
How Multi-Recipient KEMs can help the Deployment of
Post-Quantum Cryptography

Joël Alwen1, Matthew Campagna1, Dominik Hartmann2, Shuichi Katsumata3,4, Eike
Kiltz2, Jake Massimo1, Marta Mularczyk1, Guillermo Pascual-Perez5, Thomas Prest3,

and Peter Schwabe6

1Amazon Web Services
2Ruhr University Bochum

3PQShield
4AIST

5Institute of Science and Technology Austria (ISTA)
6Max Planck Institute for Security and Privacy, Radboud University Nijmegen

Abstract. The main purpose of this work is to raise awareness about a primitive that
can provide large efficiency gains in post-quantum cryptography: multi-recipient KEMs, or
mKEMs. In a nutshell, when encapsulating a key to N parties, an mKEM generates a single
ciphertext that can be decapsulated by all parties. The size of an mKEM ciphertext can be
significantly smaller than the sum of the sizes of N KEM ciphertexts. Moreover, individual
receivers only need a small part of the mKEM ciphertext to run decapsulation.
We then propose mKyber, a very compact mKEM based on Kyber. Asymptotically, the size
of an mKyber multi-recipient ciphertext is 16 times smaller than the sum of the sizes of N
Kyber ciphertexts. The algorithmic description and parameters of mKyber and Kyber are
very similar, which facilitates the re-use of existing security analyses, implementations, and
formal verification tools that have been developed for Kyber.
Finally, we showcase some selected applications. mKEMs can be used to greatly reduce the
bandwidth cost of the group key agreement protocol underlying the Message Layer Security
(MLS) secure group messaging standard. Reducing bandwidth is one of the primary design
considerations for MLS. More fundamentally, mKEMs reduce the cost of broadcasting private
information to groups of recipients (e.g. a fleet of Cloud Hardware Security Modules).

1 Introduction

In July, 2022, NIST selected their first post-quantum standards for key agreement and (state-
less) signature: the key encapsulation mechanism (KEM) