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Given two square matrices A and B, can we tell if there is an invertible 
square matrix X such that XAX−1=B? Yes, quickly! Such an X exists if and 
only if A and B are similar and there are efciently computable invariants that 
precisely characterize similarity. Phrased diferently, we can tell if there is a 
basis change that takes one matrix (or the corresponding bilinear form) to the 
other. But one small step in dimension, jumping from two (square matrices) 
to three (three dimensional tensors given by a cube of numbers), is a giant 
leap in computational complexity. Most linear algebraic problems concerning 
three dimensional tensors (or equivalently, trilinear forms) are (NP- or VNP-
or #P-)hard. Two post-quantum signature submissions, ALTEQ and MEDS, 
are built on the hardness of fnding a basis change that takes one of two given 
trilinear forms over fnite felds to the other. ALTEQ and MEDS difer in the 
form of basis change under consideration. A basis change in ALTEQ corre-
sponds to an action by an invertible matrix, while a triple of invertible matrices 
act in MEDS. Further, ALTEQ restricts the trilinear forms to be alternating. 

In this talk, we present algorithms for solving the trilinear isomorphisms 
underlying ALTEQ and MEDS that improve upon previously known run time 
exponents by a constant factor. These algorithms inform the parameter selection 
in ALTEQ and MEDS and were already taken into account in the ALTEQ 
submission. Key ingredients in our algorithms are new distinguishing invariants 
under the respective actions. The run time analyses rely on certain heuristics, 
which are supported by experimental and theoretical evidence. 
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1 Introduction 

Given two objects A and B of the same type, the equivalence problem asks if 
there exists a map π such that π(A) = B. The hardness of the equivalence 
problem depends on the objects and how the map is defned. There are objects 
in the equivalence problem that were recently proposed to support public-key 
cryptography for quantum-resistant purposes, such as linear or matrix codes 
[22,13,8], alternating trilinear form[42], lattice [26,25] etc. 

Linear code equivalence. A classical equivalence problem is the Code Equiva-
lence problem, which asks whether two given linear codes are isometric, that is, 
whether two linear codes are the same up to permuting, and possibly scalar mul-
tiplications on, the coordinates. One digital signature scheme submitted to the 
NIST call for additional signatures, LESS [5], is based on the assumed hardness 
of this problem. 

Leon [36] initiated the study of this problem and proposed an algorithm 
that computes a list of both codes with minimum Hamming weight and then 
matches them to recover the isometry. Recently, Beullens [11] improved Leon’s 
algorithm by using collision search. Another algorithm of signifcance is known 
as the Support Splitting Algorithm (SSA) by Sendrier [40]. Its running time in-
creases exponentially in the dimension of the hull (the intersection of a code and 
its dual), and it works efectively for random linear codes under permutations. 
When scalar multiplications are also present, SSA works when q ≤ 4 but not 
q ≥ 5. If the hull is trivial and only permutations are used, then this problem 
can be reduced to graph isomorphism [7]. 

Matrix code equivalence. In this work, we are interested in the equivalence prob-
lem of matrix codes, called the Matrix Code Equivalence (MCE) problem. A 
matrix code over Fq is a linear subspace of the space of m × n matrices over Fq. 
Concerning the MCE problem, it was recently shown to be at least as hard as 

Alternating trilinear form equivalence. We are also interested in another problem 
namely Alternating Trilinear Form Equivalence (ATFE), recently proposed in 
[42] to support a digital signature scheme. Here, the objects are alternating 
trilinear forms, namely a function ϕ : Fqn × Fqn × Fn → Fq that is (1) linear inq 
each argument, and (2) whenever two arguments are the same, ϕ evaluates to 0. 

We now state the MCE and ATFE problems, which would also indicate what 
equivalences mean for matrix codes and alternating trilinear forms. 

Defnition 1 (Matrix Code Equivalence (MCE)). Given two matrix codes 
C and D in M(m × n, q), the problem asks whether there exist two invertible 
matrices A ∈ GL(m, q) and B ∈ GL(n, q) such that D = ACB := {ACB | C ∈ 
C}. 

the Code Equivalence problem [23,31], and to be equivalent to the homogeneous 
version of the Quadratic Maps Linear Equivalence (QMLE) problem [39,31]. 
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Defnition 2 (Alternating Trilinear Form Equivalence (ATFE)). Given 
two alternating trilinear forms ϕ, ψ : Fnq×Fnq×Fnq → Fq, the problem asks whether 
there exists an invertible matrix A ∈ GL(n, q) such that for any u, v, w ∈ Fnq , 
ϕ(Au, Av, Aw) = ψ(u, v, w). 

MCE and ATFE: relations and cryptographic uses. MCE and ATFE are shown to 
be [32] 
[31]. Utilising the 

[42] 

polynomial-time equivalent and are Tensor 

[22]. 

Isomorphism (TI)-complete 
MCE and ATFE problems, two signature schemes have recently 

been proposed by Tang et al. and Chou et al. Both schemes are based 
on the Goldreich–Micali–Wigderson zero-knowledge protocol for graph isomor-
phism [30] and the Fiat–Shamir transformation [28]. More broadly these fall 
into the investigations on identifying and utilising group actions in cryptogra-

of these two problems, as it will provide insights into the selection of secure 
parameter sets. 

1.1 Previous works 

In this section, we will briefy review some of state-of-the-art algorithms for MCE 
and ATFE. Algorithms for MCE and ATFE have been surveyed in [22] and [42], 
respectively. Beullens recently contributed beautiful new algorithms for ATFE in 
[12]. Here we explain two algorithms, one for MCE and one for ATFE, that are 
most relevant to us. 

Leon-like algorithm for MCE. Leon’s algorithm [36] is well-known for solving 
code equivalence problems in the Hamming metric. The key observation is that 
the equivalence preserves the Hamming weight of the codewords. Consequently, 
identifying the set of codewords with minimum Hamming weight within two 
codes can aid in revealing the equivalence or isometry between the codes. Re-

phy [19,34,1]. These works lead to submissions to NIST’s current standardization 
for post-quantum signatures: MEDS [21] and ALTEQ [15]. Subsequently, vari-
ous applications have been developed, including ring signatures [14,24,22] and 
threshold signatures [9]. Hence, it is of signifcance to investigate the hardness 

cently, Beullens [11] improved upon this algorithm by constructing the set of 
codewords with a particular weight and the same multiset of entries as lists 4 . 
Subsequently, a collision search is conducted between the two lists to recover 
equivalence or isometry easily. It is natural to adapt Leon’s algorithm to MCE 
[22]. That is, one can frst build two lists of low-rank matrices in C1 and C2, and 
then do a collision search to fnd a matched pair of corresponding matrix codes 
and so recover the equivalence. 

Beullens’ algorithm for ATFE. Beullens [12] currently proposed a graph-theoretic 
algorithm to solve ATFE problem. An alternating trilinear form ϕ can be viewed 

4 In the monomial setting, Beullens considered building a set of 2-dimension subcodes 
with small support. This is because monomial transformation do not preserve any-
thing beyond the hamming weight of a vector. 
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as a graph Gϕ, where v ∈ Fn is a vertex and (u, v) be an edge if and only ifq 
ϕu,v = 0. Also, a bilinear form ϕu can be viewed as a matrix Mϕ,u, then the rank 
of u is the rank of Mϕ,u. The key observation is that the equivalence preserves 
the rank of the vertices in Gϕ. Therefore, the algorithm frst builds two lists of 
low-rank points in ϕ and ψ respectively and then fnds a collision to recover the 
equivalence. 

Gröbner basis approach. The MCE and ATFE problem can be solved algebraically 
by transforming them into a system of polynomial equations and then solving 
this system via Gröbner basis [42,22]. The Gröbner basis method, exhibits insen-
sitivity to the parameter q within the system, with its efciency contingent solely 
upon the values m, n and l (or n for the ATFE). Also, this approach demonstrates 
the high efciency when applied to problems characterized by low dimensions. 

1.2 Our contributions 

In this paper, we propose heuristic algorithms for MCE and ATFE problems. We 
summarize our contributions as below. 

Algorithm for MCE. We present a new algorithm for MCE. Our algorithm intro-
duces a novel invariant for matrix codes, which we call the “corank-1 associated 
invariant”. This innovation allows us to fnd a collision using the birthday para-
dox, and it avoids the use of Gröbner basis computations. This improvement 

(n−2)/2 3leads to an algorithm with a complexity of O(q · (q · n + n4) · (log(q))2) 
as described in Section 4.4. We provide an implementation of this algorithm, 
and demonstrate its practical efectiveness for small n and q (such as n = 9 and 
q = 31) in Section 4.6. 

Regarding the MEDS scheme, its security is based on the hardness of the 
MCE problem. Although our algorithm does not yet achieve a practical break 
of the parameter sets proposed by MEDS, it serves to underscore that these 
parameters have not yet attained the target security level; see Table 1. 

parameter set n q Algebraic Leon-like Ours 

MEDS-I 14 4093 148.1 170.68 102.59 
MEDS-III 22 4093 218.41 246.95 152.55 
MEDS-V 30 2039 298.82 297.77 186.57 

Table 1. Algorithms for solving the MCE problem. The data for algebraic and Leon-
like algorithms are from the MEDS specifcation [21]. 

