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Abstract. Recent advancements in post-quantum cryptography have highlighted signature schemes based 
on the MPC-in-the-Head (MPCitH) framework due to their reliance only on the one-way function of the 
underlying primitive. This reliance offers a diverse set of assumptions regarding the diffculty of post-
quantum cryptographic problems. In this context, Kim et al. proposed AIM, an MPCitH-compatible one-
way function. This function is distinguished by its large algebraic S-boxes and parallel architecture, con-
tributing to the reduced size of signatures, as presented at CCS 2023. 
However, AIM has faced several cryptanalytic challenges, which have potentially weakened its security 
by up to 15 bits. This paper provides a comprehensive overview of these cryptanalytic methods and pro-
poses AIM2, an enhanced version that addresses these identifed vulnerabilities. We conduct an extensive 
analysis of its resilience to algebraic attacks and detail the modifcations in its effciency. 

1 Introduction 

The MPC-in-the-Head (MPCitH) paradigm, introduced by Ishai et al. [IKOS07], represents a novel method 
for constructing zero-knowledge proofs (ZKPs) through the simulation of multiparty computation (MPC) pro-
tocols. This paradigm has recently been employed in the development of post-quantum signature schemes, 
with the security of such schemes relying solely on the one-way function utilized in their key generation 
process. 

In this feld, Kim et al. [KHS+23] proposed AIM, a one-way function optimized for MPCitH, and de-
veloped the signature scheme AIMer, which integrates the BN++ proof system [KZ22] with the symmetric 
primitive AIM. The AIM function is characterized by its parallel structure and Mersenne S-boxes, which are 
specifcally designed to maximize the benefts of repeated multipliers while maintaining strong resistance to 
algebraic attacks. However, recent studies have identifed certain algebraic vulnerabilities in AIM. 

Liu et al. [LMOM23] conducted the frst analysis, employing a fast exhaustive search approach on AIM. 
This method leverages the fact that AIM allows a low-degree system of equations in λ Boolean variables, 
where λ represents the security parameter. Using a fast exhaustive search algorithm [Bou22], they demon-
strated a potential security degradation of up to 15 bits compared to the initial claims in [KHS+23]. The 
second analysis, communicated privately by Liu, devised a new low-degree equation system involving 2λ 
variables. Although this approach does not completely undermine AIM, it challenges the original security 
assertions made in [KHS+23]. 

A third analysis, shared by Saarinen on the PQC Forum,3 focused on an effcient exhaustive search strat-
egy exploiting implementational optimizations. This study proposed an unexpectedly effcient brute-force 
method, exploiting the fact that the input to the parallel S-boxes in AIM are all the same. The precise extent 
of the resulting security degradation have been unspecifed. 

Lastly, Zhang et al. [ZWY+23] proposed a linearization attack, which involved guessing a middle-product 
of the S-boxes in AIM. They claimed that this attack led to a security degradation of up to 6 bits. 

1.1 Our Contribution 

In this paper, we revisit the complexity estimation of the exhaustive search on AIM. As the previous estimation 
is so rough that the effcacy of the analyses cannot be addressed properly. Based on the new estimation, we 
overview the four analyses on AIM and carefully (re-)analyze the complexity if there is any ambiguity. To 

3 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0 
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mitigate all the cryptanalysis, we propose a new version of AIM, dubbed AIM2. The main difference of AIM2 
from AIM is three-fold: 

1. Inverse Mersenne S-box: the S-box in the frst round is placed in the opposite direction. In this way, we 
can make it harder to build a large number of equations compared to AIM. 

2. Constant addition to the input of S-boxes: distinct constants are added to the inputs of frst-round S-
boxes. It differentiates the inputs of S-boxes with negligible cost. 

3. Increasing exponents for S-boxes: we opt for larger exponents for some Mersenne S-boxes in order to 
make it harder to establish a low-degree system of equations in ≈ λ Boolean variables from a single 
evaluation of AIM. 

We also analyze the security of AIM2 against various attacks. Finally, we implement AIMer whose symmet-
ric primitive is replaced from AIM to AIM2, and measure how our patch affects effciency of the resulting 
signature scheme. 

1.2 Notation 

Throughout this paper, we denote (bit-)length of AIM and AIM2 as n. Unless stated otherwise, all logarithms 
are to the base 2. For two vectors a and b over a fnite feld, their concatenation is denoted by a∥b. For a 
positive integer m, we write [m] = {1, . . . ,m}. For an integer x and a boolean vector y, hwn(x) and hw(y) 
denotes the Hamming weight of x mod 2n − 1 in its binary representation and the Hamming weight of y, 

αrespectively. For α = (α1, . . . , αn) ∈ Fn and x = (x1, . . . , xn), monomial representation x means that2Qn αi . For a feld F, its multiplicative group is denoted by F× .i=1 xi 
In this document, addition is usually operated on a binary feld, which can be seen as bitwise exclusive-OR 

(XOR). When we want to emphasize this, we will write ⊕ to denote addition. 

2 AIM and AIMer 

AIM was proposed as an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks [KHS+23]. 
AIMer is a signature scheme obtained by combining AIM with the BN++ proof system [KZ22]. 

Given the input/output size n and an (ℓ + 1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1 , 

AIM : {0, 1}n × F2n → F2n 

is defned by 

AIM(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦ Mer[e1, . . . , eℓ](pt) ⊕ pt 

where each function will be described below. The security requirement of AIM for the signature scheme 
AIMer is the one-wayness of AIM with respect to pt for a given public iv. See Figure 2 for the pictorial 
description of AIM with ℓ = 3. 

NON-LINEAR COMPONENTS. In AIM, S-boxes are exponentiation functions by Mersenne numbers over a large 
feld. More precisely, for x ∈ F2n , 

Mer[e](x) = x 2
e−1 

for some e. Note that this map is a permutation if gcd(e, n) = 1. As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ 
2n 

is defned by 
Mer[e1, . . . , eℓ](x) = Mer[e1](x)∥ . . . ∥Mer[eℓ](x). 

LINEAR COMPONENTS. AIM includes two types of linear components: an affne layer and feed-forward. The 
affne layer consists of multiplication by an n × ℓn random binary matrix Aiv and addition by a random 
constant biv ∈ Fn 

2 . The matrix � � 
∈ (Fn×n)ℓAiv = Aiv,1 . . . Aiv,ℓ 2 
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Mer[e1] 

pt Mer[e2] Lin Mer[e∗] ct 

Mer[e3] 

XOF[iv] 

Fig. 1: The AIM-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature scheme, 
and (iv, ct) (in blue) is the corresponding public key. 

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an 
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented 

ℓby a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n ) , X 
Lin[iv](x) = Liv,i(xi) ⊕ biv. 

1≤i≤ℓ 

Feed-forward operation, which is addition by the input itself, makes the entire function non-invertible. 

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256} are given in Table 
1. The irreducible polynomials for extension felds F2128 , F2192 , and F2256 are the same as those used in Rain 
[DKR+22]. 

Scheme λ n ℓ e1 e2 e3 e∗ 

AIM-I 128 128 2 3 27 - 5 
AIM-III 192 192 2 5 29 - 7 
AIM-V 256 256 3 3 53 7 5 

Table 1: Recommended sets of parameters of AIM. 

3 Complexity Models for Algebraic Attacks 

In this section, we briefy introduce some algebraic attack models and their complexities. Throughout this 
section, we will focus on constructing an overdetermined system of m equations in n Boolean variables 
where the degree of each equation is denoted as di for i = 1, . . . ,m. 

3.1 XL Algorithm with Independent Equations Model 

The XL algorithm [CKPS00] is a generalization of the relinearization attack [KS99]. The XL algorithm extends 
the system by multiplying all the monomials of degree D − di to the equation of degree di, resulting in 

m 
 

DX−di � � X  n  
j 

SD = 
i=1 j=0 
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PD � � 
nequations of degrees at most D. As the extended system is of degrees at most D, at most monomialsi=1 i 

appear in the extended system. When the number of linearly independent equations becomes greater than 
the number of monomials as D grows, one can solve the extended system of equations by linearization. 

The complexity of the XL attack depends on the number of linearly independent equations obtained from 
the XL algorithm, while we may loosely upper bound the number of linearly independent equations by SD. 

Assumption 1 All the equations obtained while running the XL algorithm are linearly independent. 

Under Assumption 1, which is in favor of the attacker, we can search for the (smallest) degree D such that 

m DX−di � �X n ≥ TD (1)
j

i=1 j=0 

where TD denotes the exact number of monomials appearing in the extended system of equations, which � �PD nis upper bounded by . Once D is fxed, the extended system of equations can be solved by trivial i=1 i 
linearization whose time complexity is given as O (T ω ), where the constant ω is the matrix multiplication D 
exponent. 

In the literature, Assumption 1 is not widely-used to estimate the security of a cryptosystem since it is 
regarded unrealistic. The equations obtained while running the XL algorithm are usually linearly dependent, 
and the degree D is required to be much higher than one computed under Assumption 1. Ars et al. [AFI+04] 
showed that the XL algorithm is in fact a redundant variant of the F4 algorithm [Fau99]. AIM was claimed 
to be secure against direct algebraic attacks even if Assumption 1 is true [KHS+23]. 

3.2 Gröbner Basis Attack Model 

The Gröbner basis attack is to solve a system of equations by computing its Gröbner basis. The attack consists 
of the following steps. 

