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Abstract. SNOVA is a variant of a UOV-type signature scheme over 
a noncommutative ring. In this article, we demonstrate that certain pa-
rameters provided by authors in SNOVA fail to meet the NIST security 
level, and the complexities are lower than those claimed by SNOVA. 
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1 Introduction 

Public key cryptosystems currently used such as RSA and ECC can be bro-
ken by a quantum computer executing Shor’s algorithm [21] in polynomial 
time.Therefore, cryptosystems resistant to quantum computers are gaining in-
creasing importance. There are many post-quantum cryptosystems based on 
different theory such as lattice theory, algebraic geometry, coding theory, and 
the isogeny theory of elliptic curves. 

In 2022, the U.S. National Institute for Standards and Technology (NIST) 
on post-quantum cryptography (PQC) posted a call for additional digital sig-
nature proposals to be considered in the PQC standardization process. In 2023, 
50 different signature schemes were submitted, including code-based signatures, 
isogeny signatures, lattice-based signatures, multivariate signatures, and others. 

A multivariate public key cryptosystem (MPKC) has a set of quadratic poly-
nomials over a finite field as its public key. Its security based on the difficulty 
of solving a system of multivariate quadratic polynomial equations over a fi-
nite field (MQ problem). Garey and Johnson proved [15] that MQ problem is 
NP-complete in general. 

The oil and vinegar and later derived unbalanced oil and vinegar signature 
schemes(UOV) [19,18], are well-known signature schemes known for their effi-
ciency and short signature. The UOV scheme has withstood attacks for more 
than 20 years and is still regarded as a secure signature scheme. Notably,, the 
Rainbow signature scheme proposed by Ding and Schmidt [8], a multilayer UOV 
variant, was selected as a third-round finalist in the NIST PQC project. How-
ever, both UOV and Rainbow have public keys much larger than other PQC 
candidates. 
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For multivariate signatures, the size of public key mainly depends on the 
number of variables, the number of equations, and the size of the finite field. De-
pending on different influencing factors, there are different research approaches 
to develop UOV variants. The first approach does not change the original design 
of UOV scheme, but only changes the way of key generation. The compression 
technique [20] developed by Petzoldt et al, which is based on the fact that a part 
of public key can be arbitrarily chosen before generating the secret key. This im-
plies that a part of public key can be generated using a seed of pseudo-random 
number generator and the size of public key mainly depends on the dimension of 
the oil space, the number of equations and the size of the finite field. Note that 
this technique can be applied to various UOV variants. The second approach is 
to use polynomials defined over small field as the public key, while the signature 
and message spaces are defined over the extension field, see LUOV in [4]. But 
several of its parameters were broken by Ding et al. [10]. The third approach 
is to reduce the dimension of oil space in the KeyGen step. In the Sign step, 
they use different methods to induce a new oil space from the original oil space 
such that the dimension of the new oil space is greater or equal to the number of 
equations, for example, QR-UOV [13], MAYO [3], SNOVA [24]. The authors of 
QR-UOV [13] construct oil space over the extension field then mapping it into 
the vector space over base field by trace function or tensor product, see also [17]. 
The signature and message spaces are defined over the base field. BAC-UOV 
[22] is similar with QR-UOV but it is broken by Furue et al. [14]. For MAYO [3], 
they increasing the dimension of oil space by whipping up the oil and vinegar 

: Fkn map P : Fn → Fm into a larger map P∗ → Fm . The authors of SNOVA q q q q 
[24] choose the noncommutative matrix R of l × l matrices over Fq to be the 
coefficient ring and they construct a UOV-like scheme with coefficients in R. 
Actually, we can construct oil space in the space Fnl and make tensor product q 

with Fl to map such oil space into a new oil space of Rn .q 

Our contributions In this paper, our focus is on the multivariate signature 
SNOVA scheme [24]. We observe that an SNOVA(v, o, q, l) scheme over R can 
be viewed as a UOV(lv, lo, q) scheme with l2o equations over Fq, rather than a 
UOV(l2v, l2o, q) scheme over Fq as claimed by the authors in [24]. Consequently, 
we demonstrate that some parameters provided by the authors in SNOVA can’t 
meet the NIST security level, and the complexities are lower than they claimed. 
Additionally, the coefficient matrices of these l2o equations induced by the 
SNOVA(v, o, q, l) scheme exhibit special forms and are not randomly generated. 
In most cases, we observe that the l2o equations induced by SNOVA have more 
solutions than l2o random equations from a UOV scheme. Therefore, the actual 
complexity of SNOVA may be lower than theoretically estimated. Applying the 
same method, we find that NOVA [23] has lower complexities claimed by the 
authors in their article, see Table 1. 
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2 SNOVA scheme 