Importantly, we note that this could be fxed easily by enlarging q. This fx 
should not afect the running times, and only increase the signature sizes at 
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most5 linearly in log(q). Therefore the consequence of our algorithm on MEDS 
should be considered as mild. 

Algorithm for ATFE. We present an algorithm for the ATFE problem by intro-
ducing a new isomorphism invariant. For an alternating trilinear form ϕ and a 
low-rank point v, the equivalence preserves the kernel space K of v. Based on 
this observation, we defne an isomorphism invariant as the isomorphism type 
of the trilinear form ϕ̂ restricted to K in the frst argument, under the action 
of GL(K) × GL(n, q). We provide preliminary evidence suggesting that this iso-
morphism invariant can be computed efciently, and is distinguishing. Assuming 
that canonical forms for such restricted trilinear forms could also be computed 
efciently, this leads to a birthday-type algorithm, with a complexity with the 
dominating factor being O(qk/2), where O(qk) is the expected number of points 
with the target low rank. This could be compared with the algorithms in [12] 
with the dominating factors being O(qk) or O(qn/2). 

It must be noted that to utilise this invariant in a birthday-type algorithm, 
we need canonical forms rather than merely isomorphism testing. We were not 
able to derive such a canonical form algorithm, though we note that while to 
transform an isomorphism invariant algorithm to a canonical form may not be 
an easy process, it is generally regarded as doable, at least from the experience 
from graph isomorphism [3]. Therefore, protocol designers need to take the con-
servative approach, namely assuming a canonical form algorithm matching the 
isomorphism testing algorithm running time. This was the consideration when 
determining the parameters of ALTEQ [15]. 

Quantum speed-up. We accelerate our algorithms for both MCE and ATFE on 
quantum computers by using Szegedy’s quantum random walks to fnd colli-
sions [41]. The runtime exponent is reduced by a factor of 2/3, resulting in 
qk/3poly(n, log q) time quantum algorithms. 

Our algorithms as a further development of [17,12]. Our algorithms for MCE and 
ATFE follow the previous works on polynomial isomorphism and alternating tri-
linear form equivalence. In particular, our algorithms are a further development 
of the works of Bouillaguet, Fouque, and Véber [17], and Beullens [12]. 

In [17], algorithms for testing isomorphism of systems of quadratic forms were 
presented. Both algorithms rely on certain graphs associated with quadratic form 
systems. The frst algorithm in [17] samples a list of low-rank points for each 
of the two input polynomial systems, and fnd a collision which can be used 
in conjunction of the hybrid Gröbner basis [27] 

[17] 
method to recover the secret 

transformation. The second algorithm in works for q = 2; it is based on 
birthday paradox with an isomorphism invariant obtained by examining the 
radius-k neighbourhood of the points in the graph. 

In [12], algorithms for ATFE were presented. Two of the algorithms that are 
most relevant to us are as follows. (We refer the reader to [12] for a beautiful algo-
rithm for n = 9.) The frst algorithm follows the sampling and collision approach, 

5 It is ‘at most’, because of the use of the seed tree techniques; see [22] for more details. 
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with the main innovation being that for the sampling step, where Beullens uses 
a random walk on the graph associated with an alternating trilinear form. The 
second algorithm is based on the birthday paradox with isomorphism invariants. 
As q is large for the use of ATFE in [42], Beullens used radius-1 or -2 neighbour-
hoods and observed that such neighbourhood information is distinguishing. 

Our algorithms for MCE and ATFE are based on the birthday paradox with 
isomorphism invariants (see Section 3). As seen from the above, previous works 
use isomorphism invariants that are local (small radius neighbourhood) on graphs 
associated with polynomial systems or trilinear forms. Our main technical con-
tribution is to discover new isomorphism invariants that can be viewed as trans-
forming the information from graphs to global constraints. 

For example, the isomorphism invariants for MCE are obtained by associating 
some graphs with matrix codes. We also perform a walk on the graph (starting 
from a corank-1 point), but we then use the path information to transform the 
matrix code as a whole to obtain an isomorphism invariant. Similarly, for ATFE, 
the isomorphism invariants are obtained by frst taking the kernel of a low-
rank point. We then apply this kernel to the alternating trilinear form to obtain 
another (smaller) trilinear form, and use this trilinear form as an isomorphism 
invariant. 

Paper structure. After presenting preliminaries in Section 2, we present the 
generic algorithm framework we use in Section 3. We then describe the algorithm 
for MCE in Section 4, and the algorithm for ATFE in Section 5. Finally we present 
the quantum speed-ups for these algorithms in Section 6. 

2 Preliminaries 

Notations. For n ∈ N, [n] := {1, 2, . . . , n}. Let Fq be the fnite feld of q elements. 
We view Fn as the linear space of length-n column vectors over Fq. Let P = P(Fn)q q 
be the projective space associated with the vector space Fn . For a non-zero q 
u ∈ Fn , we use û ∈ P to denote the projective line represented by u. Let GL(n, q)q 
denote the general linear group of degree n over Fq. We use M(m×n, q) to denote 
the space of m × n matrices over Fq , and ATF(n, q) for the space of alternating 
trilinear forms over Fnq . For a fnite set S, we use s ←R S to denote that s is 
uniformly randomly sampled from S. 

Matrix codes and trilinear forms. A trilinear form is a function ϕ : Fm×Fn×Fl →q q q 
Fq that is linear in each of its three arguments. 

Defnition 3 (Trilinear Form Equivalence Problem). Given two trilinear 
forms ϕ, ψ : Fm × Fn × Fl → Fq , the problem asks whether there exists three q q q 
matrices (A, B, C) ∈ GL(m, q)×GL(n, q)×GL(l, q), such that for any (u, v, w) ∈ 
Fm × Fn × Fl , ϕ(u, v, w) = ψ(A(u), B(v), C(w)).q q q 

A [m × n, l]-matrix code C is an l-dimensional subspace of M(m × n, q). We 
defned matrix code equivalence in Defnition 1. Matrix code equivalence reduces 
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to trilinear form equivalence in polynomial time. This is because of the following. 
Let a matrix code C be given by an ordered linear basis (C1, C2, . . . , Cl), Ck ∈ 
M(m × n, q), and ci,j,k denotes the (i, j)-entry of Ck. This gives rise to a trilinearP 
form ϕC : Fqm × Fqn × Fql → Fq, that is, ϕC = i,j,k ci,j,kuivj wk where u = 

)t ∈ Fm )t ∈ Fn ∈ Fl 
is straightforward to verify that two matrix codes C and D are equivalent if 
and only if ϕC and ϕD are equivalent. Furthermore, if (A, B, C) ∈ GL(m, q) × 
GL(n, q) × GL(l, q) sends ϕC ot ϕD, then (A, B) sends C to D. 

(u1, . . . , um q , v = (v1, . . . , vn q , and w = (w1, . . . , wl)
t

q. It 

Alternating trilinear forms. A trilinear form ϕ : Fn ×Fn ×Fn → Fq is alternating, q q q 
if ϕ evaluates to 0 whenever two arguments are the same, e.g., ϕ(u, u, v) = 
ϕ(u, v, u) = ϕ(v, u, u) = 0 for all u, v ∈ Fn . Let ei be the ith standard basisq 

∗vector and e be the corresponding dual basis which sends u = (u1, . . . , un)
t ∈ Fqn 

i P ∗ ∗ ∗ to ui. ϕ can be represented as 1≤i≤j≤k≤n ci,j,ke ∧ ej ∧ ek where ∧ denotes thei 
∗ ∗ ∗exterior product. And e ∧ e ∧ e is an alternating trilinear form which can be i j k 

defned as follows:   
ui vi wi 

∗ ∗ ∗ (e ∧ ej ∧ ek)(u, v, w) = det uj vj wj  ,i 
uk vk wk 

where u = (u1, . . . , un), v = (v1, . . . , vn), w = (w1, . . . , wn). This also implies� � 
nthat storing an alternating trilinear form requires feld elements. 3 

We note that the trilinear form equivalence problem difers from the alter-
nating trilinear form equivalence problem, in that three invertible matrices are 
used in the former, while only one is used in the latter. 

Instantiated arguments of trilinear forms. Let ϕ : Fn×Fn×Fn → Fq be a trilinearq q q 
form and u, v ∈ Fnq . We use ϕ(u, ⋆, ⋆) to denote the bilinear form obtained by P 
instantiating the frst argument of ϕ with u. Let ϕ(u, ⋆, ⋆) = j,k cj,kyj zk then it 
has matrix representation Mu = (cj,k) with respect to standard basis e1, . . . , en. 
We use ϕ(u, v, ⋆) to denote the linear form obtained by instantiating the frst 
two arguments of ϕ with u and v, respectively. 

Tripartite graphs associated with trilinear forms. Let ϕ ∈ TF(Fn) be a trilinearq 
form, then we can associate ϕ with a tripartite graph Gϕ = (U ⊎V ⊎W, E) where 
U = V = W = P(Fnq ). To defne the edge set E, let û ∈ U , v̂ ∈ V , and ŵ ∈ W . 
Then {û, v̂} ∈ E, if ϕ(u, v, ⋆) is the zero linear form. Similarly, {û, ŵ } ∈ E, if 
ϕ(u, ⋆, w) is the zero linear form. And {v̂, ŵ } ∈ E, if ϕ(⋆, v, w) is the zero linear 
form. 