1. Compute a Gröbner basis in the grevlex (graded reverse lexicographic) order. 
2. Change the order of terms to obtain a Gröbner basis in the lex (lexicographic) order. 
3. Find a univariate polynomial in this basis and solve it. 
4. Substitute this solution into the Gröbner basis and repeat Step 3. 

When a system of equations has only fnitely many solutions in its algebraic closure, its Gröbner basis in the 
lex order always contains a univariate polynomial. When a single variable of the polynomial is replaced by a 
concrete solution, the Gr¨ obner basis of the “reduced” system, allowing one toobner basis still remains a Gr¨ 
obtain a univariate polynomial again for the next variable. We refer to [SS21] for more details on Gröbner 
basis computation. 

The security of a cryptosystem against the Gröbner basis attack is usually estimated by the complex-
ity of the frst step, which is the Gröbner basis computation in the grevlex order using F4/F5 algorithm 
or its variants [Fau99, Fau02]. The complexity of Gröbner basis computation can be estimated using the 
degree of regularity of the system of equations [BFS04]. Consider a system of m homogeneous equations 
{fi(x1, . . . , xn) = 0}m in n Boolean variables. Let di denote the degree of fi for i = 1, 2, . . . ,m. If thei=1 
system of equations is overdetermined, i.e., m > n, then the degree of regularity can be estimated by the 
smallest degree of the terms with non-positive coeffcients appearing in the Hilbert series 

(1 + z)n Qm 
(1 + zdi )i=1 

under Assumption 2. 

Assumption 2 ([Frö85]) Almost all polynomial sequences are semi-regular. 

For nonhomogeneous equations, the degree of regularity is computed from the following Hilbert series ob-
tained by homogenization [BFSS13]: 

(1 + z)n Q . (2)m
(1 − z) (1 + zdi )i=1 
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Given the degree of regularity dreg, the complexity of computing a Gröbner basis of the system of equations 
is known to be �� �ω� 

n 
O . 

dreg 

In [KHS+23], the degree of regularity has been wrongly computed using the Hilbert series 

mY1 
(1 − z di ). 

(1 − z)n 
i=1 

and the complexity formula �� �ω� 
n + dreg

O 
dreg 

which gives zeroes over the algebraic closure of F2. As far as we check, this discrepancy leads to no signifcant 
difference of the attack complexity. 

3.3 Hybrid Wiedemann XL Algorithm Model 

The state-of-the-art model of solving a system of polynomial equations is to use the hybrid Wiedemann XL 
algorithm [BFP09, YCBC07]. This model is based on the following three techniques: 

1. XL algorithm with termination at the degree of regularity (also known as the operating degree), 
2. hybrid approach with the guess-and-determine attack [BFP09], 
3. sparse linear system solving algorithm which is called the Wiedemann algorithm [Wie86]. 

Nowadays, the XL algorithm has been proved to terminate at degree dreg defned by the Hilbert series (2) [YC04, 
YCBC07] under Assumption 2. So, the complexity of the hybrid Wiedemann XL algorithm on a system of 
Boolean equations is upper bounded by � �2 � � 

n − k n − k 
min 3 · 2k · · (3) 
k dreg(n, k) maxi di 

where the degree of regularity dreg(n, k) is the smallest degree of the terms with non-positive coeffcients of 
the Hilbert series 

(1 + z)n−k Q . (4)m
(1 − z) (1 + zdi )i=1 

3.4 Complexity Model in this Paper 

In the previous sections, we introduced three complexity models for algebraic attacks (XL and Gröbner basis 
computation). Although the hybrid Wiedemann XL algorithm is the most widely-deployed model, we use 
the Gröbner basis attack model with ω = 2 and hybrid approach [BFP09] since the complexity of this model 
lower bounds that of the hybrid Wiedemann XL model. Specifcally, we use the complexity formula � �2 

n − k 
min 2k · (5) 
k dreg(n, k) 

where dreg(n, k) is the smallest degree of the terms with non-positive coeffcients of (4). 
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Operation #AND #XOR #Gate Note 
2 2 2FF Mult. n n 2n [DCK+20] 

FF Square 0 n n Underestimated 
Mat-Vec Mult. 0 n 2 n 2 Fixed n × n-matrix 
FF Add 0 n n 

Table 2: Summary of required number of binary gates. We compute the gate-count complexities of analyses 
which will be described in this section. “FF” is the abbreviation of fnite feld. The fnite feld implies F2n , 
and the vector is binary vector of length n. 

# Operations 
2a−1 → x 2

b−1Scheme Circuit Chain: (a) → (b) = x 
FF Mult. FF Square 

Mer[3, 27] (1) → (2) → (3) → (6) → (12) → (24) → (27) 6 26 
AIM-I 

Mer[5] (1) → (2) → (4) → (5) 3 4 

Mer[5, 29] (1) → (2) → (3) → (5) → (7) → (14) → (28) → (29) 7 28 
AIM-III 

Mer[7] (1) → (2) → (4) → (6) → (7) 4 6 

Mer[3, 7, 53] (1) → (2) → (3) → (5) → (7) → (12) → (24) → (48) → (53) 8 52 
AIM-V 

Mer[5] (1) → (2) → (4) → (5) 3 4 

Table 3: The addition chain used to compute each Mersenne-Sbox in AIM and the number of feld operations 
it takes. 

4 Cryptanalysis on AIM 

4.1 Claimed Security of AIM 

Before we address analyses on AIM proposed so far, we clarify the complexity of exhaustive search attack 
on AIM. The complexities have been differently described in [KHS+23] and [KCC+23]. We revisit how the 
complexities have been computed, and provide more accurate fgures with explicitly written assumptions. 

In the earliest ePrint version of [KHS+23], the S-boxes in AIM are assumed to be computed by naive 
square-and-multiply method. Then, each S-box Mer[e] requires 2(e − 1) multiplications over F2n , so that 
we counted the numbers of fnite feld multiplication are 32, 38, and 64 for AIM-I, AIM-III, and AIM-V, 
respectively. We assumed that a single F2n -multiplication requires 2n2 binary gates, and computed the gate-
count complexity by multiplying 2λ and the number of fnite feld multiplications. The resulted complexity 

, 2214.4was given as 2149 , and 2280 for AIM-I, AIM-III, and AIM-V, respectively. 
While we were preparing the submission for the NIST PQC project, we found out that addition chain 

exponentiation technique [Knu97] can reduce the number of required fnite feld multiplication to evaluate 
AIM. We reduce it to 11/14/17 for AIM-I/III/V by utilizing the addition chain exponentiation technique. 
Similarly to previous paragraph, we computed the gate-count complexity by multiplying 2λ and the number 

, 2211.9of fnite feld multiplications. The resulted complexity was given as 2146.4 , and 2277 for AIM-I, AIM-III, 
and AIM-V, respectively. 

Those complexity estimations in fact have omitted some non-dominant computations: fnite feld squar-
ing, matrix-vector multiplication, addition and comparison of fnite feld elements. So, the estimations have 
provided a lower bound of complexity of the exhaustive search. To be accurate, we summarize the assumed 
gate count for each component operations in Table 2. We assume that a multiplication by a fxed matrix does 
not require any AND gate. We also assume that squaring of a fnite feld element requires n XOR gates which 
is obviously underestimated, but this does not affect total complexities much. 

On the other hand, we found that the S-boxes in the frst round (parallel structure) can be computed in a 
single addition chain since they have all the same inputs. It reduces the required number of multiplication as 
in Table 3. Overall, we summarize the number of required operations and the total cost of exhaustive search 
on AIM in Table 4. 
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Scheme 
FF Mult. 

#Operations 

FF Square Mat-Vec Mult. FF Add 

Total 
Cost 

AIM-I 9 30 2 4 146.3 
AIM-III 11 34 2 4 211.8 
AIM-V 11 56 3 5 276.7 

Table 4: The number of operations for each type of operation used in AIM, and the total cost of exhaustive 
search on AIM for each level of security. The total cost is the log of required number of binary gates. 

4.2 Fast Exhaustive Search for Low-degree Algebraic System 

Exhaustive search is the most basic attack for any keyed function fk(·). For some given pairs (xi, yi) such 
that fk(xi) = yi, an attacker checks whether fk̄(xi) = yi or not for all i over all possible keys k̄ in the key 
space. Fast exhaustive search improves concrete effciency of exhaustive search when the keyed function can 
be represented by a set of low-degree polynomials. 

For a degree-d system in n variables, Bouillaguet et al. proposed a fast exhaustive search with time com-
plexity 4d log(n)2n in Boolean operations and memory complexity O(n2d) [BCC+10]. Bouillaguet also pro-
posed a memory-effcient version of the fast exhaustive search with the same time complexity and memory Pd � � 

2 ncomplexity n · in bits [Bou22]. We refer to the original papers for more details.i=0 i 
Liu et al. proposed a low-degree representation of AIM, and applied the fast exhaustive search algorithm 

to it [LMOM23]. The low-degree representation is described as follows. 
Let z be the output of Lin. Then, pt can be represented in terms of z as follows. 

2e∗ −1pt = z + ct 

Denoting the output of Mer[ei] by ti for i = 1, . . . , ℓ, one has � �2ei −1 
2e∗ −1ti = z + ct . 

