
A note on SPHINCS+ parameter sets

Stefan Kölbl1, Jade Philipoom1,2

1 Security Engineering Research, Google
kste@google.com, jadep@{google.com,opentitan.org}

2 OpenTitan

Keywords: Hash-based signatures, post-quantum, SPHINCS+

Abstract. In this note, we explore parameter sets for SPHINCS+ which
support a smaller number of signatures than 264, but are otherwise com-
patible with the SLH-DSA specification. In practice, use cases for which a
low number of signatures per key pair suffice are common, and as we will
show this allows a significant reduction in signature size and verification
speed for SPHINCS+. For this we carry out a larger search through the
SPHINCS+ parameter space, comparing it with the current parameter
sets and further showing that for carefully chosen parameter the secu-
rity degrades slowly if one exceeds the limits. Finally, we provide a case
study for firmware signing on OpenTitan to demonstrate the efficiency
of these alternative parameters.

1 Introduction

The NIST call for post-quantum digital signature schemes had a requirement
that every scheme must maintain its security when a single key pair is used for up
to 264 signatures. For most signature schemes this requirement comes with little
additional costs. However for hash-based signatures supporting a large number
of signatures for a single key pair increases both signature size and computation
time, as it requires choosing parameters which lead to larger tree sizes.

In practice, an upper limit of 264 is very conservative for some applications.
Consider for instance the limit of 250 signatures the original SPHINCS schemes
targeted. This would allow issuing 1 million signatures per second for 30 years
with a single key. There are many use cases in practice which will never need
anywhere close to 264 signatures, and could benefit greatly from parameter sets
which are tailored towards those applications. To list a few:

– Firmware signing: Only a small number of firmware versions will exist in the
lifetime of a key and a few thousand signatures would already be enough in
those cases.

– Certificate signing: CAs sign a comparably small number of signatures com-
pared to the 264 target. This is especially true for root CAs, which sign
intermediates. As today the certificate transparency log contains a total of
around ≈ 233 certificates.



In particular, in these use cases it is difficult for an adversary to trigger a large
number of signatures being generated. For applications where this is possible,
e.g. TLS handshakes, a conservative choice is preferable.

There are significant risks of targeting a lower number of signatures, as en-
forcing a query limit for a key in practice can be difficult. We therefore would not
recommend to place these schemes alongside signature schemes which provide a
virtually unlimited number of signatures per key as this could lead to misuse.
In some environments this might not be easier than managing the state in a
stateful hash-based signature scheme like LMS or XMSS.

However, a stateless scheme like SPHINCS+ would still have several advan-
tages over stateful schemes in this scenario:

– Exceeding the limit is less severe. While stateful schemes fall quickly apart
if state gets reused [BH17], the security of SPHINCS+ degrades much more
gracefully (see subsection 3.1). If the parameters are chosen carefully, security
degrades surprisingly slowly. In practice this means that the limit can be
exceeded by several orders of magnitude before it becomes a practical issue.

– Backing up the key becomes much easier, as no state has to be synchronized.
– Concurrently using the same key material in a distributed system is much

simpler.

We think it would be particularly useful to select parameters that target
the same number of signatures as the existing stateful hash-based signature
standards. We can then directly compare the new parameter sets to stateful
schemes like LMS/XMSS and can evaluate exactly how much it would cost to
get rid of the stateful property.

2 Parameter space

In the following we use q to denote the maximum number of signatures which
can be used, while the targeted security level is still guaranteed. We use the
same approach as for the parameter search done for the original SPHINCS+

parameter [BHK+19], sampling a large number of parameters from a reasonable
space in terms of signature size and expected signing costs.

We collected a large set of parameters and sorted them by signature size
first, with signing speed as a second criteria. These were then filtered to only
include parameters which are strictly better than others in the set, i.e. a smaller
signature size or faster signing speed. The results of this search can be seen
in Figure 1, Figure 2 and Figure 3. The parameters are limited to < 109 hash
calls for signing (which corresponds roughly to 1 minute of computation time on
a current system in our benchmarks). The complete data set of our parameter
search are made available at https://github.com/kste/spx-few/, and include
additional choices of q which are omitted from these plots for clarity.