2.1 Description of SNOVA scheme 

In [24], the authors introduce a UOV-type signatures over a noncommutative 
ring, which called SNOVA. 

Let v, o, l be positive integers with v > o and Fq a finite field with q elements. 
Let R be the ring of l × l matrices over the finite field Fq. Set n = v + o and 
m = o, x = (x1, · · · , xn)t , u = (u1, · · · , un)t ∈ Rn , [P ], [F ] denote some n × n 
matrices whose entries are elements of R. For each Q ∈ R, [ΛQ] denote the n×n 
matrix in Mn×n(R) whose diagonal elements are Q. 

The space Fq[s]. We first randomly choose an l × l symmetric matrix s such 
that the characteristic polynomial of s is irreducible. Set 

l−1Fq[s] = {a0 + · · · + al−1s : a0, · · · , al−1 ∈ Fq}. 

Note that dimFq Fq[s] = l and each nonzero element in Fq[s] is invertible and 
symmetric. 

Central map. The central map of SNOVA scheme is F = [F1, · · · , Fm] : 
Rn → Rm . Set Ω = {(j, k) : 1 ≤ j, k ≤ n} − {(j, k) : m + 1 ≤ j, k ≤ n}. For 
each i, Fi is the form of 

l2X � X � 
tFi(x1, · · · , xn) = Aα · xj (Qα1Fi,jkQα2)xk · Bα 

α=1 (j,k)∈Ω 

l2X 
= Aα · x t([ΛQα1 ][Fi][ΛQα2 ])x · Bα 

α=1 

where Aα, Bα, Fi,jk are the elements chosen randomly from R and Qα1, Qα2 are 
elements chosen randomly from Fq[s] −{0}. Indeed, [Fi] = (Fi,jk) is the form of � � 

F11 F12[Fi] = ∈ Mn×n(R). 
F21 0 

Public key and private key. Let T : Rn → Rn be the map corresponding 
to the matrix � � 

Iv×v Tv×o[T ] = ,
0 Io×o 

where Tv×o is a v × o matrix whose entries chosen randomly from Fq[s]. Iv×v 

and Io×o are the diagonal matrices with all entires being the identity matrix in 
R. 

Let P = F ◦ T . Set x = [T ] ◦ u and Pi = Fi ◦ T . We get 
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l2 n nX X X 
tPi(u) = Aα · u (Qα1Pi,dj dk Qα2)udk · Bαdj 

α=1 dj =1 dk =1 

l2X 
= Aα · x t([ΛQα1 ][Pi][ΛQα2 ])x · Bα 

α=1 P 
where Pi,dj dk = tj,dj · Fi,jk · tk,dk . Note that(j,k)∈Ω � � 

P11 P12[Pi] = = [T ]t[Fi][T ], i = 1, · · · , m. 
P21 P22 

The public key of SNOVA consists of the map P : Rn → Rm , i.e., the correspond-
ing matrices [Pi] for i = 1, · · · ,m, and matrices Aα, Bα, Qαk for α = 1, · · · , l2 

and k = 1, 2. The private key of SNOVA is (F, T ), i.e., the matrix [T ] and the 
matrices [Fi] for i = 1, · · · ,m. 

Signature. Let Message be the message to be signed. Set Hash(Message) = 
y = (y1, · · · , ym)t ∈ Rm . We first choose random values a1, · · · , av ∈ R as the 
vinegar variables. Then, we can obtain a solution (av+1, · · · , an) for the equation 

F (a1, · · · , av , xv+1, · · · , xn) = y. 

0If there is no solution to the equation, we choose new random values a0 · · · , a ∈1, v 
R and repeat the procedure. Set x = (a1, · · · , av , av+1, · · · , an)t . Secondly, the 
signature is sign = T −1(x). 

