Verilog and VHDL.	
÷C	Core and Compute Issues - (1201)	
	 CPUs, Graphics, Vision, AI, FPGA, and microcontrollers. 	

■ C Memory and Storage Issues - (1202)

 Memory (e.g., DRAM, SRAM) and storage technologies (e.g., NAND Flash, OTP, EEPROM, and eMMC).

E C Peripherals, On-chip Fabric, and Interface/IO Problems - (1203)

• Peripheral devices, I/O interfaces, on-chip interconnects, NoCs, and buses.

E C Security Primitives and Cryptography Issues - (1205)

 Cryptographic protocols and other hardware-security primitives such as PUFs and RNGs.

■ C Power, Clock, and Reset Concerns - (1206)

• System power, voltage, current, temperature, clocks, system state

saving/restoring, and resets at the platform and SoC level.

Debug and Test Problems - (1207)

• Hardware debug and test interfaces such as JTAG and scan chain.

• Weaknesses in this category can arise in multiple areas of hardware design or

can apply to a wide cross-section of components.

Physical Access Issues and Concerns (1388)

• Weaknesses related to physical tamper and environmental issues

Why use CWE as a Security Metric?

- Technology products are exposed to a rising number of software and hardware vulnerabilities over their lifetimes
 - Over 160K vulnerabilities between 1999 to 2019
 - Over half were reported in the last 5 years
- **Exposure increases for technologies with longer product lives**
- Majority of these vulnerabilities have been reported before
 - Repeated mistakes suggest effective assurance practices are yet to be widely adopted
 - First step: Gain a deep understanding of common vulnerability patterns
- CWE provides a proactive framework to assess how secure a design is

4

Using CWE to Drive a Security Development Lifecycle

3

RESEARCH common weaknesses impacting related products to strengthen product threat models

IDENTIFY effective mitigation options per threat

2

EDUCATE to avoid common design & implementation pitfalls **EVALUATE** relevant weakness categories to enumerate security properties & effective detection techniques

Organizations can use CWE can be used effectively across each of these 5 stages

© Cycuity, Inc. | 2024

TRIAGE and classify escapes to facilitate PSIRT handling & training, process improvements

5