In this search we further include parameters with w = 256 for smaller values
of q. While w = 256 can lead to parameters which are better in both signature
size and signing speed, the resulting verification speed is worse. As verification

https://github.com/kste/spx-few/


2048

4096

8192

16384

32768

105 106 107 108

Round 3 F parameter set

Round 3 S parameter set

S
ig
n
a
tu

re
S
iz
e
,
B
y
te
s

Hashes Performed During Signature Generation

210 Signatures

220 Signatures

210 Signatures (w = 256)

220 Signatures (w = 256)

210 Signatures (100-bit sec for 220)

220 Signatures (100-bit sec for 230)

230 Signatures

240 Signatures

250 Signatures

264 Signatures

Fig. 1. Comparison of the size and signing speed for parameter sets providing 128-bit
security, for different values of q.

speed is often critical to the applications which could utilize parameters with a
small q, we do not think this trade-off offers a significant benefit. In addition,
most of these parameters only have a single tree on top of the FORST layer,
hence only a single OTS benefits from the signature size decrease by using a
larger value w. Going from w = 16 to w = 256 saves 272 bytes for n = 16 in the
OTS.

Applying the same search to the original requirements of q = 264, would give
a minimal signature size of:

– 5 456 bytes (h = 68, d = 4, b = 21, k = 6, w = 16) for 128-bit security,
– 11 352 bytes (h = 68, d = 4, b = 24, k = 8, w = 16) for 192-bit security,
– 19 584 bytes (h = 68, d = 4, b = 24, k = 11, w = 16) for 256-bit security.

This already would give ≈ 33% smaller signatures (at the cost of much slower
key generation and signing). Using e.g. q = 20 pushes this to over 50% and
further reduces verification time.

3 New parameter sets

We see the biggest benefit of these parameters in use cases where:

– Key generation time is not a concern. In particular we do not have to run
key generation in an interactive protocol.



4096

8192

16384

32768

65536

105 106 107 108

Round 3 F parameter set

Round 3 S parameter set

S
ig
n
a
tu

re
S
iz
e
,
B
y
te
s

Hashes Performed During Signature Generation

210 Signatures

220 Signatures

210 Signatures (w = 256)

220 Signatures (w = 256)

230 Signatures

240 Signatures

250 Signatures

264 Signatures

Fig. 2. Comparison of the size and signing speed for parameter sets providing 192-bit
security, for different values of q.

– Signing time is not a concern. Signing happens infrequently, not in a resource
constraint environment or an interactive protocol.

– Verification speed is important. For example in a secure boot scenario when
the image has to be verified on start-up and the latency of signature verifi-
cation directly contributes to start-up time.

For applications and protocols which require frequent signing, SPHINCS+

is not an attractive choice and we don’t expect this to change by alternative
parameters. Compared to other post-quantum signature schemes like Dilithium,
the signing speed will always be significantly worse unless very large signatures
are acceptable (and if you need fast signing, having a large signature will likely
be a major issue). Secondly, if you need to carry out frequent signing operations,
having controls in place to ensure the maximum number of signatures may be
harder to deploy which further discourages this approach.

We propose to consider a single parameter set (see Table 1) supporting q =
220 signatures for each security level, to keep the overall number of parameter
sets small while still providing a significant performance improvement. Using
q < 220 gives only a moderate improvement (for q = 10 signature size could
be reduced by 10% for parameters targeting 128-bit security), while for larger
values of q the signature size quickly grows. Additional parameter sets are given
in Table 5 and Table 6 for comparison of this trade-off.