Rank distribution of random trilinear forms. The following rank distribution of 
random trilinear forms follows from the well-known fact that the probability of 
a random matrix in M(n, Fq) to be of rank n − d tends to q−d

2 

Theorem 1 ([10,29]). Let n, d be positive integers such that n − d is a non-
negative number less than n. Then as q →∞, the average number of projective 

as q → ∞ [10,29]. 
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points with rank n−d of a uniformly random trilinear form ϕ : Fn ×Fn ×Fn → Fqq q q 
−d2+n−1tends to q . 

Theorem 2 ([12, Theorem 2]). Let n, d be positive integers such that n − d 
is a non-negative even number less than n. Then as q →∞, the average number 
of projective points with rank n − d of a uniformly random alternating trilinear 

Rank distribution of alternating trilinear forms. The following result is due to 
Beullens [12]; see also [14]. 

(−d2+3d)/2+n−2form ϕ ∈ ATF(Fn) tends to q .q 

3 Finding equivalences of trilinear forms via invariants 

We frst outline the common framework of our algorithms for ATFE and TFE 
at a high level, following Beullens (in Section 5.4 of [12]). But in a departure 
from [12] which relies on invariants derived from graphs on projective points, we 
design new global invariants. The invariant functions for ATF and TF will be of 
the form 

F0 : TF(Fn) × P(Fn) → X0,q q 

F1 : ATF(Fn) × P(Fn) → X1q q 

and explicitly constructed in the following sections. The subscript 0 in the func-
tion and the target set indicates that it is associated with TF. Likewise, the 
subscript 1 indicates association with ATF. 

Invariants. To illustrate the notion of invariants, let us frst name the actions 
underlying MCE and ATFE in the language of trilinear forms. 

Defnition 4 (MCE Action). For a trilinear form ϕ : Fn × Fn × Fn −→ Fqq q q 
and a triple of matrices (A, B, C) ∈ GL(n, q)3 , defne the trilinear form 

× Fn × FnϕA,B,C : Fnq q q −→ Fq 

(x, y, z) 7−→ ϕ(Ax, By, Cz). 

We design F0 as a pairing of the trilinear form and the projective space that is 
invariant under twisting the trilinear form and the projective space. The trilinear 
form is twisted by the GL(n, q)3 MCE Action. The projective space is twisted 
by the inverse of the matrix acting on the frst dimension of the trilinear form. 
Formally, the invariant for MCE action needs to satisfy that 

∀ϕ ∈ TF(Fn), ∀v̂ ∈ P(Fn), ∀(A, B, C) ∈ GL(n, q)3, F0(ϕ, v̂) = F0(ϕA,B,C , A
−1 v̂).q q 

Defnition 5 (ATFE Action). For a trilinear form ϕ : Fn × Fn × Fn −→ Fqq q q 
and a matrix A ∈ GL(n, q), defne the trilinear form 

ϕA : Fn × Fn × Fn −→ Fqq q q 

(x, y, z) 7−→ ϕ(Ax, Ay, Az). 
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v ∈ Fn 
q , the rank of ϕ(v, ⋆, ⋆) (see Section 2) is an invariant, which has been 

utilised in [17,12]. Also note that rk(ϕ(v, ⋆, ⋆)) 

We design the function F1 as a pairing of the trilinear form and the projective 
space that is invariant under twisting the trilinear form by the ATFE action 
and the projective space by the inverse of the matrix defning the ATFE action. 
Formally, 

∀ϕ ∈ ATF(Fn), ∀v̂ ∈ P(Fn), ∀A ∈ GL(n, q), F1(ϕ, v̂) = F1(ϕA, A
−1 v̂).q q 

Distinguishing invariant. The invariant function F0 is called distinguishing if for 
all ϕ ∈ TF(Fn),q 

Pr (F0(ϕ, v̂1) ≠ F0(ϕ, v̂2)) ≈ 1. 
(v̂1,v̂2)←RP(Fn)2 

q 

We will specify the meaning of ≈ 1 in the following. Likewise, F1 is called 
distinguishing if for all ϕ ∈ ATF(Fn),q 

Pr (F1(ϕ, v̂1) ̸= F1(ϕ, v̂2)) ≈ 1. 
(v̂1,v̂2)←RP(Fn)2 

q 

An algorithm template based on distinguishing invariants. With such distin-
guishing invariant functions at hand, we have the following generic algorithm 
for MCE and ATFE. The version for ATFE is specifed in parentheses. 

To start with, recall that for a trilinear form ϕ : Fnq × Fn × Fqn → Fq andq 

= rk(ϕ(λv, ⋆, ⋆)) for non-zero 
λ ∈ Fq, so we can talk about the rank of ϕ(v̂, ⋆, ⋆) for v̂ ∈ P(Fn).q 

This rank invariant cannot be distinguished. Still, the new invariants consid-
ered in this paper are further refnements of the rank invariant, as will be seen 
below. In particular, the generic algorithm is parametrised by this rank R, which 
would be specifed later depending on the specifc invariants. 

Input: Two equivalent (alternating) trilinear forms ϕ, ψ ∈ TF(Fn)(or ATF(Fn)).q q 
Output: A, B, C ∈ GL(n, q) such that ϕA,B,C = ψ (or A ∈ GL(n, q) such that 

ϕA = ψ). 
Algorithm 1. Pick a positive number R ≤ n. Let � 

Pϕ,R := v̂ ∈ P(Fnq ) | rk(ϕ(v̂, ∗, ∗)) = R , � 
Pψ,R := v̂ ∈ P(Fnq ) | rk(ψ(v̂, ∗, ∗)) = R 

denote the respective set of points where the trilinear forms specialize 
in the frst dimension to give rank R matrices. Independently sample a 
set Lϕ,R of 

p
|Pϕ,R| points from Pϕ,R and a set Lψ,R of 

p
|Pψ,R| points 

from Pψ,R. Since ϕ and ψ are isomorphic, Pϕ,R = Pψ,R and we denote 
their cardinality as NR := ∥Pϕ,R∥ = ∥Pψ,R∥. Therefore Lϕ,R and Lψ,R √ 
are both NR-sized subsets of the same set of size NR. 

2. Apply the invariant function Fi (where i = 0 for MCE and i = 1 for 
ATFE) to each element in Lϕ,R and Lψ,R. Find a pair (v̂, v̂′) for which 

′ Fi(ϕ, v̂) = Fi(ψ, v̂′ ), where v̂ ∈ Lϕ,R and v̂  ∈ Lψ,R. The existence of 
such a pair is likely due to the birthday paradox. 
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3. For MCE, such a pair reveals the desired output (A, B, C) ∈ GL(n, q)3 

through linear algebra, as we describe in Section 4. To solve the ATFE, 
feed the matching pair (v̂, v̂′ ) as the partial information into the Gröbner 
basis computation in [42,6]. This Gröbner basis computation is a heuris-
tic that fnds in polynomial time an A ∈ GL(n, q) (if it exists) such that 

′̂ ϕA = ψ and A−1v̂ = v . 

The complexity of the above algorithm parameterized by the target rank R can 
be estimated as �p � 

O NR · (samp-cost + inv-cost) + recover-cost . (1) 

The sampling cost samp-cost refers to the cost of sampling a rank-R (projective) 
point, that is, a point in Pϕ,R (or equivalently in Pψ,R). And inv-cost denotes 
the cost of invariant computation for each point. The cost of recovering the 
isomorphism given a collision is denoted by recover-cost. Also note that for the 
invariant to be distinguishing enough in the above procedure, we need to have 
Pr(v̂1,v̂2)←RP(Fn)2 (F0(ϕ, v̂1) = F0(ϕ, v̂2)) = O(1/NR).q 

In the following two sections, we describe algorithms in this general frame-
work tailored to MCE and ATFE, by describing the invariant functions and op-
timizing the rank R. 

4 An algorithm for Matrix Code Equivalence 

In this section, we introduce an algorithm for the matrix code (or trilinear form) 
equivalence problem. Specifcally, given two trilinear forms ϕ ∈ TF(Fn) and ψ ∈q 
TF(Fn) that are equivalent, the algorithm computes an equivalence (A, B, C) ∈q 
GL(n, q) × GL(n, q) × GL(n, q) between ϕ and ψ. The algorithm runs in time 

(n−2)/2 3O(q · (q · n + n4) · (log(q))2). 

4.1 The main idea 

To instantiate the algorithm outlined in Section 3, the primary bottleneck is 
identifying invariants with sufcient distinguishing power. The main idea of the 
algorithm is to associate distinguishing invariants to corank-1 points, specifcally 
for those û ∈ P(Fn) such that the bilinear form ϕ(u, ⋆, ⋆) is of rank n − 1. We q 
shall occasionally call such projective lines as corank-1 points. Recall there is a 
tripartite graph Gϕ = (U ⊎ V ⊎ W, E) associated with ϕ where U = V = W = 
P(Fnq ). Each corank-1 point û ∈ U has a unique neighbour v̂ ∈ V , namely the 
one dimensional left kernel of the bilinear form ϕ(u, ⋆, ⋆). Since ϕ(⋆, v, ⋆) has u 
in its left kernel, ϕ(⋆, v, ⋆) has co-rank at least 1. If ϕ(⋆, v, ⋆) is of corank-1, it 
has a unique neighbour ŵ ∈ W . Repeating this procedure leads to a path on 
Gϕ. We continue building this path until reaching length 3n, collecting n points 
each from U , V and W . Such a path is built without ambiguity if and only if at 
every iteration we get a point of corank-1. 
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Our experiments show that for most starting points û, we do obtain a path 
of length 3n without ambiguity and that the vector n-tuples collected in each of 
the sets U, V and W are linearly independent respectively. We use these three 
vector tuples to transform ϕ to ϕ̃[u] which depends only on the vectors on this 
path. 