Let di be the degree of ti with respect to z, and let dmax = maxi=2̸ di as the exponent e2 is the largest from 
{e1, . . . , eℓ} (for the sets of recommended parameters). Then, t2 can be expressed as 

= A−1t2 iv,2 (biv + z + Aiv,1(t1) + Aiv,3(t3)) 

where the last summand Aiv,3(t3) in the parentheses does not appear for AIM-I or AIM-III. Now we obtain 
an equation of degree at most dmax + e∗ from pt · t2 = pt2

e∗ as follows. � � � �2e2 
2e∗ −1 2e∗ −1 · A−1 z + ct iv,2 (biv + z + Aiv,1(t1) + Aiv,3(t3)) = z + ct 

The degree dmax + e∗ is known to be 10/14/15 for AIM-I, III, V, respectively.4 As the time complexity of 
the fast exhaustive search is 4d(log n)2n , the gate-count complexity becomes 2136.2/2200.7/2265.0 for AIM-I, 
III, V, respectively. According to the new complexity estimation of exhaustive search on AIM in Section 4.1, 
it degrades the security of AIM by up to 12 bits. 

4.3 Possible Algebraic Vulnerability on AIM 

While communicating with the authors of [LMOM23], Liu pointed out that introducing a new variable 
results in an easier system of equations than expected. In this section, we briefy introduce how to make 
such a system. 

4 The detailed computation can be found in [LMOM23]. 
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Let a new variable w = pt−1 , and let ti be the output of Mer[ei] for i ∈ {1, . . . , ℓ}. Then, we have 

2ei 
ti = pt w 

for all i = 1, . . . , ℓ. Then we can establish three types of equations 

pt · w = 1, (6) � � � �2e∗ 
2e1 2eℓ 2e1 2eℓLin pt w, . . . , pt w · (pt + ct) = Lin pt w, . . . , pt w , (7) � � � �2e∗ 

2e1 2eℓ 2e1 2eℓLin pt w, . . . , pt w · (1 + w · ct) = Lin pt w, . . . , pt w · w. (8) 

Since the inverse S-box of n-bit input produces 5n linearly independent quadratic equations, we obtain 5n 
quadratic equations from (6). For (7) and (8), each produces n cubic equations, and multiplying pt and w 
results in n more cubic equations, respectively. Moreover, we have � �2 � �2 

2e1 2eℓ 2e1 2eℓLin pt w, . . . , pt w · (pt + ct) + Lin pt w, . . . , pt w · (1 + w · ct) · ct � �2e∗ +1 � �2e∗ +1 
2e1 2eℓ 2e1 2eℓ 

= Lin pt w, . . . , pt w + Lin pt w, . . . , pt w · w · ct � �2e∗+1 

2e1 2eℓ 
= Lin pt w, . . . , pt w · w 

which produces n more cubic equations. We remark that the exponents of the Lin term in the second line 
and in the third line are different (2e∗ + 1 vs. 2e∗+1). Overall, we have a system of 5n quadratic equations 
and 5n cubic equations in 2n Boolean variables regardless of ℓ. 

Under Assumption 1 and the condition ω = 2, the time complexity of the XL algorithm is 2124.8/2157.5/2188.9 

for AIM-I/III/V, which harms the original security claim in [KHS+23]. However, this assumption is usually re-
garded too strong as all the expanded equations are not likely to be linearly independent. This assumption es-
timates the complexity much lower than the required amount of computation for the XL algorithm [AFI+04] 
in practice. If we estimate the complexity in the hybrid Gröbner basis attack model with Assumption 2 which 
is regarded as a more realistic assumption, the time complexity of the XL algorithm is 2158.3/2226.5/2290.2 for 
AIM-I/III/V. Those values imply all the instances are secure against the XL algorithm. 

The main reason of this vulnerability is insuffcient difference between S-boxes in the frst round. Since 
the exponents are simple and similar to each other, it is possible to set a new variable from a common factor. 

4.4 Effcient Exhaustive Search by Optimized Implementation 

Saarinen claimed that an effcient exhaustive search attack using linear-feedback shift register (LFSR) can 
results in a security degradation of AIM.5 To be accurate, he claimed that the complexity of exhaustive search 
of AIM’s input is less than that of AES. We briefy describe the exhaustive search algorithm by Saarinen in 
the following. 

At frst, an attacker needs an LFSR corresponding to a given feld F2n . In the LFSR, moving forward (resp. 
backward) shifting corresponds to multiplying X (resp. X−1). Iteratively shifting the element x forward and 

−1its corresponding inverse w = x backward makes the attacker can visit all the element in F2n . For each 
shift after initializing x = 1 and w = 1, attacker can check whether pt = x, pt−1 = w satisfes (7). 

As Saarinen have not provided the explicit complexity of the exhaustive search attack, we analyze the 
exact gate-count complexity of the attack. Checking whether (7) holds or not costs ℓ + 1 fnite feld multipli-
cations, (max{e1, . . . , eℓ} + e∗) fnite feld squarings, ℓ matrix-vector multiplication, and ℓ +1 feld additions. 
Assuming Table 2, the gate-count complexity of an effcient exhaustive search using LFSR is given as 2145.0 , 
2210.2 , and 2275.5 for AIM-I, AIM-III, AIM-V, respectively. Contrary to the claim of Saarinen, these values 
are still larger than the gate-count complexity of AES (2143/2207/2272), while these values are slightly (< 2 
bit) smaller than the security of AIM in Table 4. The number of required operations and the total cost of 
exhaustive search attack using LFSR are summarized in Table 5. 

5 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0 
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Scheme 
FF Mult. 

#Operations 

FF Square Mat-Vec Mult. FF Add 

Total 
Cost 

AIM-I 3 32 2 3 145.0 
AIM-III 3 36 2 3 210.2 
AIM-V 4 58 3 4 275.5 

Table 5: The number of operations for each type of operation and the total cost of exhaustive search on (7) 
for each security level. The total cost is the log of required number of binary gates. 

4.5 Linearization Attack by Guessing Intermediate Variables 

Zhang et al. [ZWY+23] proposed an algebraic attack on AIM that exploits the linearity of the square function 
over binary extension felds and the vulnerability of AIM having the common input to multiple S-boxes. A 
Mersenne S-boxes in the frst round, which maps as x 7→ x2ei −1 over F2n for i = 1, . . . , ℓ, can be decomposed 
as follows. 

2ei −1 d)si 2ti 
x = (x · x 

for some positive integers d, si, ti for i = 1, . . . , ℓ, where d | 2n − 1. Since the power mapping x 7→ x2ti is 
linear over F2, one can linearize all the Mersenne S-boxes x 7→ x2ei −1 for i = 1, . . . , ℓ by guessing the value 

dof x . As {xd | x ̸= 0} forms a multiplicative subgroup of F2 
× 
n for d | 2n − 1, the number of possible guesses 

for nonzero xd is only (2n − 1)/d. 
Once the value of ptd is guessed as α, one can represent the input to the last Mersenne S-box Mer[e∗] as 

follows, which is linear to pt. 
2t1 2tℓLin(αs1 pt , . . . , αsℓ pt ). 

Since the output of the last Mersenne S-box is (pt + ct) where ct is a public value, one can obtain n quadratic 
equations over F2 from the following relation. 

2t1 2tℓ 2tℓ2t1 
)2

e∗ 
Lin(αs1 pt , . . . , αsℓ pt ) · (pt + ct) = Lin(αs1 pt , . . . , αsℓ pt . (9) 

In case of AIM-III with n = 192, Zhang et al. chose d = 45 for the most effcient attack. Then the following 
linear relation on pt and α = ptd is used to solve (9). 

212 45)91pt = (pt · pt = α91 · pt. 

Considering α as a guessed (and so fxed) value, γ = 180 linearly independent equations on pt over F2 are 
obtained from the above equation experimentally. Thus, one can express each bit of pt as a linear combination 
of n − γ = 12 free variables v = {vj }j∈[n−γ]. By changing variables of (9) from pt to v, one can rewrite the 
quadratic equations with fewer variables. Then, using m = |v| + |v|(|v|− 1)/2 linearly independent equations 
among them, it can be solved by (trivial) linearization. 

The attack complexity consists of three parts. The frst step is to fnd the set of free variables v from the 
linear relation on pt and α by the Gaussian elimination, which takes O(n3) time. Next, rewriting the quadratic 
equations on the input pt from (9) to ones on the free variables v takes O(n2|v|2) times. Finally, solving the 
quadratic equations on v takes O(m3) time. The above steps are repeated (2n − 1)/d times according to 
the guessed value of α. Considering only the dominant term among them, Zhang et al. estimate the bit 

3complexity of their attack as Tbit = (2n − 1)/d · max{n , n2|v|2,m3}. When interpreting the bit complexity 
in terms of the number of encryption, they divide Tbit by n3 assuming the encryption takes O(n3) time in bit 
complexity. 

Although Zhang et al. estimated the complexities of their attack by only using asymptotic complexity, 
we carefully re-analyze the complexity of the attack with hidden constants as it was claimed to degrade the 
security of AIM by a few bits. 

1. The number of binary operations for Gaussian elimination is about n(n − 1) + · · · + 2 · 1 ≈ n3/3. Some 
alternative algorithms for matrix multiplication have smaller exponents asymptotically (e.g., ω = 2.81 
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or 2.37), while they have larger hidden constants in big-O notation [CH17]. For the matrix of dimension 
less than or equal to 256, Gaussian elimination has smaller cost than the alternative algorithms in all the 
parameters. 

2. Rewriting the equations from (9) for the set of variables v involves approximately 2.5n2|v|2 + n|v| terms 
to change, which is experimentally checked in the original paper.6 As the estimation omit the cost for 
rewriting itself, we also neglect it in our estimation. 

3. As all the steps should have done for every guess, the estimation should be T ∗ = (2n − 1)/d · (n3/3 + bit 
2.5n2|v|2 + n|v| + m3/3). 