8192

16384

32768

65536

105 106 107 108

Round 3 F parameter set

Round 3 S parameter set

S
ig
n
a
tu

re
S
iz
e
,
B
y
te
s

Hashes Performed During Signature Generation

210 Signatures

220 Signatures

230 Signatures

240 Signatures

250 Signatures

264 Signatures

210 Signatures (w = 256)

220 Signatures (w = 256)

Fig. 3. Comparison of the size and signing speed for parameter sets providing 256-bit
security, for different values of q.

3.1 Security degradation

It’s important to point out that while SPHINCS+ security will degrade when
exceeding the maximum number of signatures, this happens slowly, especially if
parameters are picked carefully. We evaluated the security degradation for all
the parameters we considered, and for the choices in Table 1 picked parameters
which are on the conservative side.

The reason for this security degradation is that an attackers success proba-
bility to break the interleaved target subset resilience increases with the number
of signatures obtained for a given key pair. Above q this probability is higher
than the targeted security level for a parameter set. We use the same evaluation
technique as in [BHK+19] to determine the security level for values q′ > q.

Figure 4 shows a plot of all parameters and their security degradation, when
targeting 128-bit security and q = 220 signatures compared to the parameter set
proposed in Table 1. The best parameter set in terms of security degradation in
this graph would be n = 26, d = 2, b = 18, k = 7, however this parameter set
has a signature size of 3,680 bytes and verification time would be ≈ 33% slower.

For higher security levels (see Figure 5 and Figure 6) the same holds true,
and security only slowly degrades when exceeding 220 signatures. For most pa-
rameters, the security would still be > 100 bits if 230 signatures are issued under
a single key pair.



Table 1. Comparison of parameters targeting small signatures with the round 3
SPHINCS+ parameters.

n h d b k w bitsec sig bytes

SPHINCS+-128s 16 63 7 12 14 16 128 7 856

SPHINCS+-128s-q20 16 18 1 24 6 16 128 3 264

SPHINCS+-192s 24 63 7 14 17 16 192 16 224

SPHINCS+-192s-q20 24 20 1 21 10 16 192 7 008

SPHINCS+-256s 32 64 8 14 22 16 255 29 792

SPHINCS+-256s-q20 32 19 1 21 14 16 256 12 640

It’s also worth nothing that due to the slow signing time it is difficult to
exhaust a key pair quickly. With a signing time of ≈ 1 minute, it would take
around 2 years of continuously signing to reach this limit in a single process.

0

20

40

60

80

100

120

140

20 22 24 26 28 30

S
ec
u
ri
ty

in
b
it
s

Number of signatures (log2)

n=18, d=1, b=24, k=6

Fig. 4. Plot showing how the security degrades for all parameter sets targeting 128-bit
security and 220 signatures.



0

20

40

60

80

100

120

140

160

180

200

20 22 24 26 28 30

S
ec
u
ri
ty

in
b
it
s

Number of signatures (log2)

n=20, d=1, b=21, k=10

Fig. 5. Plot showing how the security degrades for all parameter sets targeting 192-bit
security and 220 signatures.

0

50

100

150

200

250

300

20 22 24 26 28 30

S
ec
u
ri
ty

in
b
it
s

Number of signatures (log2)

n=19, d=1, b=21, k=14

Fig. 6. Plot showing how the security degrades for all parameter sets targeting 256-bit
security and 220 signatures.



Table 2. Comparison of the performance for the new parameters and the original
SPHINCS+ parameters. Key generation, signing and verification time are given as num-
ber of cycles on an AMD EPYC 7B12.