To make this an isomorphism invariant indexed with û (instead of with u), 
we need to remove the ambiguity caused by the scalar multiples, which can be 
done easily by locating non-zero evaluations of ϕ̃[u] on about 3n inputs of the 

¯form (ei, ej , ek). This gives us ϕ[û] which is an invariant associated with û. Our 
experiments show that this invariant is distinguishing, i.e. diferent û results in 

¯diferent ϕ[û]. This allows for an application of the birthday algorithm. 
It is known from Theorem 1 that for a random ϕ, there exist approximately 

n−2 (n/2)q corank-1 points. Thus we get an algorithm running in time O((q + 
q(n−2)/2) · poly(n, q)) by instantiating the above invariant. 

4.2 From a vector to three vector tuples 

Corank-1 points of trilinear forms and paths on Gϕ. Suppose a non-zero u1 ∈ Fn 
q 

satisfes that ϕ(u1, ⋆, ⋆) is of corank-1 as a bilinear form. Consider the following 
steps. 

1. As ϕ(u1, ⋆, ⋆) is of corank-1, there exists a unique v̂1 ∈ P such that ϕ(u1, v1, ⋆) 
is the zero linear form. 

2. If ϕ(⋆, v1, ⋆) is of corank-1, then there exists a unique ŵ1 ∈ P, such that 
ϕ(⋆, v1, w1) is the zero linear form. 

3. If ϕ(⋆, ⋆, w1) is of corank-1, then there exists a unique û2 ∈ P, such that 
ϕ(u2, ⋆, w1) is the zero linear form. 

If û1 ≠ û2, then the above procedure produces a path (û1, v̂1, ŵ1, û2) in G(ϕ). 
We can continue the above procedure as follows. 

1. Let LU = (u1), LV = (), and LW = (). 
2. For i = 1 to n, do the following: 

(a) Compute the unique v̂i ∈ P(Fnq ), such that ϕ(ui, vi, ⋆) = 0. 
(b) If the corank of ϕ(⋆, vi, ⋆) is not 1, or if vi ∈ span(LV ), terminate and 

report “Fail”. Otherwise, add vi to LV . 
(c) Compute the unique ŵi ∈ P(Fn), such that ϕ(⋆, vi, wi) = 0.q 
(d) If the corank of ϕ(⋆, ⋆, wi) is not 1, or if wi ∈ span(LW ), terminate and 

report “Fail”. Otherwise, add wi to LW . 
(e) If i = n, break. 
(f) Compute the unique uî+1 ∈ P(Fnq ), such that ϕ(ui+1, ⋆, wi) = 0. 
(g) If the corank of ϕ(ui+1, ⋆, ⋆) is not 1, or if ui+1 ∈ span(LU ), terminate 

and report “Fail”. Otherwise, add ui+1 to LU . 

If the above procedure does not return “Fail”, then we obtain three vector 
tuples LU = (u1, . . . , un), LV = (v1, . . . , vn), and LW = (w1, . . . , wn), such 
that ui’s (resp, vi’s, wi’s) are linearly independent. 
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4.3 Corank-1 invariants from three vector tuples 

Suppose that starting from a corank-1 u1 ∈ Fn , we obtain three vector tuplesq 
LU , LV , and LW , which are canonically associated with u1. We then treat LU ,� �t 
LV , and LW as invertible matrices, that is, LU = u1 . . . un . Defne a trilinear 
form ϕ̃ : Fn × Fn × Fn → Fq by ϕ̃(x, y, z) = ϕ(LU (x), LV (y), LW (z)). This ϕ̃ isq q q 
almost an isomorphism invariant associated with u1 – almost because there is 
an ambiguity associated with the representing vectors of ûi, v̂j , and ŵk. 

To remove this ambiguity, we need to study the canonical form of ϕ̃ under 
the action of D(n, q) × D(n, q) × D(n, q), where D(n, q) denotes the group of 
invertible diagonal n×n matrices over Fq. This can be done by carefully selecting 

˜3n non-zero entries in ϕ, so that the diagonal entries of the acting matrices 
are determined by these entries. In the following we present one choice of non-
zero entries. There could be several other natural selections depending on the 
positions of zero entries, but we do not pursue them further as this choice is 
already useful enough in our practical implementation. 

Consider the following entries. For any i, j, k ≥ 3, 

ai := ϕ̃(ei, e2, e1), bj := ϕ̃(e1, ej , e1), ck := ϕ̃(e1, e2, ek), d1 := ϕ̃(e1, e2, e1), 
(2) 

d2 := ϕ̃(e2, e3, e5), d3 := ϕ̃(e1, e3, e2), d4 := ϕ̃(e2, e1, e2) are non-zero. 

In this case, we can use the action of D(n, q) × D(n, q) × D(n, q) to set ai, 
bj , ck, d1, d2, d3 and d4 to be 1. More specifcally, let (F, G, H) ∈ D(n, q) × 
D(n, q) × D(n, q), where F = diag(f1, . . . , fn), G = diag(g1, . . . , gn), and H = 
diag(h1, . . . , hn). Then set fi, gj , and hk to satisfy that, for 3 ≤ i, j, k ≤ n, 

f1g2h1 = 1/d1, fi/f1 = d1/ai, gj /g2 = d1/bj , hk/h1 = d1/ck, 
(3)

f2 = 1/(g3h5d2), h2 = 1/(f1g3d3), g1 = 1/(f2h2d4). 

Let ϕ̄ : Fn × Fn × Fn → Fq be defned by ϕ̄(x, y, z) = ϕ̃(F (x), G(y), H(z)). Thenq q q 

ϕ̄(ei, ej , ek) = figj hkϕ̃(ei, ej , ek). Therefore, 

¯ ˜ϕ(e1, e2, e1) = f1g2h1ϕ(e1, e2, e1) = 1/d1 · d1 = 1. 

For i ≥ 3, 

ϕ̄(ei, e2, e1) 
˜= fig2h1ϕ(ei, e2, e1) 

˜= (fi/f1)f1g2h1ϕ(ei, e2, e1) 

= (d1/ai) · (1/d1) · ai = 1. 

¯ ¯Similarly, it can be verifed that ϕ(e1, ej , e1) = ϕ(e1, e2, ek) = 1 for j, k ≥ 3. 
¯ ¯ ¯Additionally, we can verify that ϕ(e1, e2, e1) = ϕ(e2, e3, e5) = ϕ(e2, e1, e2) = 
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ϕ̄(e1, e3, e2) = 1. Furthermore, for any i, j, k ≥ 3, 

ϕ̄(ei, ej , ek) 

= figj hkϕ̃(ei, ej , ek) 

= (fi/f1)(gj /g2)(hk/h1)f1g2h1ϕ̃(ei, ej , ek) 

d4 ϕ̃(ei, ej , ek)1 = ; 
aibj ck 

for i = 2 and any j, k ≥ 3, 

ϕ̄(e2, ej , ek) 

= f2gj hkϕ̃(e2, ej , ek) 

= (f2/f1)(gj /g2)(hk/h1)f1g2h1ϕ̃(e2, ej , ek) 

b3b5ϕ̃(e2, ej , ek) 
= ;

d1d2bj ck 

for k = 2 and any i, j ≥ 3, 

ϕ̄(ei, ej , e2) 

= figj h2ϕ̃(ei, ej , e2) 

= (fi/f1)(gj /g2)(h2/h1)f1g2h1ϕ̃(ei, ej , e2) 

b3ϕ̃(ei, ej , e2) 
= ;

d3aibj 

for j = 1 and any i, k ≥ 3, 

ϕ̄(ei, e1, ek) 
˜= fig1hkϕ(ei, e1, ek) 

˜= (fi/f1)(g1/g2)(hk/h1)f1g2h1ϕ(ei, e1, ek) 

d71d2d3d4ϕ̃(ei, e1, ek) = ;
b2 
3b5aick 

¯So ϕ is completely determined by the conditions in Equation 3. 
¯ ¯The above suggests that ϕ[û1] := ϕ is an isomorphism 

2. 
invariant associated 

with û1 ∈ P(Fn), assuming that ϕ̃ satisfes Equationq 

4.4 Description of the algorithm 

Given the above preparations, the algorithm works as follows. 

Input. Two equivalent trilinear forms ϕ, ψ : Fn × Fn × Fn → Fq.q q q 
Output. An equivalence (A, B, C) ∈ GL(n, q) × GL(n, q) × GL(n, q). 

(n−2)/2Algorithm. 1. For ϕ, construct a list Sϕ of q corank-1 û ∈ P together 
¯with the isomorphism invariant ϕ[û] as follows. 