4. Contrary to our initial circuit size estimation of AIM, the circuit size of AIM is turned out to be not O(n3) 
but O(ℓn2). Concretely speaking, the estimated circuit size is 218.3/219.8/220.7 for AIM-I/III/V, which are 

3quite a few bit smaller than n . 

Table 6 summarizes the recommended parameters and the corresponding attack complexities to each level 
of AIM. One can see that the attack complexities for AIM-V (resp. AIM-I, III) estimated by the dominant term 
is slightly greater (resp. smaller) than the exhaustive search attack complexity. Based on the new complexity 
estimation of the exhaustive search on AIM, this attack degrades the security by up to 2 bits. Even considering 
that our estimated complexity for exhaustive search has been reduced, the effcacy of the attack is slightly 
overestimated if the hidden constants are handled carefully. 

T ∗Scheme n d t1 t2 t3 |v| m Exhaustive Search (Sec. 4.1)bit 

2146.0 2146.3AIM-I 128 5 1 1 - 4 10 
2210.4 2211.8AIM-III 192 45 8 8 - 12 78 
2277.0 2276.7AIM-V 256 3 0 0 0 2 3 

Table 6: The recommended attack parameters and the corresponding gate-count complexities of the attack 
proposed by Zhang et al. 

5 Mitigation on the Cryptanalysis 

In the presented analyses, the vulnerabilities of AIM can be described in two primary aspects: identical input 
values to the S-boxes and the low-degree system. The easier system by Liu, Saarinen’s effcient exhaustive 
search, and the linearization attack employed by Zhang et al. are fundamentally premised on the observation 
that the S-boxes in the initial round receive identical inputs. Additionally, the fast exhaustive search attack 
proposed by Liu et al. is based on the system of a low-degree polynomial with a moderately sized set of 
variables. 

This section introduces an enhanced version of AIM, dubbed AIM2. A comprehensive examination has led 
to an effective solution for these vulnerabilities, which simultaneously maintains a similar level of effciency. 
In AIM2, different constant values are added to ensure distinct inputs for the S-boxes on the frst round, 
thereby achieving input differentiation with minimal impact on performance. Furthermore, increasing the 
exponents e in Mer[e] substantially enlarges degree of a system with a moderate number of variables. 

While these modifcations effectively mitigate current known attacks, an additional safeguard is intro-
duced in the form of the inverse Mersenne S-box. This S-box is the inverse function of a Mersenne S-box, 
further complicating the generation of a large amount of quadratic equations as observed in Section 4.3. The 
integration of the inverse Mersenne S-box, along with the feasibility of repeated multipliers, ensures that the 
operational overhead remains comparable to AIMer with the previous version of AIM. 

6 In the original paper, the authors upper bound the number of terms by 3n 2|v|2 + n|v|. But we use the ratio 2.5 as Table 
2 in the original paper indicates it. 
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5.1 AIM2: Overall Patch 

Given input/output size n and an (ℓ+1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1 , AIM2 : {0, 1}n×F2n → F2n 

is defned by 

AIM2(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦ Mer[e1, . . . , eℓ]
−1 ◦ AddConst(pt) ⊕ pt 

where each function will be described below. See Figure 2 for the pictorial description of AIM2 with ℓ = 3. 

Mer[e1]
−1 

Mer[e2]
−1 

Mer[e3]
−1 

Linpt 

c1 

c2 

c3 

Mer[e∗] ct 

XOF[iv] 

Fig. 2: The AIM2-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature 
scheme, and (iv, ct) (in blue) is the corresponding public key. 

NON-LINEAR COMPONENTS. AIM2 uses two types of S-boxes: Mersenne S-box Mer[e], and its inverse Mer[e]−1 . 
These two S-boxes are defned by exponentiation over a large feld as follows. For x ∈ F2n , 

2e −1Mer[e](x) = x , 
ē  Mer[e]−1(x) = x where ē = (2e − 1)−1 (mod 2n − 1) 

for some e. To follow the spirit of AIM, the exponents e in AIM2 are selected for Mer[e]−1 to have 3n quadratic 
equations. We remark that the exponents e are chosen such that gcd(e, n) = 1, and hence the inverse expo-
nent ē is well-defned. As an extension, Mer[e1, . . . , eℓ]

−1 : F2 
ℓ 
n → F2 

ℓ 
n is defned by 

Mer[e1, . . . , eℓ]
−1(x1, . . . , xℓ) = Mer[e1]

−1(x1)∥ . . . ∥Mer[eℓ]
−1(xℓ). 

LINEAR COMPONENTS. AIM2 includes three types of linear components: constant addition, an affne layer, 
and feed-forward. For fxed constants c1, . . . , cℓ, AddConst : F2n → Fℓ 

2n is defned by 

AddConst(x) = (x + c1)∥ . . . ∥(x + cℓ) 

where the constants are defned in Table 7. 
The affne layer in AIM2 is exactly the same as AIM. It consists of multiplication by an n × ℓn random 

binary matrix Aiv and addition by a random constant biv ∈ Fn 
2 . The matrix � � 
∈ (Fn×n)ℓAiv = Aiv,1 . . . Aiv,ℓ 2 

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an 
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented 

ℓby a linearized polynomial Liv,i over F2n . For x = (x1, . . . , xℓ) ∈ (F2n ) , X 
Lin[iv](x) = Liv,i(xi) ⊕ biv. 

1≤i≤ℓ 
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AIM2-I 
c1 

c2 

0x243f6a88 85a308d3 13198a2e 03707344 
0xa4093822 299f31d0 082efa98 ec4e6c89 

AIM2-III 
c1 

c2 

0x452821e6 
0x3f84d5b5 

38d01377 be5466cf 34e90c6c c0ac29b7 c97c50dd 
b5470917 9216d5d9 8979fb1b d1310ba6 98dfb5ac 

AIM2-V 
c1 

c2 

c3 

0x2ffd72db 
0x0801f2e2 
0x718bcd58 

d01adfb7 
858efc16 
82154aee 

b8e1afed 
636920d8 
7b54a41d 

6a267e96 ba7c9045 f12c7f99 24a19947 b3916cf7 
71574e69 a458fea3 f4933d7e 0d95748f 728eb658 
c25a59b5 9c30d539 2af26013 c5d1b023 286085f0 

Table 7: Constants c1, . . . , cℓ in AddConst are written in hexadecimal. These constants are taken from the 
numbers below the decimal point of the π ratio. 

Feed-forward operation, which is addition by the input itself, makes the entire function non-invertible. 

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256} are given in Table 
8. The irreducible polynomials for extension felds F2128 , F2192 , and F2256 are the same as those used in Rain 
[DKR+22]. 

Scheme λ n ℓ e1 e2 e3 e∗ 

AIM2-I 128 128 2 49 91 - 3 
AIM2-III 192 192 2 17 47 - 5 
AIM2-V 256 256 3 11 141 7 3 

Table 8: Recommended sets of parameters of AIM2. 

5.2 Algebraic Attacks on AIM2 

VARIOUS SYSTEMS OF AIM2. There are multiple ways of building a system of equations from an evaluation of 
AIM2. We can categorize them according to the number of (Boolean) variables and fnd the optimal choice 
of variables to obtain a system of the lowest degree. Since ℓ ∈ {2, 3} is recommended, we consider four types 
of systems of Boolean equations as follows. 

1. Systems in n variables. 
2. Systems in 2n variables. 
3. Systems in 3n variables. 
4. Systems in 4n variables (only for ℓ = 3). 

With (ℓ + 1)n variables, we can establish a system Squad of quadratic equations. The variables are denoted as 
follows. 

- x: the input of AIM2, i.e., pt 
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ 
- z: the output of Lin 

From Mer[ei]
−1(x + ci) = ti, we obtain 3n Boolean quadratic equations in x and ti induced by the following 

relations.  ti(x + ci) = t2
ei 
, i 

= t2
ei 

ti(x + ci)2 (x + ci), i 2ei +1t2 
i (x + ci) = t .i 
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When x and ti are of higher degrees with respect to other variables, the frst two relations result in 2n equa-
tions of degree deg x + deg ti, while the last one results in n equations of degree max(deg x + deg ti, 2 deg ti). 
There are also n Boolean quadratic equations in ti and tj induced by the following. 

2ei 2ej(ci + cj )titj = t tj + tit .i j 

We note that z has the same relation with ti with respect to x as z = Mer[e∗]
−1(x + ct). Using the brute-

force search of quadratic equations on toy parameters, which will be described later in this section, we fnd 
that these are all the possible (linearly independent) quadratic equations on AIM2. Hence, Squad consists of �

ℓ+1
� 

3(ℓ + 1)n + n quadratic equations. 2 
With fewer variables, the resulting systems would have higher degrees. For example, Mer[ei]

−1 implicitly 
determines 3n quadratic equations in x and ti as above, while ti (resp. x) can be explicitly represented by a 
polynomial in x (resp. ti). We can also explicitly represent ti using tj for j ̸= i or z as follows. 

ti = Mer[ei]
−1 (Mer[ej ](tj ) ⊕ ci ⊕ cj ) 

= Mer[ei]
−1 (Mer[e∗](z) ⊕ ct) . 

The degree of ti with respect to tj (resp. z) might be greater than the degree of Mer[ei]
−1 ◦ Mer[ej ] (resp. 

Mer[ei]
−1 ◦ Mer[e∗]) due to the constant addition, while we estimate it as the degree of the composition 

(without constant addition) for simplicity. 