Parameters size key generation signing verification

SPHINCS+-SHA2-128f 17 088 679 151 16 020 636 1 330 842

SPHINCS+-SHA2-128s 7 856 42 915 167 325 201 745 481 106

SPHINCS+-SHA2-128s-q20 3 264 21 777 216 922 66 414 818 220 155 002

SPHINCS+-SHA2-192f 35 664 1 007 932 27 332 156 1 885 107

SPHINCS+-SHA2-192s 16 224 64 971 780 622 697 429 753 233

SPHINCS+-SHA2-192s-q20 7 008 128 538 607 582 140 291 427 167 318 803

SPHINCS+-SHA2-256f 49 856 2 636 584 55 860 356 1 897 032

SPHINCS+-SHA2-256s 29 792 42 439 089 555 910 269 1 038 173

SPHINCS+-SHA2-256s-q20 12 640 85 194 574 723 102 103 271 534 434 148

3.2 Benchmarks

We evaluated the new parameter sets using the SPHINCS+ reference implemen-
tation from https://github.com/sphincs/sphincsplus/3. The environment
for our benchmarks is a single core of a AMD EPYC 7B12, running Debian 11
(Kernel version 5.10.0-26) and GCC 10.2.1 (with -O3 flag). The resulting cycle
counts for the original SPHINCS+ and the alternative parameter sets are given
in Table 2.

As can be seen from these benchmarks, key generation and signing time are
significantly slower for these parameters, while the signature size and verification
time improve at least by a factor of 2 across all security levels.

4 Firmware signing

As a case study for the firmware signing use case, we evaluate the performance
of SPHINCS+ parameter sets on OpenTitan, an open-source silicon root of trust
which can be configured to run secure boot with SPHINCS+.

The OpenTitan benchmarks all use simple SHAKE instantiations of SPHINCS+,
matching the existing secure boot implementation. The hardware design includes
a SHAKE accelerator, which makes this configuration particularly efficient. Full
replication instructions for the benchmarks can be found here: https://github.
com/jadephilipoom/opentitan/tree/spx-benchmark/spx-benchmark

Table 3 shows that the new parameter sets produce a 4.5-4.9x speedup for
signature verification on this platform.

3 Commit 035b39429d96ca554402b78f296f0de181674abd.

https://github.com/sphincs/sphincsplus/
https://github.com/jadephilipoom/opentitan/tree/spx-benchmark/spx-benchmark
https://github.com/jadephilipoom/opentitan/tree/spx-benchmark/spx-benchmark


Table 3. Comparison of signature size and verification speed for new parameters to
the current SPHINCS+ parameters on OpenTitan.

Parameters signature size (bytes) verification speed (cycles)

SPHINCS+-SHAKE-128s 7 856 1 298 047

SPHINCS+-SHAKE-128s-q20 3 264 277 852

SPHINCS+-SHAKE-192s 16 224 2 089 772

SPHINCS+-SHAKE-192s-q20 7 008 462 991

SPHINCS+-SHAKE-256s 29 792 3 390 932

SPHINCS+-SHAKE-256s-q20 12 640 695 937

Table 4. Comparison of SPHINCS+ signature public key size, signature size, and ver-
ification speed to classical cryptography on OpenTitan at a 128-bit security level.

Scheme pk bytes sig bytes verification cycles

RSA-3072 416 384 236 057

ECDSA-P256 64 64 449 164

SPHINCS+-SHAKE-128s 32 7 856 1 298 047

SPHINCS+-SHAKE-128s-q20 32 3 264 277 852

The speedup from the new parameters brings SPHINCS+ verification speed
close to that of classical cryptography at a similar security level. Table 4 shows
how SPHINCS+ compares to RSA and ECDSA for a 128-bit security level in
terms of public key size, signature size, and verification speed on OpenTitan.

The RSA numbers in table 4 follow OpenTitan’s implementation regarding
pre-computed constants, in order to be a realistic comparison point. The Mont-
gomery multiplication constant −(N−1) mod R, for R = 2256 in this case, is pre-
computed and stored along with the public key, while the constant R2 mod N
is computed on the fly. An alternative would be precomputing and storing R2,
which would significantly improve verification speed (about 100K cycles faster),
but would require 384 additional bytes of storage per public key. Public keys
are stored in limited ROM space, and OpenTitan uses several of them for re-
dundancy, so the aggregate storage cost of storing the constants made the speed
tradeoff worthwhile in this context.