14 Anand Kumar Narayanan, Youming Qiao, and Gang Tang 

(a) Compute one corank-1 û ∈ P by sampling randomly u ∈ Fn q times.q 
(b) For û ∈ P, compute three vector tuples LU , LV , and LW as in 

Section 4.2. 

(d) Use the method in Section 4.3 to transform ϕ̃[u] to ϕ[û]. 
(c) Use LU , LV and LW to transform ϕ to ϕ̃[u]. 

¯ 
(n−2)/22. For ψ, construct a list Sψ of q corank-1 û ∈ P(Fn) together withq 

¯the isomorphism invariant ψ[û] as above. 
′ ¯ ¯3. Find û from Sϕ, and û from Sψ , such that ϕ[û] and ψ[û′ ] are the same. 

4. An equivalence (A, B, C) from ϕ to ψ can be obtained by composing the 
¯ ¯transformations from ϕ to ϕ[û] and from ψ to ψ[û′ ]. 

Time analysis of the above algorithm. We assume that the modular arithmetic 
complexity in Fq is in time O((log q)2), and the number of arithmetic operations 
for n × n matrix computations (such as matrix multiplication and rank compu-
tation) is O(n3). As in the practical setting, n is small and matrices are dense, 
this should be a reasonable estimate (rather than using O(nω ) where ω is the 
matrix multiplication exponent). 

Step 1 is a For-loop contributing a multiplicative factor of q(n−2)/2 to steps (a) 
to (d). Step (a) samples vectors in Fn and computes the ranks of the associated q 

3matrices for q times, so its complexity is O(q · (n · log(q) + n · (log q)2)). Step 
(b) constructs three n-tuples of vectors. Each vector in this n-tuple is obtained 
by solving a system of n linear equations in n variables. So Step (b) costs O(n · 
3 4n · (log q)2) = O(n · (log q)2). Step (c) requires 3n n × n matrix multiplications, 

4so its complexity is also O(n · (log q)2). For Step (d), the method in Section 4.3 
3takes O(n · (log q)2) time. Taking into account of the For-loop factor, the total 

(n−2)/2 3cost for steps 1 and (a) to (d) is O(q · (q · n + n4) · (log(q))2). 
Once the two lists are constructed, fnding a collision and using that to con-

struct an isomorphism takes time O(log(q(n−2)/2)) as we can assume that the 
lists Sϕ and Sψ are sorted. Therefore steps 2 to 4 contribute to a running time 

(n−2)/2of lower order, and the running time of the whole algorithm is O(q · (q · 
3n + n4) · (log(q))2). 

¯Correctness analysis of the above algorithm. We assume that ϕ[û] is a distin-
guishing invariant of û. Then by birthday paradox, the above algorithm returns 

′ ¯ û from Sϕ, and û from Sψ, such that ϕ̄[û] and ψ[û′ ] are the same, with constant 
probability. 

4.5 Heuristic assumptions for the invariant 

¯We now refect on several assumptions required for using ϕ[u1] for u1 ∈ Fn withq 
ϕ(u1, ⋆, ⋆) being of corank-1. 

1. We assume that we can obtain three vector tuples LU , LV , LW . 
2. We assume that ϕ̃, the trilinear form obtained after applying LU , LV , and 

LW , satisfes Equation 2. 
¯3. We assume that the corank-1 invariant ϕ[u1] is distinguishing. 

We next argue in favour of each of these heuristics. 
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Heuristic 1. To build the vector tuples LU , LV , and LW , it sufces (1) to perform 
a walk with corank-1 points for 3n successful steps, and (2) the vectors in LU 

(resp. LV , LW ) be linearly independent. 

We argue for (1), by making the same assumption as in Beullens’ algorithms 
[12], namely those points along such a walk are close to independent randomly 
sampled. In particular, the probability of getting a walk with corank-1 points for 
3n steps can be estimated as follows. The probability of a corank-1 point having 
a corank-2 neighbour is asymptotically O(1/q2); this can be calculated following 
the techniques in [12]. Therefore, the probability of walking for 3n steps with 
corank-1 points is lower bounded by 1 − O(n/q2), assuming points along such a 
walk are close to independent randomly sampled. 

We argue for (2) using algebraic-geometry. To this end, consider a generic 
starting corank-1 vector u1 and think of its coordinate vector (u1,1, u1,2, . . . , u1,n) 
as n indeterminates. The corank-1 assumption implies that there is a unique 
projective v̂1 such that ϕ(u1, v1, ∗) = 0 (that is, the zero dual vector). The coor-
dinates of v1 can be expressed as some vector of polynomials in the coordinate 
ring of u1, for instance using the adjugate matrix of ϕ(u1, ∗, ∗). Call this vector 

ϕof polynomials as (f v1,j )1≤j≤n ∈ (Fq[u1,1, u1,2, . . . , u1,n])
n 
. The superscript ϕ 

ϕsignifes that the coefcients of each f depend only on the tensor ϕ. Repeat-v1,j 
ϕing a similar process starting with the coordinate vector (f )1≤j≤n of v1, we v1,j 

ϕobtain the coordinates (f w1 ,j )1≤j≤n ∈ (Fq[u1,1, u1,2, . . . , u1,n])
n 
of w1 ∈ LW . 

Note that each coordinate is a polynomial in the coordinate ring of the generic 
starting vector u1. Continuing this way, we can express each element of LU , LV , 
and LW as a vector of polynomials in the co-ordinate ring of u1. The vectors in 
LU being linearly independent can be expressed as a polynomial condition on the 
coordinates of u1, namely the determinant of the matrix (f u 

ϕ
,j )u∈LU ,1≤j≤n van-

ishing. In particular, the variety of dependent LU has co-dimension at least one,� � 
ϕ as long as the symbolic determinant det (f is not identically u,j )u∈LU ,1≤j≤n 

zero. The matrix (f u 
ϕ
,j )u∈LU ,1≤j≤n depends only on ϕ. For the random choice of� � 

ϕϕ induced by key generation, the symbolic determinant det (f u,j )u∈LU ,1≤j≤n 

is almost certainly not identically zero. Therefore, its roots, which constitutes 
the pathological variety of dependent LU has co-dimension at least one. There-
fore with probability at least 1 − 1/q, we expect the co-ordinates of a random 
starting vector u1 to not be in this variety, implying that the LU vectors are 
linearly independent. The probability 1−1/q is only a crude estimate. For a pre-
cise bound taking into account the structure of the polynomial, we can invoke 
the Schwartz–Zippel lemma or more generally the Lang–Weil bound. The Lang– 
Weil bound subsumes the Schwartz–Zippel lemma and gives stronger bounds 
in many cases where more (such as number of irreducible components, degree,� � 

ϕsmoothness, etc.) is known about the polynomial det (f )u∈LU ,1≤j≤n . In ei-u,j 

ther case, to unconditionally prove that a random u1 is not in this variety, it 
helps if the degree of the polynomial is not too big. Naively, the polynomial 
produced through expansion is of exponential degree, but this is unlikely to be 
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optimal, as shown in the experiment part. We leave an unconditional proof of 
the validity of this heuristic to future work. 

Heuristic 2. Here we assume that O(n) entries in the transformed tensor are 
non-zero. Therefore, the probability of this assumption failing increases as q 
decreases and n increases. Note that this assumption is used only to deal with 
diagonal group actions, and more specialized techniques can be done to reduce 
the failure probability of this step. 

Heuristic 3. We prove that the invariants generated by our algorithm are distin-
guishing with high probability, under the following well studied conjecture from 
[39], which we re-phrase in tensor notation. To this end, defne the automor-
phism group of a tensor ϕ ∈ TF (Fq) as the subgroup Aut(ϕ) ⩽ GL(n, q)3 such 
that 

∀(A, B, C) ∈ Aut(ϕ), ∀(x, y, z) ∈ Fn, ϕ(Ax, By, Cz) = ϕ(x, y, z).q 

Clearly, scalar matrix triples of the form 

{(λIn, µIn, νIn) | λµν = 1, (λ, µ, ν) ∈ 
� 
F× 

�3 } ⩽ Aut(ϕ)q 

form a subgroup of the automorphism group. We say that the automorphism 
group Aut(ϕ) is trivial or equivalently that ϕ has trivial automorphism group if 
and only if � �3 {(λIn, µIn, νIn) | λµν = 1, (λ, µ, ν) ∈ F× } = Aut(ϕ).q 

That is, all automorphisms are merely triples of scalar matrices. 

Conjecture 1. For uniformly random ϕ ∈ TF (Fn), with probability negligiblyq 
close to 1, the automorphism group Aut(ϕ) is trivial. 

This conjecture is stated as a “mild assumption” in [39], where the authors 
provide convincing theoretic and empirical evidence. In fact, this conjecture is 
assumed true in half of the complexity theoretic reductions in the web of prob-
lems centered around MCE ([39, Fig. 1]), that lay as the foundation for MEDS. 

¯Consider the corank-1 invariant ϕ[û] constructed at a successful completion 
of the frst step of the algorithm. We prove in the subsequent Lemma 1 that ϕ̄[û] 
is distinguishing if the isomorphism class of ϕ has a trivial automorphism group. 

Lemma 1. If ϕ ∈ TF (Fn) has the trivial automorphism group, then the iso-q 
¯morphism invariant (ϕ, û) 7−→ ϕ[û] determined by step 1 of the algorithm is 

distinguishing. 