Scheme Type #Var Variables (#Eq, Deg) 
k 

Complexity 

dreg Time (bits) 

AIM2-I 
S1 

S2 

Squad 

n 
2n 
3n 

t1 

t1, t2 

x, t1, t2 

(n, 60) 
(3n, 2) 
(12n, 2) 

-
62 
0 

-
15 
16 

-
207.9 
185.3 

AIM2-III 
S1 

S2 

Squad 

n 
2n 
3n 

x 
t1, t2 

x, t1, t2 

(2n, 114) 
(3n, 2) 
(12n, 2) 

-
100 

0 

-
20 
22 

-
301.9 
262.4 

AIM2-V 

S1 

S2 

S3 

Squad 

n 
2n 
3n 
4n 

x 
t2, z 
t1, t2, t3 

x, t1, t2, t3 

(2n, 172) 
(n, 2) + (2n, 38) 
(6n, 2) 
(18n, 2) 

-
253 

2 
9 

-
30 
47 
32 

-
513.5 
503.7 
411.4 

Table 9: Optimal systems of equations and their security against algebraic attacks. (#Eq, Deg) = (a, b) means 
that the system contains a equations of degree b. All the complexities are measured by (5). k is the number 
of guessed bits and dreg is the degree of regularity. 

Table 9 summarizes a system of equations of the lowest degree for each type, where such systems are de-
noted by S1, S2, . . . , Squad respectively, according to the number of variables. The complexities are measured 
by (5). For systems of equations of type S1 in n variables, we did not compute precise complexities since the 
degree near n/2 requires the XL algorithm to use approximately 2n monomials with time complexity close 
to O(22n). 

BRUTE-FORCE SEARCH OF QUADRATIC EQUATIONS. Given an overdetermined quadratic system, algebraic 
attacks tend to solve the system faster when the system has more linearly independent equations. To lower 
bound the complexity of the algebraic attacks, we need to fnd all linearly independent equations. To fnd all 
such equations, we used brute-force search with the following experiment. 

1. Set variables as follows. 
- x: the input of AIM2, i.e., pt 
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ 
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- z: the output of Mer[e∗]
−1(x + ct) 

2. Make a generic quadratic equation with indeterminate coeffcients aα,β,γ ∈ F2; X 
α βi γ aα,β,γ x ti z = 0 (10) 

α,γ∈Fn,β∈Fℓn 
2 2 

hwn (α)+hwn(β)+hwn(γ)≤2 

where β = (β1, . . . , βℓ). 
3. Randomly sample x ∈ F2n , and compute the corresponding ti and z. Substitute those values to (10).�� �� 

(ℓ+2)n4. Repeat the previous step O times.2 

5. Solve the system of linear equations with respect to aα,β,γ . The quadratic equations for the target system 
can be computed by substituting such aα,β,γ to (10). 

For system Squad, this experiment found 12n quadratic equations for AIM2-I and III, and 18n quadratic 
equations for AIM2-V. For system S2 of AIM2-I and III, it found 3n quadratic equations. For system S3 of 
AIM2-V, it found 6n quadratic equations. We remark that this experiment does not consider the affne layer 
by introducing a redundant variable z. Although this may lead to more equations than the actual number, 
we checked that all the equations obtained from the experiment are linearly independent. 

This experiment can be easily generalized for a general degree d. However, the generalized experiment 
will include all the equations of degree d expanded from the quadratic equations. For this reason, we opted 
for fnding equations of a higher degree by hand rather than running the generalized experiment. 

RESISTANCE TO FAST EXHAUSTIVE SEARCH. The fast exhaustive search attacks in [BCC+10, Bou22] are infea-
sible if the target polynomial system is of high degree. Although the time complexity of the fast exhaustive 
search is claimed to be 4d log(n)2n , there is a hidden preprocessing cost 

d−1 � �� � � �X n k 2d n 
22d/3T = k ≥ 

k ↓ min(d − k, k) 3 ⌊2d/3⌋ 
k=0 � � Pk � � 

n nin binary operations where = . One can see that T ≫ d2n if d ≥ 0.341n. Furthermore, if↓k i=0 i 

d ≥ n/2, then the memory complexity will also be higher than 2n bits. 

RESISTANCE TO LINEARIZATION ATTACK BY GUESSING. The constant addition by AddConst prevents the lin-
earization attack by Zhang et al. [ZWY+23] by making inputs to the S-boxes on the frst round different. 
This is the simplest patch among the possible ones of AIM proposed by the authors. 

INTRODUCING NEW VARIABLES OTHER THAN S-BOX OUTPUTS. As seen in Section 4.3, Liu showed that the 
number of quadratic equations can be increased by introducing new variables (w = pt−1) in addition to 
the inputs and the outputs of the S-boxes without signifcantly increasing the degree of the entire system 
of equations. We will further generalize Liu’s attack, and analyze the security of AIM2 against this type of 
attacks. For simplicity, we write tℓ+1 = z and cℓ+1 = ct. To mount a successful attack by introducing new 
variables wi = (pt + ci)a (instead of ti) for some i ∈ {1, . . . , ℓ +1}, the following two conditions should hold. 

1. The number of quadratic equations between x and the chosen wi’s should be greater than the number of 
quadratic equations between x and the corresponding ti’s. 

2. The degree deg ti of ti with respect to x and wi’s should not be too large for the chosen i’s. 

We frst categorize the exponent a yielding quadratic equations. We claim that the two conditions de-
scribed above cannot hold simultaneously, and its theoretical and experimental justifcation will be given in 
Appendix A. From the method of counting the quadratic equations from exponential functions [NGG09], we 
can derive the conditions for a to yield quadratic equations as follows, where all arithmetic operations are 
done modulo 2n − 1. 

– Case A: we have theoretical lower bound of deg(ti). 

1. hwn(a) ≤ 2. 

2. hwn(a + 2p) ≤ 2 for some p ∈ {0, . . . , n − 1}. 
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3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}. 

– Case B: we experimentally checked that the number of quadratic equations is always less than 3n assum-
ing that a is not in Case A. 

1. 2ra = a + 2p for some r ∈ {1, . . . , n − 1} and p ∈ {0, . . . , n − 1}. 

2. 2r(a + 2p) = (2k + 1)a for some r ∈ {1, . . . , n − 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n − 1}. 

– Case C: we experimentally found that these cases do not contribute to algebraic cryptanalysis unless they 
simultaneously belong to other case(s) 

1. (2m − 1)a = 0 for some m | n. 

2. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}. 

3. 2ra = a for some r ∈ {1, . . . , n − 1}. 

4. 2ra = (2k + 1)a for some r ∈ {1, . . . , n − 1} and k ∈ {1, . . . , n/2}. 

5. 2r(2k + 1)a = (2k ′ + 1)a for some r ∈ {1, . . . , n − 1} and k, k ′ ∈ {1, . . . , n/2} 

– Case D: we theoretically and experimentally checked that the system either has a large degree deg(ti) or 
generates a small number of quadratic equations. 

1. 2r(a + 2p) = (a + 2q) for some r ∈ {1, . . . , n − 1} and p, q ∈ {0, . . . , n − 1}. 

2. (2m − 1)(a + 2p) = 0 for some m | n and p ∈ {0, . . . , n − 1}. 

5.3 Other Attacks on AIM2 

EFFICIENT EXHAUSTIVE SEARCH BY OPTIMIZED IMPLEMENTATION. The point of this attack is that the Mersenne 
2e −1S-boxes can be represented as Mer[e](x) = x · (x−1), and x can be effciently iterated by an LFSR. In 

AIM2, the same attack is not applied because of the inverse Mersenne S-boxes. Even if an attacker iterates 
an intermediate state to use the same method, the attacker should evaluate at least one of Mersenne S-boxes 

−1and at least one of their inverses. For example, in AIM-I or AIM-III, one may fnd y by iterating y and y 
such satisfes  

−1x := y · y + c2, 
2e2 

Mer[e1](t1) = x + c1 where := Mer[e∗]
−1(x + ct),t∗  

t1 := A−1 (biv + Aiv,2(y) + t∗).iv,1 

We present number of feld multiplications for all Mersenne Sboxes and their inverses, and the gate-count 
complexity AIM2 in Table 10. From this fact, we believe that this kind of attack cannot be applied to AIM2. 

QUANTUM ATTACKS. For larger exponents, it will take slightly more time to compute the (inverse) Mersenne 
S-boxes. This leads to a slightly larger complexity of the Grover’s algorithm. The complexities of quan-
tum algebraic attacks will be changed not critically as new quadratic systems are found for AIM2. For 
QuantumBooleanSolve [FHK+17], the complexity becomes O(20.462·ℓn) since there are quadratic systems 
in ℓn Boolean variables for all the instances of AIM2. The complexity of GroverXL [BY18] is 2(1.1061+o(1))n 

for AIM2-I, III and 2(1.3568+o(1))n for AIM2-V. We remark that these attacks are not better than the Grover’s 
algorithm. 

STATISTICAL ATTACKS. As differential probability and linear probability of an S-box is the same as its inverse, 
most of the analysis on statistical attacks will remain unchanged except the weight of a correlation trail. 
Since e1 becomes larger than n/2, the weight is lower bounded by n − 2e∗ (with the previous bound being 
2(n − e1 − e∗)). We note that it does not imply that linear cryptanalysis is feasible since an adversary is not 
given a large enough number of plaintext-ciphertext pairs to mount this analysis. 
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Scheme 

AIM2-I 

Circuit 

Mer[3] / Mer[3]−1 

Mer[49] / Mer[49]−1 

Mer[91] / Mer[91]−1 

FF Mult. 