We can also evaluate the practicality of a lower maximum number of signa-
tures for this use case example:

– Signing is only required for firmware updates, which are expected to be rare.
One signature per month is a realistic estimate, but q = 220 would allow
even one per day for 2,872 years. Even q = 210 would allow weekly updates
for 19 years.



– A slow signing speed, even minutes, is tolerable, since signing happens rarely.
Key generation is even rarer and can also be slow.

– Memory is limited; space to store the firmware and its signature is on the
order of 100kB, for potentially multiple signed boot stages. Large code sig-
natures leave significantly less space for the firmware itself.

– Stateless schemes are appealing because the signing infrastructure is less
complex to safely maintain, evidenced by the fact that OpenTitan chose
SPHINCS+ over LMS even with existing parameter sets, accepting the com-
putation time and signature size penalty in order to get the stateless prop-
erty.

References

BH17. Leon Groot Bruinderink and Andreas Hülsing. ”Oops, I Did It Again” -
Security of One-Time Signatures Under Two-Message Attacks. In SAC, vol-
ume 10719 of Lecture Notes in Computer Science, pages 299–322. Springer,
2017.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ Signature Framework.
In CCS, pages 2129–2146. ACM, 2019.

5 Appendix

Table 5. Comparison of parameters targeting small signatures with the round 3
SPHINCS+ parameters.

n h d b k w bitsec sig bytes

SPHINCS+-128s 16 63 7 12 14 16 128 7 856

SPHINCS+-128s-q10 16 15 1 18 7 16 128 2 944

SPHINCS+-128s-q20 16 18 1 24 6 16 128 3 264

SPHINCS+-128s-q30 16 32 2 19 7 16 128 3 888

SPHINCS+-192s 24 63 7 14 17 16 192 16,224

SPHINCS+-192s-q10 24 19 1 23 8 16 192 6 312

SPHINCS+-192s-q20 24 20 1 21 10 16 192 7 008

SPHINCS+-192s-q30 24 36 2 21 9 16 192 8 088

SPHINCS+-256s 32 64 8 14 22 16 256 29 792

SPHINCS+-256s-q10 32 18 1 25 10 16 256 11 072

SPHINCS+-256s-q20 32 19 1 21 14 16 256 12 640

SPHINCS+-256s-q30 32 36 2 20 13 16 256 14 208



Table 6. Comparison of parameters targeting fast signatures with the round 3
SPHINCS+ parameters. These parameters have a signing speed comparable to the cur-
rent SPHINCS+-Xf parameter sets.

n h d b k w bitsec sig bytes sig speed

SPHINCS+-SHA2-128f 16 60 20 9 30 16 128 16 976 16 020 636

SPHINCS+-SHA2-128f-q10 16 12 2 10 15 16 128 3 968 17 440 489

SPHINCS+-SHA2-128f-q20 16 20 4 10 17 16 128 5 568 18 598 462

SPHINCS+-SHA2-128f-q30 16 30 6 9 19 16 128 6 896 20 454 319

SPHINCS+-SHA2-192f 24 66 22 8 33 16 192 35 664 27 332 156

SPHINCS+-SHA2-192f-q10 24 12 2 10 24 16 192 9 096 30 118 839

SPHINCS+-SHA2-192f-q20 24 25 5 9 25 16 192 12 744 27 068 467

SPHINCS+-SHA2-192f-q30 24 30 5 10 26 16 192 13 782 54 835 110

SPHINCS+-SHA2-256f 32 68 17 10 30 16 256 49 216 55 860 356

SPHINCS+-SHA2-256f-q10 32 12 2 11 29 16 256 15 840 54 274 466

SPHINCS+-SHA2-256f-q20 32 24 4 9 36 16 256 20 896 52 813 844

SPHINCS+-SHA2-256f-q30 32 30 5 10 36 16 256 24 384 73 163 909


	A note on SPHINCS+ parameter sets