Proof. Recall the notation in the description of the algorithm, to aid in the proof 
sketch. Let (LU , LV , LW ) and (L ′ , L ′ , L ′ ) be the two vector tuples produced U V W 

′ ¯ ¯starting from diferent u and u , respectively. Let ϕ[û] and ϕ[û] respectively 
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denote the images of the invariant computed by step 1 of the algorithm. If the 
algorithm samples two ϕ̄[û] and ϕ̄[û] that are the same, then the respective vector 
tuples (LU , LV , LW ) and (L ′ , L ′ , L ′ ) can be composed to get a non-trivialU V W 
automorphism in Aut(ϕ). But ϕ ∈ TF (Fn) has the trivial automorphism group, q 

¯ ¯therefore ϕ[û] and ϕ[û] are distinct, implying the invariant is distinguishing. 

The MEDS key generation algorithm chooses a ϕ uniformly at random from 

close to 1. Therefore, lemma 1 applies in our setting (except possibly with neg-
ligibly small probability), implying (ϕ, ū) 7−→ ϕ̄[û] is distinguishing. 

TF (Fn). Assuming conjecture 1, Aut(ϕ) is trivial with probability negligibly q 

Experimental support. We carry out experiments on Magma [16] for n = 6 to 10 
and q = 1021 to verify the assumptions as above. 

We examine Assumptions 1, 2, and 3 sequentially as follows. That is, for a 
point u, we frst verify if assumption 1 holds. If so, then we check if assumption 
2 holds for u. If both assumptions 1 and 2 hold, we call u an efective point. 
In Table 2, we sample 1000 points, and record the number of points failing 
assumption 1, and the number of points satisfying assumption 1 but failing 
assumption 2, as well as the number of efective points. 

Finally, to verify assumption 3, we do experiments on these efective points. 
Our results show that for the instances in the Table 2, the isomorphism invari-
ants corresponding to all points are pairwise distinguishable. This is expected, 
because each sample is generated randomly, these points are essentially distinct 
from one another. 

n 
q 

6 7 8 9 10 11 12 13 14 

509 7/26/967 1/39/960 5/40/955 5/41/954 1/70/929 12/58/930 6/57/937 11/67/922 5/81/914 
1021 8/10/982 5/16/979 10/20/970 4/28/968 2/18/980 1/27/972 3/31/966 2/30/968 1/29/970 
2039 1/13/986 1/13/986 3/14/983 2/8/990 0/18/982 0/18/982 1/15/984 2/17/981 0/18/982 
4093 1/5/994 1/7/992 1/5/994 1/7/992 0/6/994 2/6/992 0/13/987 2/11/987 0/10/990 
8191 0/3/997 0/2/998 1/2/997 0/2/998 1/4/995 0/3/997 0/5/995 1/8/991 1/5/994 
16381 0/0/1000 0/1/999 0/4/996 0/0/1000 0/4/996 0/1/999 0/3/997 1/4/995 0/3/997 

n 
q 

15 16 17 18 19 20 21 22 

509 1/88/911 11/99/890 6/90/904 3/119/878 3/104/893 7/99/894 6/128/866 3/116/881 
1021 1/27/972 3/45/952 5/49/946 1/54/945 5/58/937 2/54/944 2/67/931 7/59/934 
2039 4/18/978 1/19/980 0/28/972 2/20/978 2/25/973 2/31/967 2/29/969 2/28/970 
4093 2/8/990 1/10/989 1/18/981 0/16/984 3/15/982 1/23/976 1/11/988 1/22/977 
8191 1/3/996 0/4/996 1/7/992 0/4/996 1/10/989 1/9/990 0/4/996 0/8/992 
16381 0/7/993 0/2/998 0/1/999 0/1/999 0/8/992 0/4/996 0/3/997 1/3/996 

Table 2. Statistics of efective points. a/b/c in the table are defned as follows: a (resp. 
b) is the number of points for which Assumption 1 (resp. Assumption 2) does not hold, 
and c is the number of efective points. 

Note that it is enough for all but a small fraction of corank-1 u1 to satisfy 
the above. Furthermore, if some assumption is not satisfed, this would also con-
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stitute as an invariant. That is, if u1, . . . , ui in LU becomes linearly dependent, 
then this number i also becomes an invariant which can be utilised. We do not 
attempt to deal with such cases because they rarely happen in experiments. 

4.6 Experimental results for the algorithm 

We implemented the algorithm in Section 4.4 in Magma [16]. We tested our 
implementation on a server (AMD EPYC 7532 CPU at 2.40GHz) to solve some 
instances of the MCE problem. The results are given in Table 3. Our experiments 
demonstrate that when running ten instances, two to four of them successfully 
discover collisions and recover the secret matrices (A, B, C). 

(n−2)/2Because we conduct q samplings, we cannot set q to be too large for 
a practical running. Therefore, we set q to be 61 or 31. As a result, the fraction 
of efective points is not as large as for q = 1021 as in Table 2. For example, 
in MCE-instance-1, we conducted 3721 samplings and obtained 2702 efective 
points. Therefore, when q is large, the success rate should increase with the 
number of efective points. 

Parameter set n q 
Number of 

efective points 
Number of 

sampling times 
Time 

(seconds) 

MCE-instance-1 6 61 2702 3721 420 
MCE-instance-2 7 61 20053 29062 5638 
MCE-instance-3 8 61 149149 226981 100900 
MCE-instance-4 9 31 64202 165870 137715 

Table 3. Solving MCE instances 

(a) of the algorithm in Section 4.4) is as follows. 
Remark 1. Following [12], a possible improvement on the sampling step (Step 

Recall that in Step (a) of the algorithm in Section 4.4, a corank-1 point is 
obtained by sampling a random vector in Fn for q times. However, note thatq 
starting from a corank-1 vector û, the vectors in the vector tuple LU , if success-
fully built, are all corank-1. So these vectors can be utilised, instead of starting 
from a fresh random corank-1 vector. In general, we can walk along the path 
in the tripartite graph starting from a corank-1 vector until we hit a vector of 
corank larger than 1. This has the potential of reducing the complexity of the 

(n−2)/2 3 4) (n−2)/2 4algorithm from O(q · (q · n + n · (log(q))2) to O(q · n · (log(q))2), 
as we would only need to sample a fresh corank-1 vector very few times during 
the execution of the algorithm. 

One question for this approach is whether it results in a distribution close 
to the uniform one. To test this, we implemented the above approach. In the 
case of MCE-instance-1, our preliminary experimental results show that when 
running 6 instances, one of them successfully fnds a collision and recovers the 
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secret matrices. We leave a more careful analysis and more experiments to a 
future work. 

5 An algorithm for alternating trilinear form equivalence 

In this section, we present our algorithm for the ATFE problem. That is, given 
two alternating trilinear forms ϕ ∈ ATF(Fn) and ψ ∈ ATF(Fn), the algorithmq q 
computes an equivalence A ∈ GL(n, q) from ϕ to ψ, if such A exists. 

As will be explained later, there is a component missing for implementing 
this algorithm for ATFE, namely the transformation of isomorphism testing pro-
cedures to canonical forms. (On the contrary, the corresponding component in 
our algorithm for matrix code equivalence is automatically a canonical form al-
gorithm.) Still, as it is usually the case that an isomorphism testing algorithm 
can be turned into a canonical form algorithm (such as for graph isomorphism 
[4]), the time complexity of this algorithm is used in the parameter setup of 

Before introducing our algorithm, we review the algorithms for ATFE by 
Beullens [12], which inspire our algorithm. 

5.1 Beullens’ algorithms for ATFE 

In [12], Beullens presented some novel algorithms for ATFE. Here we describe 
two algorithms there that work for general n. 

The frst algorithm is a collision algorithm based on low-rank points based on 
the graph-walking sampling method. That is, suppose a random ϕ ∈ ATF(n, q) 
has approximately qk-many projective points of rank r. Then for ϕ, ψ ∈ ATF(n, q) 

1/2·kthat are equivalent via A ∈ GL(n, q), one can sample q -many rank-r points 
1/2·kfor ϕ, and another q -many rank-r points for ψ. Then by the birthday para-

dox, with constant probability there exists a pair of points (u, v) from these two 
lists, such that A(u) = v. Combined with a Gröbner basis with partial informa-

ALTEQ [15]. 

tion procedure6 , this correspondence enables to recover the whole A. To sample 
rank-r points, Beullens invented the graph-walk sampling method, which allows 
for sampling e.g. corank-3 points for odd n more efciently than directly using 
min-rank for relatively small q. The major cost of this approach is usually the 

kcollision step, with time complexity q · poly(n, log q). 
The second algorithm is a birthday algorithm based on isomorphism invari-

ants. Such an algorithm was already proposed for the polynomial isomorphism 
problem by Bouillaguet, Fouque, and Véber in [17] for q = 2. Beullens observed 
that for radius-1 or 2 neighbours of corank-1 (for odd n) or corank-2 (for even n), 
the rank information should serve as a distinguishing isomorphism invariants. 
The major cost of this approach is the number of corank-1 or corank-2 points, 

n/2+cso Beullens estimated the running time as q · poly(n, log q). 