2 / 8 
7 / 11 
9 / 14 

#Operations 

FF Square Mat-Vec Mult. 

2 / 126 -
48 / 127 -
90 / 127 -

Total 
Cost 

-
-
-

AIM2-III 

AIM2(iv, ·) 

Mer[5] / Mer[5]−1 

Mer[17] / Mer[17]−1 

Mer[47] / Mer[47]−1 

14 

3 / 9 
5 / 11 
8 / 11 

256 

4 / 190 
16 / 191 
46 / 191 

2 

-
-
-

147 

AIM2-V 

AIM2(iv, ·) 

Mer[3] / Mer[3]−1 

Mer[7] / Mer[7]−1 

Mer[11] / Mer[11]−1 

Mer[141] / Mer[141]−1 

15 

2 / 10 
4 / 11 
5 / 10 
10 / 10 

386 

2 / 255 
6 / 255 
10 / 255 

140 / 253 

2 

-
-
-
-

212.3 

-
-
-
-

AIM2(iv, ·) 23 765 3 277.7 

Table 10: The number of operations for each type of operation and the total cost of exhaustive search on 
AIM2 components. We have assumed that a single AIM2 evaluation requires a feld multiplication, a power-
of-two exponentiation, a Mersenne S-box evaluation, and ℓ − 1 of inverse Mersenne S-box evaluations, with 
all the different ei’s. The total cost is the log of required number of binary gates. 

5.4 Effect on Effciency 

The main feature of AIM is to fully utilize the repeated multipliers in BN++ when proving an AIM instance. 
Although the S-boxes on the frst round are replaced by inverse Mersenne S-boxes, the structure of AIM2 still 
remains unchanged, so the signature size will be unchanged as well. 

In AIMer, for every input share JxK of an S-box, the prover and the verifer should compute JxK2
e 
. For a 

larger exponent e, this computation takes more time. From our experiment, signing and verifcation of the 
AIMer with AIM2 is expected to cost more time by up to 11%. Table 11 shows the detailed benchmark results 
on signing time of AIMer and AIMer with AIM2. 
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Level Parameter Sign of AIMer (ms) Sign of AIMer + AIM2 (ms) ratio 

L1 

PARAM 1 
PARAM 2 
PARAM 3 
PARAM 4 

0.59 
1.36 
4.42 
22.29 

0.59 
1.38 
4.64 
23.92 

1.00 
1.01 
1.05 
1.07 

L3 

PARAM 1 
PARAM 2 
PARAM 3 
PARAM 4 

1.36 
3.48 
11.01 
53.38 

1.42 
3.64 
11.57 
57.87 

1.03 
1.05 
1.05 
1.08 

L5 

PARAM 1 
PARAM 2 
PARAM 3 
PARAM 4 

2.45 
6.29 
19.56 
95.65 

2.69 
7.01 
21.68 
105.36 

1.10 
1.11 
1.11 
1.10 

Table 11: The performance comparison between AIMer and AIMer with AIM2. Both signing times were mea-
sured in Intel Xeon E5-1650 v3 @ 3.50 GHz with 128 GB RAM, TurboBoost and Hyper-threading disabled, 
and gcc 7.5.0 with -O3 option. 
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A More Details on New Variables Other Than S-Box Outputs 

A.1 How to Count the Number of Quadratic Equation 

Before the main analysis, we briefy introduce how to enumerate the number of quadratic equations which 
was introduced in [NGG09]. Suppose we have a power function y = xa in F2n . Arithmetic operations on the 
exponent is done in Z2n−1. In this section, arithmetic operations involving exponents are done in modulo 
2n − 1. In Z2n−1, multiplying by 2 is equivalent to bit-wise circular left shift. As x2i 

in characteristic-2 felds 
2i a ais linear over F2, x and x are equivalent up to linear mapping. If (2m − 1)a = 0 for some m|n, we call a 

to be m-cyclic. 
Discarding equivalent exponents (a ∼ 2ia), quadratic equations between x and y are basically generated 

2p 2k +1from three types of monomial: y, yx , and y . If those monomials can be represented only in x variables 
2p a+2p(e.g., yx = x ) and has degree less than or equal to 2 (which is represented by Hamming weight of the 

exponent), the system has following quadratic equations. 

1. hwn(a) ≤ 2: y = x a 

2. hwn(a + 2p) ≤ 2 for some p ∈ {0, . . . , n − 1}: x 2
p 
y = x a+2p 

2k +1 (2k +1)a3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}: y = x 

We note that the domain of k is less than or equal to n/2 in the third case since (2k + 1)a and (2n−k + 1)a 
are in the same coset (under the linear equivalence). Sometimes, it generates quadratic equations if at least 
two of a, a + 2p, and (2p + 1)a are in the same coset as follows. 

1. 2r a = a for some r ∈ {1, . . . , n − 1}: y 2
r 
= y 

2r 2p2. 2r a = a + 2p for some r ∈ {1, . . . , n − 1} and p ∈ {0, . . . , n − 1}: y = yx 

3. 2r a = (2k + 1)a for some r ∈ {1, . . . , n − 1} and k ∈ {1, . . . , n/2}: y 2
r 
=

) 
y 
2r 

2k+1 

2p 2q4. 2r (a + 2p) = a + 2q for some r ∈ {1, . . . , n − 1} and p, q ∈ {0, . . . , n − 1}: (yx = yx 

5. 2r (a + 2p) = (2k + 1)a for some r ∈ {1, . . . , n − 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n − 1}: (yx 2
p 
)2

r 
= y 2

k +1 

6. 2r (2k + 1)a = (2k ′ + 1)a for some r ∈ {1, . . . , n − 1} and k, k ′ ∈ {1, . . . , n/2}: (y 2
k +1)2

r 
= y 2

k ′ +1 

If one of a, a +2p, and (2p +1)a is m-cyclic, quadratic equations between y itself can be generated as follows. 

1. (2m − 1)a = 0 for some m | n: y 2
m 

= y 
2p 
)2

m 2p2. (2m − 1)(a + 2p) = 0 for some m | n and p ∈ {0, . . . , n − 1}: (yx = yx 

3. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}: (y 2
k +1)2

m 
= y 2

k +1 

A.2 Detailed Analysis of AIM2 

In this section, we provide detailed analysis of setting new variables other than S-box outputs which was 
described in Section 4.3. For each S-boxes, we either lower bound of deg(ti) or upper bound the number 
of quadratic equation by 3n. We believe that upper bounding the number of quadratic equations by 3n 
is suffcient to prevent unknown attack since (inverse) Mersenne S-boxes already generates 3n quadratic 
equations. Setting a new variable other than S-box outputs which generates less than or equal to 3n quadratic 
equations seems to have no beneft compared to setting S-box outputs to be new variables. 

Recall that we categorized the exponent a for the new variable wi = (pt + ci)a as follows. The following 
categorization is different from above, and it is categorized by how we handled the case. 

– Case A: we have theoretical lower bound of deg(ti). 

1. hwn(a) ≤ 2. 

2. hwn(a + 2p) ≤ 2 for some p ∈ {0, . . . , n − 1}. 
3. hwn((2

k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}. 
– Case B: we experimentally checked that the number of quadratic equations is always less than 3n assum-

ing that a is not in Case A. 
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1. 2ra = a + 2p for some r ∈ {1, . . . , n − 1} and p ∈ {0, . . . , n − 1}. 
2. 2r(a + 2p) = (2k + 1)a for some r ∈ {1, . . . , n − 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n − 1}. 

– Case C: the quadratic equations in these cases consist of only y-variables. We found that these cases do 
not contribute to algebraic cryptanalysis unless they simultaneously belong to other case(s). 

1. (2m − 1)a = 0 for some m | n. 

2. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}. 
3. 2ra = a for some r ∈ {1, . . . , n − 1}. 
4. 2ra = (2k + 1)a for some r ∈ {1, . . . , n − 1} and k ∈ {1, . . . , n/2}. 
5. 2r(2k + 1)a = (2k ′ + 1)a for some r ∈ {1, . . . , n − 1} and k, k ′ ∈ {1, . . . , n/2} 

– Case D: we theoretically checked that the system either has a large degree deg(ti) or generates a small 
number of quadratic equations, under experimentally verifed assumptions. 

1. 2r(a + 2p) = (a + 2q) for some r ∈ {1, . . . , n − 1} and p, q ∈ {0, . . . , n − 1}. 
2. (2m − 1)(a + 2p) = 0 for some m | n and p ∈ {0, . . . , n − 1}. 

In the following, we give analysis for each case. As our analyses given below consider a single S-box case, 
we use simpler notation without constant addition as follows. 

– x: the input of S-box 
a– y: the new variable y = x 

ē  – t: the output of S-box, t = x , ē = (2e − 1)−1 mod (2n − 1) for some e ∈ {e1, . . . , eℓ, e∗} 

CASE A. (A-1 and A-2) We want to show that t should be of at least certain degree with respect to x and y 
when a is one of the following types: 

– a = −1; 
– a = 2p + 1, where p ∈ {2, ..., n − 1}; 
– a = 2p − 1, where p ∈ {2, ..., n − 1}; 
– a = 2p + 2q − 1, where p, q ∈ {2, ..., n − 1}, p ≠ q; 

Defne � 
Dmin,a := min hwn(u) + hwn(ē − a · u) 

u 

and 
Dmin := min{Dmin,a}. 

a 

Dmin is the lower bound of the degree of t with respect to x and y by 

u ē−a·ut = y · x . 