Verification. Let sign = (s1, · · · , sn) be the signature to be verified. If 
Hash(Message) = P (sign), then the signature is accepted, otherwise rejected. 

2.2 Structure of SNOVA 

The authors assert in [24] that an SNOVA(v, o, q, l) scheme over R can be con-
sidered as a UOV(l2v, l2o, q) scheme over Fq. However, we argue that it should 
only be regarded as a UOV(lv, lo, q) scheme with l2o equations over Fq. 

In fact, all the matrices [Fi], [T ], and [Pi] in the SNOVA scheme can be 
viewed as ln × ln matrices in Mln×ln(Fq). Based on the design of the central 
map F , there exists an oil space of F over Fq with a dimension of ol. Set n o 

= (0, · · · , 0, alv+1, · · · , aln) ∈ Fln : and O = [T ]−1(O1) ⊂ Fln .O1 q ai ∈ Fq q 

Note that dimFq O = lo and for any u, v ∈ O, 0 ≤ j, k ≤ l − 1,we have � � 
t u · [Λsj ][Pi][Λsk ] · v = 0 ∈ Fq for i = 1, · · · , m. (2.1) 



Cryptanalysis of the SNOVA signature scheme 5 � � 
That is, [Λsj ][Pi][Λ k ] O ⊂ O⊥ for i = 1, · · · ,m and 0 ≤ j, k ≤ l−1. Moreover, s 

equation (2.1) implies that the subspace O is stable under the action of [Λs]. 
⊂ Fln Furthermore, if we can find a subspace O0 with dimension ol, and any q 

elements u, v ∈ O0 satisfy equation (2.1), then for any 

x ∈ O0 ⊗ Fl = {u t ⊗ e ∈ Rn : u ∈ O0 , e ∈ Fl },q q 

we have 
P (x) = 0 ∈ Rm . 

Given a target t ∈ Rm , we can utilize the subspace O0 ⊗Fl of Rn to find x ∈ Rn 
q 

such that P (x) = t. 

3 Security Analysis 

3.1 Complexity 

FN FMGiven a homogeneous multivariate quadratic map P : q → q , we use 
MQ(N, M, q) to denote the complexity of finding a non-trivial solution u satisfy-
ing P (u) = 0 if such solution exists. Several algorithms for algebraically solving 
the quadratic system by computing Gröbner basis [5] include F4 [11], F5 [12] 
and XL [7] . 

In this paper, we estimate the complexity of solving M homogeneous quadratic 
equations in N variables [6] as � �2 � � 

N − 1 + dreg N + 1 
3 · · 

dreg 2 

field multiplications, where dreg is equal to the degree of the first non-positive 
term in the series generated by 

(1 − t2)M 

. 
(1 − t)N 

The hybrid approach [1], which randomly guesses k (k = 0, · · · , N) variables 
before computing a Gröbner basis. Hence the complexities are 

kmin q · MQ(N − k + 1, M, q) 
k 

field multiplications for the classical case and 

k/2min q · MQ(N − k + 1, M, q) 
k 

field multiplications by using Grover’s algorithm [16]. 
An underdetermined system can be reduced to an overdetermined system, 

then apply hybrid approach. There are many approaches listed in [24]. 
The number of gates required for an attack can be computed by 

#gates = #field multiplication · (2 · (log2 q)
2 + log2 q). 
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3.2 K-S attack 

In UOV scheme, the K-S attack [18] obtains the subspace T −1(O1) of Fn , whereq 
O1 is the oil subspace defined as 

O1 := {(0, · · · , 0, α1, · · · , αm)t : αi ∈ Fq}. 

The subspace T −1(O1) can induce an equivalent key. To obtain T −1(O1), the K-S 
attack chooses two invertible matrices W1,W2 from the set of linear combinations 
of the public keys P1, · · · , Pm. Then, it probabilistically recovers a part of the 
subspace T −1(O1). The complexities of K-S attack and quantum K-S attack are 
estimated by 

v−o−1 4 · mCompK-S;classicalUOV = q 

field multiplications and 

v−o−1 42 · mCompK-S;quantumUOV = q 

field multiplications, respectively. 
In the SNOVA scheme, we have claimed that SNOVA(v, o, q, l) scheme over 

R can be regarded as a UOV(lv, lo, q) scheme. In such case, we have 

lv−lo−1CompK-S;classicalSNOVA = q · (lo)4 

field multiplications and 

lv−lo−1 
2CompK-S;quantumSNOVA = q · (lo)4 

field multiplications, respectively. 