6 Beullens discovered that Gröbner basis with partial information still works well given 
(1) a correspondence between projective points, and (2) the kernel information of 
low-rank points. 
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5.2 An algorithm for ATFE based on a new isomorphism invariant 

The main innovation of our algorithm for ATFE is to associate distinguishing 
isomorphism invariants to low-rank points. 

Let ϕ : Fn × Fn × Fn → Fq. Suppose by Theorem 2, it is expected that thereq q q 
kare roughly q many û ∈ P(Fn), such that rkϕ(û) = r. Let us assume that thereq 

is an easy-to-compute, distinguishing, isomorphism invariant7 for those rank-r 
û. 

Then the algorithm goes as follows: frst sample O(qk/2)-many rank-r points 
for ϕ, and O(qk/2)-many rank-r points for ψ. For each point, compute this iso-
morphism invariant. Then by the birthday paradox, there exist one point û from 
the list of ϕ, and one point v̂ from the list of ψ, such that their isomorphism 
invariants are the same. Finally, use Gröbner basis with partial information for 
û and v̂ to recover the desired isomorphism. 

Following Equation 1, the running time of the above algorithm can then be 
estimated as 

k/2O(q · (samp-cost + inv-cost) + gb-cost), 

where samp-cost denotes the sampling cost, the inv-cost denotes the invariant 
computing cost, and gb-cost denotes the Gröbner basis with partial information 
cost. 

The sampling step can be achieved by either the min-rank method (Ap-
pendix A) or Beullens’ graph-walking method [12]. For the min-rank method, 
the cost of sampling a low-rank matrix can be estimated for concrete values of n, 
k, and r by e.g. [6,35,44]. For the graph-walking method, the sampling cost can 
be estimated based on certain statistics of graphs associated with alternating 
trilinear forms by Beullens [12, Theorem 1]. 

The gb-cost can be estimated as O(n6) as in [12]. This is based on the hybrid 
Gröbner basis method with the frst row known in the variable matrix. The 
efectiveness of this hybrid Gröbner basis method was frst discovered in [27] 
and then utilised in [17,42]. Beullens further improved this method by noting 
that (1) knowing the frst row up to scalar sufces, and (2) for low-rank points, 
the kernel information can be incorporated [12, Section 4]. 

The main innovation of the above algorithm is a new isomorphism invariant 
which we describe next. 

5.3 The isomorphism invariant step 

Suppose û ∈ P(Fqn) satisfes that rkϕ(û) = r. Then K := ker(ϕû ) ≤ Fqn is a 
dimension-(n − r) space, also preserved by any isomorphism. This allows us to 
consider the trilinear form ϕ̃ 

û : K × Fn × Fn → Fq, and it can be verifed easilyq q 
˜that the isomorphism type of ϕû under GL(K) × GL(n, q) is an isomorphism 

invariant. 

7 That is a function f from low-rank points to some set S, such that f (û) ̸= f(v̂) for 
û ̸= v̂, and f is unchanged by basis changes. 
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To use the isomorphism type of ϕ̃ 
û in the algorithm, we need the isomorphism 

types are (1) easy to compute, and (2) distinguishing; that is, for diferent û, v̂ ∈ 
P(Fnq ), ϕ̃ 

û and ϕ̃ 
v̂ are diferent. 

To verify these, we perform the following experiment in Magma [16]. 

1. Sample a random ϕ ∈ ATF(n, q). 
2. Sample a random rank-r point û ∈ P(Fn).q 

3. Sample t random rank-r points v̂ ∈ P(Fn). For each such point, do:q 

˜(a) Use the Gröbner basis with partial information to decide whether ϕû 

and ϕ̃ 
v̂ are isomorphic. 

Our experiments give the following. 

– For n = 9, r = 4, and p = 3, 10 experiments (i.e. for 10 û from 10 random 
alternating trilinear forms) with t = 100 comparisons (i.e. for 100 diferent 
v̂ to compare with û). On average, 75 out of 100 ϕ̃ 

v̂ are not isomorphic with 
ϕ̃û . 

– For n = 10, r = 6, and p = 3, 10 experiments (i.e. for 10 û from 10 random 
alternating trilinear forms) with t = 100 comparisons (i.e. for 100 diferent 
v̂ to compare with û). On average, 95 out of 100 ϕ̃ 

v̂ are not isomorphic with 
ϕ̃û . 

For n = 11, our code does not work for n = 11 on a laptop, due to the Gröbner 
basis step. 

From these experiments we see that (1) the Gröbner basis with partial in-
formation algorithm is efective in practice to test isomorphism between ϕ̃ 

û and 
ϕ̃ 
v̂ , and (2) as n goes from 9 to 10, the isomorphism type of ϕ̃ 

û becomes more 
distinguishing. These give some preliminary support that the isomorphism types 
of ϕ̃ 

û do serve as a easy-to-compute, distinguishing, isomorphism invariant. 
Note that testing isomorphism here is not enough, and canonical forms are 

required to serve as an isomorphism invariant. Even though to transform an 
isomorphism invariant algorithm to a canonical form one may not be an easy 
process, it is generally regarded as doable, at least from the experience from 
graph isomorphism [3]. 

5.4 Concrete estimations of this algorithm for ALTEQ parameters 

We show the improvement of our algorithm over Beullens’ algorithm for a set 
of ALTEQ parameters. In [15], n = 13 and q = 232 − 1 are used for the 128-bit 

(n−5)/2 11 n−7security. In this case, Beullens’ algorithm runs in time O(q ·n +q ·n6). 
As the major factor comes from qn−7 , the bit complexity is above 32 · 6 = 192. 
For our algorithm, using rank-(n−5) points, the time complexity is estimated as 

(n−7)/2O(q ·(samp-cost+ inv-cost)+gb-cost). The sampling cost can be estimated 
as in Appendix A based on [6], which is 32-bit complexity. The inv-cost and gb-
cost are lower than the sampling cost. So the total bit complexity of our algorithm 
is 32 · 3 + 32 = 128. 
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6 Quantum attacks 

We lower the run time exponent of our classical algorithms for MCE and ATFE 
on a quantum computer by a factor of 2/3. This speed up results from deploy-
ing Szegedy type quantum random walks to fnd collisions, but comes at the 
cost of exponential quantum space requirement. Therefore, there is reason to 
only consider the classical algorithms to tune the parameters of the cryptosys-
tems. We describe the quantum algorithms for ATFE in greater detail. The MCE 
case is analogous but a little easier, since there is no need for Gröbner basis 
computations. 

6.1 Collision detection through quantum random walks 

The frst collision detection quantum algorithms were due to Brassard, Høyer, 
and [18] 
[33]. 

Tapp and special to two-to-one functions, building on Grover’s search 
Ambanis removed these restrictions and devised improved collision detec-

tion algorithms through quantum random walks, that match lower bounds [2]. 
Szegedy further improved these algorithms and brought them under a unifed 
framework of quantum random walks with memory [41]. We will use Szegedy’s 
version of quantum random walks for the quantum speedups of classical algo-
rithms to the decision version ATFE. 

We frst paraphrase theorem 3 in [41], specialized to the oracle function being 
the identity. Let X be a fnite set and R ⊂ X × X a binary relation with a 
membership tester. For a positive real number α and a uniformly random subset 
H ⊂ X of size |X|α , let pα denote the probability that R ∩ (H × H) is non 
empty. There is a quantum algorithm to diferentiate between the cases pα = 0 
and pα ≥ ϵ in time O(|X|α + 1000

p
|X|α/ϵ). 

Extensions of Szegedy’s algorithm by Magniez, Nayak, Richter, Roland, and 
Santha [38,37] may be deployed to tackle the search version ATFE within the 
same running time. Another extension of Szegedy’s algorithm is to claw fnding, 
by Tani [43]. The claw fnding formalism is convenient to phrase ATFE in and 
infer polynomial speed ups. Let f : X → Z and g : Y → Z be two functions 
between fnite sets. Given oracle access to f and g, the claw fnding problem is to 
fnd an (x, y) ∈ X ×Y such that f(x) = g(y), if one exists. The functions may be 
presented either as standard oracles or as comparison oracles. We describe the 
later in the quantum setting, as they sufce. A comparison oracle maps quantum 
states 

?|x, y, b, w⟩ 7−→ |x, y, b ⊕ [f(x) > g(y)], w⟩. 

Here, b is a bit; x and y respectively index quantum states corresponding to 
elements in X and Y . Fixing an ordering on Z, [f(x) >? g(y)] is a bit that is one 
if and only if f(x) > g(y). The last register indexed by w is an ancilla for work 
space. For instances with X and Y of roughly the same size, Tani’s algorithm 

1/3
fnds claws on a quantum computer in time O((|X||Y |) ). 

In applying these quantum random walk algorithms, we will invoke generic 
algorithms applicable to functions on fnite sets presented as an oracle. For clarity 



23 Algorithms for Matrix Code and Trilinear Form Equivalences 

of exposition, we focus on speedups to the main exponential term and suppress 
incremental polynomial factors. 

6.2 Solving ATFE through quantum random walks. 

As a warm up, we frst describe quantum algorithms for ATFE that do not 
exploit our new invariants. Then, we build on these algorithms by incorporating 
the invariants to achieve the aforementioned run time exponent. 