At frst, suppose a = 2p + 2q − 1 for some p, q ∈ {2, ..., n − 1} where p ̸= q. By the defnition, we have � 
Dmin,2p+2q −1 = min hwn(u) + hwn(ē − (2p + 2q − 1) · u) . 

u 

By using the fact hwn(x) + hwn(y) ≥ hwn(x + y), we have 

2 · hwn(u) + hwn(ē − (2p + 2q − 1) · u) 
= hwn(2

p · u) + hwn(2
q · u) + hwn(ē − (2p + 2q − 1) · u) 

≥ hwn(ē + u), 

and it implies that n o� 
Dmin,2p+2q −1 ≥ min max hwn(u), hwn(ē + u) − hwn(u) . (11) 

u 
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Now we want to lower bound hwn(ē + u) for arbitrary u. For an integer j, defne � 
NumSeg (j) := i ∈ {0, ..., n − 1} : 2 | (2i · j mod (2n − 1)), 4 ∤ (2i · j mod (2n − 1))n 

which counts the number of connected “1” segments in the n-bit binary representation of j allowing bitwise 
rotation. Then, for an integer j and h ∈ {0, . . . , n − 1}, 

NumSeg (j + 2h) ≥ NumSeg (j) − 1,n n 

so we get 

hwn(ē + u) ≥ NumSeg (ē + u) ≥ NumSeg (ē) − hwn(u).n n 

Together with (11), we have n o� 
Dmin,2p+2q −1 ≥ min max hwn(u), NumSeg (ē) − 2 · hwn(u) ≥ ⌈NumSeg (ē)/3⌉.n n 

u 

Similarly, we have n o� 
Dmin,2p −1 ≥ min max hwn(u), hwn(ē + u) ≥ ⌈NumSeg (ē)/2⌉,n 

u n o� 
Dmin,2p+1 ≥ min max hwn(u), hwn(ē) − hwn(u) ≥ ⌈hwn(ē)/2⌉, 

u n o 
Dmin,−1 ≥ min hwn(u) + hwn(ē + u) ≥ ⌈NumSeg (ē)⌉,n 

u 

and overall, we get following lower bound: 

Dmin ≥ ⌈NumSeg (ē)/3⌉. (12)n 

(A-3) Suppose hwn((2
k + 1)a) = 2p + 2q for some p, q ∈ {0, . . . , n − 1}, p ≠ q. Then 

Dmin,a = min{hwn(u) + hwn(v) : ē = au + v} 
= min{hwn(u) + hwn(v) : (2

k + 1)ē = (2p + 2q)u + (2k + 1)v}� � 

= min 
1
(hwn(2

pu) + hwn(2
qu) + hwn(2

k v) + hwn(v)) : (2
k + 1)ē = (2p + 2q)u + (2k + 1)v 

2 � � 
hwn((2

k + 1)ē)≥ min 
2 

Therefore, 
Dmin ≥ min{hwn((2

k + 1)ē)}/2 (13) 
k 

CASE B. If a is in Case B, there exists either 

– r ∈ {1, . . . , n − 1} such that gcd(2r − 1, 2n − 1) = 1 and hwn((2
r − 1)a) = 1 or 

– r, s ∈ {1, . . . , n − 1} such that gcd(2r + 2s − 1, 2n − 1) = 1 and hwn((2
r + 2s − 1)a) = 1. 

Then, we can count the number of equations for each r or (r, s), while check a is in Case A. As a result, 
at least for n ∈ {128, 192, 256}, the corresponding a all belong to Case A or produce 3n or fewer quadratic 
equations. 

CASE C. The quadratic equation from a in Case C consists of only y-variables. For example, if a satisfes 
2r(2k + 1)a = (2k ′ + 1)a, then we get 

2k+r 2k ′ +2r +1 y = y . 

This kind of equations cannot contribute to solve the whole system since it only reduces the number of 
candidates of y, not x. Therefore, we ignored this case. 
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CASE D. Although the exponent a is in Case D but not in Case A and B, we experimentally checked that the 
a asystem from y = x has large deg(t) or 3n or fewer quadratic equations. Recall that the system with y = x 

ais equivalent (up to linear mapping) to the system with y = x2i 
for some i. 

(D-1) Let (2r − 1)a = 2p − 1 for some r ∈ {1, . . . , n − 1} and p ∈ {0, . . . , n − 1}. Since r = 1 or r = n − 1 or 
p ∈ {0, 1} implies that this type of a is covered in Case A or B, let 1 < r < n − 1 and p > 1. For a to exist, it 
should be gcd(r, n) | p. 

– Suppose a also satisfes (2m − 1)a = 0 for some m > 0. Then, (2m − 1)(2r − 1)a = (2p − 1)(2m − 1) = 0, 
awhich is a contradiction. Therefore, y = x does not imply quadratic equations from the condition 

(2m − 1)a = 0. 
– Suppose a also satisfes (2m −1)(2k +1)a = 0 for some m | n and k ∈ {1, . . . , n−1} and (2m −1)(2k +1) ≠ 

0. Then, (2m − 1)(2k + 1)(2r − 1)a = (2k + 1)(2p − 1)(2m − 1) = 0, which implies k = p = n/2. Therefore, 
we have (2m − 1)(2n/2 + 1)a = 0 and it means that we get at most n more equations from 

2n/2 2n/2+m+1 +2m 

y = y . (14) 

– Suppose a also satisfes (2k − 2s + 1)a = 0 for some k, s such that (2k − 2s + 1) ̸= 0. Then, (2k − 
2s + 1)(2r − 1)a = (2k − 2s + 1)(2p − 1) = 0, which implies p = n/2 and (k, s) = (n/2 + 1, n/2) or 
(k, s) = (n/2 − 1, n − 1). Since the case satisfying (2n/2 + 1)a = 0 and (2n/2−1 + 2n − 2n−1)a = 0 are 
covered in Case A, a cannot satisfy such condition without satisfying Case A. 

– Suppose a also satisfes (2q +2k − 2s − 1)a = 0 for some q, k, s such that (2q +2k − 2s − 1) ≠ 0 and q < k. 
Then, (2q + 2k − 2s − 1)(2r − 1)a = (2q + 2k − 2s − 1)(2p − 1) = 0, which implies one of the following. 

2n−1 + 2n/2−1• q = 1, k = n/2 − 1, s = n − 1, p = n/2. Since 2 + 2n/2−1 − 2n−1 − 1 = , this case is 
covered in Case A. 

• q = 2, k = n/2, s = 1, p = n/2. Since 4 + 2n/2 − 2 − 1 = 2n/2 + 1, this case is covered in Case A. 
• k = q + n/2, s = n/2, p = n/2. In other word, (2q + 2q+n/2 − 2n/2 − 1)a = (2q − 1)(2n/2 + 1)a = 0. 

Since gcd(2q − 1, 2n − 1) = 2gcd(q,n) − 1, one can get at most n equations same as in (14). 
– Suppose a also satisfes 2m(2s −1)a = 2q −1 for some m, s, q. Then, 2m(2s −1)(2r −1)a = (2r −1)(2q −1) = 

2m(2s − 1)(2p − 1), which implies one of the following. 
• m = 0, p = r, q = s. It means that (2r − 1)a = 2r − 1 or equivalently, (2m − 1)a = (2m − 1) for 
m = gcd(n, r). Then, we get n−m · n equations from 2m j k nim im y x = yx , for i = 1, . . . , . 

2m 

• m = 0, p = s, q = r. It means that (2r − 1)a = 2s − 1 and (2s − 1)a = 2r − 1, and it only holds when 
r − s which become exactly same condition in above. 

• r = n/2 ± 1, p = ±2. It means that 

a = (2n/2±1 − 1)−1(2±2 − 1) = 2n/2±1 + 1, 

and such a is covered by Case A. 
• r = n/2 ± 1, p = n/2. It means that 

(2n/2 + 1)a = (2n/2 + 1)(2n/2±1)−1(2n/2 − 1) = 0, 

and such a is covered by Case A. 
• s = n/2 ± 1, q = ±2. It means that 

a = 2−m(2n/2±1 − 1)−1(2±2 − 1) = 2−m(2n/2±1 + 1), 

and such a is covered by Case A. 
• s = n/2 ± 1, q = n/2. It means that 

2m(2n/2 + 1)a = (2n/2 + 1)(2n/2±1)−1(2n/2 − 1) = 0, 

and such a is covered by Case A. 
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• r = n/2 ± 1, p =  2, or s = n/2 ± 1, q =  2. We counted the number of all quadratic equations 
afor each a of this form and experimentally checked that y = x implies 1.5n equations for all n ∈ 

{128, 192, 256}. 

In summary, if (2r − 1)a = 2p − 1 for some 1 < r < n − 1 and p > 1, one of the following events happen: 

– if a is also in Case A, we have theoretic lower bound of deg(t); 
– if a is also in Case B but not in Case A, we experimentally checked that the number of quadratic equations 

is always less than 3n; 
a n−m– if p = r and gcd(r, n) = m < n/2, y = x produces · n equations which implies that less than or2m 

equal to 3n quadratic equations are generated when m ≥ n/7; 
– if p = r = n/2, this case generates 1.5n equations; 
– if p = n/2 and r does not satisfy above conditions, one has at most 2n equations; 
– otherwise, one has n equations. 