3.3 Reconciliation Attack 

The reconciliation attack [9] for UOV is similar to the UOV attack, trying to find 
u ∈ T −1(O1) such that P (u) = 0 and hence basis of T −1(O1) can be recovered. 
For SNOVA scheme, the reconciliation attack can be decomposed into a series of 

∈ Fln steps. Firstly, we may find an element u = (u1, · · · , ulv, 0, · · · , 0, 1)t q such 
that � � 

t u · [Λsj ][Pi][Λsk ] · u = 0 ∈ Fq (3.1) 

for i = 1, · · · ,m and 0 ≤ j, k ≤ l − 1. There are o · l2 equations in (3.1). 
After finding such u, we know that [Λs]u, · · · , [Λ l−1 ]u are also solutions of (3.1)s 

which are linear independent with u. Secondly, using the equations (2.1), we get 
2 · o · l2 linear equations for the other elements of O. Hence the complexity of 
reconciliation attack is mainly centered on solving the equations (3.1). 

Therefore, the complexities are 

CompReconciliation;classicalSNOVA = min q kMQ(vl + 1 − k, o · l2 , q) 
k 
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field multiplications and 

CompReconciliation;quantumSNOVA = min qk/2MQ(vl + 1 − k, o · l2 , q) 
k 

field multiplications, respectively. 
We observe that the equation (3.1) is easier to find solutions in the exten-

sion field Fql . Because the characteristic polynomial of s is irreducible, all the 
eigenvalues of s lie in Fql . Let λ ∈ Fql be an eigenvalue of s and ξ ∈ (Fql )l an 
eigenvector corresponding to λ. Let τ be the Frobenius element z 7→ zq in the 
Galois group Gal(Fql / Fq) which can be easily induced an operator on vector 
space over F l . For j = 0, · · · , l − 1, we have q 

sτ j (ξ) = τ j (λ)τ j (ξ). 

Thus for each j, τ j (ξ) is an eigenvector corresponding to the eigenvalue τ j (λ). 
In particular, {ξ, τ1(ξ), · · · , τ l−1(ξ)} are linear independent and so 

l−1X 
Tr(ξ) := τ j (ξ) ∈ Fl −{0}.q 

j=0 

According to the construction of O in the subsection 2.2, we have �n o� 
O ⊗Fq F = [T ]−1 (0, · · · , 0, alv+1, · · · ql : ai ∈ Fql .ql , aln) ∈ Fln 

Hence, there is an element u = (λ1ξ
t , · · · , λvξ

t , 0, · · · , 0, ξt)t ∈ O ⊗Fq Fql satis-
fying the equation (3.1). Then the equation (3.1) becomes � � 

t t u · [Λsj ][Pi][Λsk ] · u = λj+k u · [Pi] · u = 0 ∈ Fq .l 

That is 
t u · [Pi] · u = 0 ∈ Fql . (3.2) 

for i = 1, · · · ,m. There are only m quadratic equations and v variables over F l .q 

Indeed, u ∈ O ⊗Fq F gives us more equations:ql 

t u · [Pi] · τ j (u) = 0 ∈ Fql (3.3) 

for i = 1, · · · ,m and j = 0, · · · , l − 1. In such case, set 

· + τ l−1(u) ∈ Fln v := Tr(u) = u + τ (u) + · · −{0}.q 

We have � � X � � 
t v · [Λsj ][Pi][Λsk ] · v = τ a(u t) · [Λsj ][Pi][Λ k ] · τ b(u)s 

0≤a,b≤l−1 X � � 
t = τ a(λj )τ b(λk)τa u · [Pi] · τ b−a(u) 