A classical oracle from the Gröbner basis attack with partial information. First, 
consider the decision version of ATFE. That is, given two alternating trilinear 
forms ϕ and ψ, the existence of an A ∈ GL(n, q) such that ψ = ϕ ◦ A is in 
question. Central to all our methods is a polynomial time classical algorithm to 
test membership in the relation set 

Rϕ,ψ := {(û, v̂) ∈ P(Fn)2 | ∃A ∈ GL(n, q) such that ψ = ϕ ◦ A and A−1 û = v̂}.q 

If ϕ and ψ are not isomorphic, Rϕ,ψ is empty. A pair (û, v̂) ∈ P(Fn)2 satisfyingq 
A−1û = v̂ enforces n Fq-linear constraints on A. The Gröbner basis attack 
with partial information in [27], augmented with these linear constraints can 
tell in heuristic polynomial time if the pair (û, v̂) is in Rϕ,ψ . We henceforth 
make the same assumptions. This polynomial time classical algorithm to test 
membership can be converted to a polynomial sized quantum circuit that can 
test membership in superposition. Further, incorporate a time out clause into 
the membership algorithm to make the Gröbner basis methods stop searching 
and declare non existence. 

Invoke Szegedy’s algorithm with X as P(Fn), R as Rϕ,ψ, α as 1/3 and uni-q� � 
formly sampling an H ⊂ P(Fn) of size Θ qn/3 . We claim that the probability q � � −n/3gap may be taken to be ϵ = Ω q . To prove the claim, consider two iso-
morphic ϕ and ψ. That is, there exists at least one Aϕ,ψ ∈ GL(n, q) such that 
ψ = ϕ ◦ Aϕ,ψ . Therefore, � � 

−n/3Pr ((Rϕ,ψ ∩ (H × H)) ̸= ∅) ≥ Pr ((H ∩ Aϕ,ψ(H)) ≠ ∅) ≥ Ω q , 
H H 

proving the claim. In summary, we can tell if ϕ and ψ are isomorphic in time 
qn/3poly(n, log q) on a quantum computer. This strategy also tackles the promise 
search version ATFE within the same running time, thanks to extensions of 
Szegedy’s algorithm by Magniez, Nayak, Richter, Roland, and Santha [38,37]. 
An alternative is to solve ATFE by claw fnding. To phrase ATFE as claw fnding, 
independently draw uniformly random sets X ⊂ P(Fn) and Y ⊂ P(Fn), each ofq q 

size qn/2 . Take f : X → P(Fn) as the multiplication by A−1 map u 7−→ A−1uq 
and g : Y → Fn as the identity. The birthday paradox ensures for isomorphic ϕq 
and ψ that there is a solution to claw fnding with constant positive probability. 
The algorithm for testing membership in Rϕ,ψ from the previous subsection 
yields a comparison oracle. Tani’s algorithm for claw fnding solves ATFE in 
time qn/3poly(n, log q). 
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6.3 Low-rank birthday attacks on ATFE via quantum random walks 

We next describe how our invariant functions can be incorporated into the quan-
tum algorithms. For ϕ ∈ ATF(Fn) and v̂ ∈ P(Fn), let ϕ/v̂ denote the isomor-q q 
phism class of the restriction of ϕ to ker(ϕv̂ ) × Fn × Fn under the GL(ker(ϕv̂ )) ×q q 
GL(n, q) action. For a positive number R, let � 

SR := (ϕ, v̂) ∈ ATF(Fn) × P(Fn) | rk(ϕˆ ) = R .q q v 

The invariant function from section 5 then takes the form 

F1(ϕ, v̂) 7−→ ϕ/v̂. 

kFix the choice of rank R and let k be the exponent such that ∥Pϕ,R∥ = q . 
Assume that F restricted to SR is distinguishing. 

Let ϕ and ψ denote the two input trilinear forms with the existence of an 
A ∈ GL(n, Fq) such that ψ = ϕ ◦ A in question. Consider the relation set 

RF1 
ϕ,ψ := {(u, v) ∈ Pϕ,R 

2 | F1(ϕ, û) = F1(ψ, v̂)}. 

If ϕ and ψ are not isomorphic, then neither are their restrictions to ker(ϕv̂ ) × 
Fn ×Fn , implying RF1 is empty. If ϕ and ψ are isomorphic, by the distinguishing q q ϕ,ψ 
property of F1, with high probability, F1(ϕ, û) = F1(ψ, v̂) if and only if ∃A ∈ 
GL(n, q) such that ψ = ϕ ◦ A and A−1û = v̂. 

The invariance and the distinguishing property of F1 together ensure that 
with high probability, a random pair (û, v̂) ∈ RF1 is a witness to the iso-ϕ,ψ 
morphism of ϕ and ψ restricted to ker(ϕû ) × Fnq × Fnq . That is, there exists an 
A ∈ GL(n, q) such that v̂ = A−1û and A moves the restriction of ϕ to the re-
striction of ψ. In particular, A restricted to ker(ϕû ) acts in the frst dimension. 
Therefore, with (û, v̂) as the partial information, the Gröbner basis algorithm 
of [20,42] becomes a heuristic polynomial time test of membership in RF1 

ϕ,ψ. 

Invoke Szegedy’s algorithm with X ϕ,ψ , α as 1/3 and uni-as Pϕ,R, R as RF1 � � 
formly sampling an H ⊂ Pϕ,R of size Θ qk/3 . For isomorphic ϕ and ψ, there 
exists at least one Aϕ,ψ ∈ GL(n, q) such that ψ = ϕ ◦ Aϕ,ψ. Therefore, by the 
invariance and the distinguishing nature of F1, � � � � 

Pr (RF1 ∩ (H × H)) ≠ ∅ ≥ Pr ((H ∩ Aϕ,ψ(H)) ̸= ∅) ≥ Ω q −k/3 ,ϕ,ψ � � −k/3proving that the probability gap may be taken to be ϵ = Ω q . Therefore, 
for a rank parameter such that the sampling cost samp-cost is in polynomial 
time, the decision version of ATFE can be solved in qk/3poly(n, log q) time on 
a quantum computer. To tackle the promise search version ATFE within the 
same running time, applying the extensions of Szegedy’s algorithm by Magniez, 
Nayak, Richter, Roland, and Santha [38,37], the search version ATFE can also 
be solved in 

k/3 q · poly(n, log q) 
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time on a quantum computer. Curiously, it is not obvious if the claw fnding 
formalism in Tani’s algorithm can be adapted to the low-rank birthday attacks. 
If we can efciently derive canonical forms in addition to testing the isomor-
phism class of the restriction, then Tani’s algorithm apply immediately. The 
reason being that we can order the canonical form representatives and obtain a 
comparison oracle. 

6.4 Low-rank birthday attacks on MCE via quantum random walks 

Recall the notation from section 4. We next phrase MCE as claw fnding. Let 
ϕ, ψ be the two input isomorphic trilinear forms. Take X and Y as uniformly 

n/2random subsets of co-rank 1 projective points, each of size q . Take f as the 
¯ û 7−→ ϕ̄[û] map and g as the û 7−→ ψ[û] map. The birthday paradox ensures that 

there is a solution to claw fnding with constant positive probability. Invoking 
Tani’s algorithm solves MCE in qn/3poly(n, log q) time. 
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A Low-rank point sampling via min-rank step 

The sampling step can be done by either the min-rank method, or the graph-
walking method. The graph-walking method involves q, so it works best for 
relatively small q. When q is large, the min-rank method is more efective. To 
use min-rank to do sampling requires a bit of twist, so we record the idea here. 

Suppose we wish to sample a rank-r point v̂ ∈ P(Fn) for an alternating q 
ktrilinear form ϕ, and suppose that there are q -many rank-r projective points 

for a random ϕ. To sample such points, we make a heuristic assumption that 
the frst k coordinates of these rank-r points are in uniform random. Therefore, 
to sample one point, we can randomly choose the frst k coordinates and then 
resort to the min-rank procedure. 

More specifcally, for i ∈ [n], let Ai be the alternating matrix representing 
the bilinear form ϕei , where ei is the ith standard basis vector. Let xi, i ∈ [n],P 
be formal variables, and set A = i∈[n] xiAi. So for i ∈ [1 . . . k], let xi = αix1, 
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where αi ∈R Fq. This gives us a min-rank instance with n − k matrices of size 
n × n. 

To estimate the min-rank cost, we use the algorithm from [6]. Consider an 
(n, K, r) minrank instance, namely fnding a rank-r matrix in a linear span of 
K n × n matrices. First, we need to compute the smallest b such that b < r + 2 
and � �� � b � �� �� �Xn K + b − 1 n n + i − 1 K + b − i − 1 − 1 ≤ (−1)i+1 . 

r b r + i i b − i 
i=1 

Based on this b, the complexity is estimated as � � � �� n K + b − 1 � 
O K · (r + 1) · ( · )2 . 

r b 

For concrete values of n, K = n − k and r, the above formulas allow for the 
estimation of the concrete security parameters. 

Note that the min-rank instance above has some structural constraints due to 
alternating trilinear forms. As pointed in [12], 

[6] 
out such structures should impact 

[6] 
[6] 

the min-rank algorithm from adversely. Still, we use the estimates from 
as they should serve as a lower bound. We also compare the estimates from 
with the analysis of the Kipnis–Shamir modelling [35] in [44], and found the 

[6] 
ones 

from are lower. 