Therefore, to have more than 3n equations, a should satisfy (2m − 1)a = 2m − 1 where m | n and m < n/7. 
Let ē = au + v. Then, 

2n − 1 
(2m − 1)ē = (2m − 1)(u + v) ⇒ u + v = ē+ · b 

2m − 1 

for some 0 ≤ b ≤ 2m − 1. Therefore � � �� 
2n − 1 

Dmin ≥ hwn(u) + hwn(v) ≥ hwn(u + v) ≥ min hwn ē+ · b (15) 
b 2m − 1 

(D-2) Let (2m − 1)(a + 2p) = 0 for some m | n and p ∈ {0, . . . , n − 1}, and let ē = au + v for some 
u, v. Discarding equivalent exponents, let p = 0. In this case, a + 1 is m-cyclic, which implies the binary 
representation of a + 1 is the concatenation of n/m number of a length-m string. 

We divide this case into three subcases: 2 ≤ m ≤ n/4, m = n/3, and m = n/2. For the latter two 
cases, we utilize the brute-force result of toy examples since the number of candidates of a is too many. Let 

2n−1 a = · b − 1 for some 0 ≤ b < 2m − 1. In toy examples (n = 16, 24, 32, 48), we found that the number 2m−1 
aof quadratic equations from y = x is no more than n unless hwn(b) = 1 by brute-force searching b. If 

hwn(b) = 1, then � � 
2n − 1 n n 

hwn(a + 1) = hwn · b = · hwn(b) = . 
2m − 1 m m 

We will use this fact to bound the degree of t when m = n/2 or n/3. 

– Suppose that 2 ≤ m ≤ n/4. We will show that the number of quadratic equations are less than 3n. 
• Since a cannot be cyclic, there is no m ′ |n with (2m ′ − 1)a = 0. Similarly, there is no k ∈ {1, . . . , n/2}

or p ∈ {1, . . . , n − 1} with (2m ′ − 1)(2k + 1)a = 0 or (2m ′ − 1)(a + 2p) = 0. 
• Suppose 2ra = a for some 1 ≤ r < n. It implies that 

2n − 1 2n − 1 
2r · · b − 2r = · b − 1 

2m − 1 2m − 1 
2n − 1 ⇐⇒ · b(2r − 1) = 2r − 1 
2m − 1 

where 2r − 1 cannot be cyclic for 1 < r < n. 
• Suppose 2ra = (2k + 1)a for some 1 ≤ r < n and 1 ≤ k ≤ n/2. It means that 

2n − 1 · b(2k − 2r − 1) = 2k − 2r − 1. 
2m − 1 

Since 2k − 2r − 1 is nonzero and cannot be m-cyclic for m ≤ n/4, this condition does not generate 
any quadratic equation. 
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• Suppose 2r(2k + 1)a = (2k ′ + 1)a for some 1 ≤ r < n and 1 ≤ k, k ′ ≤ n/2. It means that 

2n − 1 · b(2r(2k + 1) − (2k ′ + 1)) = 2r(2k + 1) − (2k ′ + 1). 
2m − 1 

Let 2r(2k + 1) = 2i1 + 2i2 with i1 > i2. We will check the form of (2i1 + 2i2 ) − (2k ′ + 1) by dividing 
into four cases. 

* If i1 > i2 > k, then (2i1 + 2i2 ) − (2k ′ + 1) is nonzero and could be n/3-cyclic but not lower. 
* If i1 ≥ k ≥ i2, then it could be n/2-cyclic but not lower. It cannot be zero since 0 ≤ k ̸= k ′ ≤ n/2. 
* If k > i1 > i2 and i2 > 0, then it is nonzero and could be n/3-cyclic but not lower. 
* If k > i1 > i2 and i2 = 0, then it is nonzero and acyclic. 

Since 2
n−1 · b(2r(2k + 1) − (2k ′ + 1)) is m-cyclic where m ≤ n/4, this condition does not produce any 2m−1 

quadratic equation. 
• Suppose 2r(a + 2p) = a + 2q for some 1 ≤ r < n and 0 ≤ p ̸= q < n. It means that 

2n − 1 · b(1 − 2r) = 2r(2p − 1) − (2q − 1). 
2m − 1 

Without loss of generality, we can assume that p > q. Up to circular shift, we can rewrite 2r(2p − 1) − 
(2q − 1) by 2r1 (2p − 1) − 2r2 (2q − 1) where 0 < r2 + q ≤ r1 + p < n − 1 or r1 + p = n − 1. We will 
check the form of 2r1 (2p − 1) − 2r2 (2q − 1) by dividing into four cases. 

* If 0 < r2 + q = r1 + p < n − 1, then it is acyclic. 
* If 0 < r2 + q < r1 + p < n − 1, then it is nonzero and could be n/2-cyclic if r1 ≤ r2 or n/3-cyclic 

if r1 > r2 but not lower. 
* If r1 + p = n − 1 and r2 + q ≤ n − 1, then it is nonzero and is acyclic if r2 + q = n − 1 or could 

be n/2-cyclic if r1 ≤ r2 or n/3-cyclic if r1 > r2 but not lower. 
* Suppose r2 + q ≥ n. Let 2r2 (2q − 1) = 2n−q1 (2q1 − 1)+(2q2 − 1) where q1 + q2 = q, 1 ≤ q1 ≤ q < p, 

and n − q1 > q2 ≥ 1. Then, it is nonzero and could be n/3-cyclic but not lower. 
2n−1Since · b(1 − 2r) is m-cyclic where m ≤ n/4, this condition does not produce any quadratic 2m−1 

equation. 
2m−1– Suppose that m = n/3 (and n = 192). We found that only b = 1 and b = induce more than 3n 

quadratic equations, provided that hwn(b) = 1. 
• For b = 1, a = 22m + 2m . Let e = ua + v. Then 

2 · hwn(u) + hwn(v) = hwn(2
2m u) + hwn(2

m u) + hwn(e − ua) ≥ hwn(e), 

so that 
hwn(u) + hwn(v) ≥ max {hwn(e) − hwn(u), hwn(u)} ≥ ⌈hwn(e)/2⌉. 
−1 −1 −1• For b = 2m−1 , a = 22m + 2m . Let e = ua + v, then u = a e − a v. Similarly, we have 

−1 −1 −1hwn(u)+2 · hwn(v) = hwn(a e − a v)+ hwn(2
2m v)+ hwn(2

m v) ≥ hwn(a e) = hwn((2
2m +2m) e) 

so that � 
hwn(u) + hwn(v) ≥ max hwn((2

2m + 2m) e) − hwn(v), hwn(v) ≥ ⌈hwn((2
2m + 2m) e)/2⌉. 

– Suppose that m = n/2. Let ē = ua + v. We will lower bound hwn(u) + hwn(v). Then, 

hwn(v) = hwn(ē − ua) = hwn(ē + u − u(a + 1)) 

≥ hwn(ē + u) − hwn(u(a + 1)) 

≥ NumSeg(ē) − hwn(u) − hwn(a + 1)hwn(u). 

Therefore, 

hwn(u) + hwn(v) ≥ max {NumSeg(ē) − hwn(a + 1)hwn(u), hwn(u)}
≥ ⌈NumSeg(ē)/(hwn(a + 1) + 1)⌉ = ⌈NumSeg(ē)/3⌉. 
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2n−1In summary, if (2m −1)(a+1) = 0 for some m | n, (or equivalently, if a = ·b−1 for some 0 ≤ b < 2m −1)2m−1 
we have one of the following: 

– if hwn(b) ≠ 1, it is believed that there are fewer than n equations (and it is checked in toy parameters). 
– if a is also in Case A, we have theoretic lower bound of deg(t); 
– if a is also in Case B but not in Case A, we experimentally checked that the number of quadratic equations 

is always less than 3n; 
– if 2 ≤ m ≤ n/4, it produces at most n − m equations; 
– if n = 192,m = n/3, � 

Dmin ≥ min ⌈hwn(e)/2⌉, ⌈hwn((2
2m + 2m) e)/2⌉ ; (16) 

– if m = n/2, 
Dmin ≥ ⌈NumSeg(ē)/3⌉. (17) 

LOWER BOUNDS OF THE DEGREES OF THE INDUCED SYSTEM. Since the largest degree reaching while running 
a Gröbner basis computation algorithm or the XL algorithm (also known as solving degree [DS13]) should 
be larger than or equal to the degree of the system, we can lower bound the security of AIM2 against Liu’s 
attack. Table 12 summarizes the lower bound of time complexity (from (5)) of Case A and D and the bound 
of Dmin for each exponents (from (12), (13), (15), (16), and (17)). We only considered the case of replacing 
some variables in Squad, since otherwise we would get a system with a lot higher degree. 

Scheme (e1, Dmin) (e2, Dmin) (e3, Dmin) (e∗, Dmin) 
k 

Complexity 

sd Time (bits) 

AIM2-I 
AIM2-III 
AIM2-V 

(49, 16) 
(17, 17) 
(11, 31) 

(91, 15) 
(47, 17) 
(141, 23) 

-
-

(7, 25) 

(3, 15) 
(5, 26) 
(3, 29) 

0 
0 
0 

≥ 15 
≥ 17 
≥ 23 

176.2 
214.4 
310.4 

Table 12: Lower bounds of the degrees of the system for Case A and D. (ei, Dmin) = (e, d) means that there is 
no such f with deg(f) < d where ti = Mer[ei]

−1(pt) = f(pt, wi) and wi = (pt + ci)a for some integer a, while 
there exists degree 2 polynomial g(pt, w) = 0. All the complexities are measured by (5). k is the number of 
guessed bits and sd is the solving degree, which is larger than at least one of Dmin. 
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