0≤a,b≤l−1 

= 0. 
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Conversely, each solution of (3.1) over Fq induces a solution of (3.2) over Fql 

l )lnwhose form is u = (λ1ξ
t , · · · , λvξ

t , 0, · · · , 0, ξt)t ∈ (F . Indeed, supposeq 

· · · , ulv, 0, · · · , 0, 1)t ∈ Fln u0 = (u1, q 

is a solution of (3.1). Then [Λs]u0, · · · , [Λsl−1 ]u0 are also solutions of (3.1) which 
are linear independent with u0. Hence we can find a solution 

u = (λ1ξ
t , · · · , λvξ

t , 0, · · · , 0, ξt)t 

in the subspace spanned by u0, [Λs]u0, · · · , [Λsl−1 ]u0 over Fql . Moreover, the 
above u also satisfies (3.3). 

3.4 Intersection Attack 

Beullens proposed a new attack against UOV called the intersection attack in 
[2]. The intersection attack attempts to obtain an equivalent key by recovering 
the subspace O. Let M1,M2 be two invertible matrices in the set of linear com-
binations of {[Λsj ][Pi][Λ k ]}1≤i≤m,0≤j,k≤l−1. By (2.1), we know that M1O ands 

M2O are both subspaces of O⊥ . Although M1O =6 M2O, we still have 

dim(M1O ∩ M2O) = dim(M1O) + dim(M2O) − dim(M1O + M2O) 

≥ 2lo − dim(O⊥) 
= 2lo − lv. 

In the case of 2lo > lv. Let x be an element in the intersection M1O ∩ M2O, 
then both M−1 x and M−1 x are in O. Therefore, x is a solution to the following1 2 
system of quadratic equations ⎧ � � 

(M−1 x)t · [Λsj ][Pi][Λsk ] · (M−1 x) = 01 1 � �⎪(M−1 x)t · (M−1⎨ 2 · [Λsj ][Pi][Λsk ] x) = 02 � � (3.4) 
(M1 

−1 x)t · [Λsj ][Pi][Λsk ] · (M−1 x) = 02 � �⎪⎩(M−1 x)t · [Λsj ][Pi][Λsk ] · (M−1 x) = 02 1 

Note that the third and the fourth equations in (3.4) are same when [Pi] is 
symmetric. Since there is a 2lo − lv dimensional subspace of solutions, we can 
impose 2lo − lv affine constraints on x. Then the attack is reduced to find a 
solution to the above system of 4l2o quadratic equations in ln − (2lo − lv) = 
2lv − lo variables. Therefore, the complexity is 

CompIntersection = MQ(2lv − lo + 1, 4l2 o, q). 

In the case of 2lo ≤ lv. The intersection M1O∩ M2O may have no nontrivial 
vector. If M1O and M2O are uniformly random subspaces of O⊥ , then the 
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−lv+2lo−1probability that they have non-trivial intersection is approximately q . 
Therefore, the attack becomes a probabilistic algorithm for solving the system 

−lv+2lo−1(3.4) with a probability of approximately q . In such case, the complexity 
is 

CompIntersection = q lv−2lo+1MQ(ln, 4l2 o, q). 

Table 1. Table of classical complexity in log2(#gates) 

SL (v, o, q, l) K-S Reconciliation Intersection 
(28,17,16,2) 109/181 

I (25,8,16,3) 223/617 
(24,5,16,4) 322/1221 

117/192 77/275 
174/231 680/819 
191/286 1015/1439 

(43,25,16,2) 167/293 
III (49,11,16,3) 477/1373 

(37,8,16,4) 485/1861 

178/279 276/439 
231/530 1919/1631 
292/424 1508/2192 

(61,33,16,2) 249/453 
V (66,15,16,3) 635/1841 

(60,10,16,4) 822/3205 

262/386 395/727 
307/707 2547/2178 
360/812 2831/3602 

Table 1 presents the classical complexity of respective attacks against the 
parameters submitted in [24]. In each pair of complexities, the left one denotes 
the complexity in classical gates using the analysis results in this article, and 
the right one denotes the complexity in classical gate given by [24]. Complexities 
that do not meet the security level of the NIST PQC project are highlighted in 
bold fonts. Furthermore, Table 1 also indicates that the complexity of SNOVA 
is generally lower than what the authors claimed in [24]. 
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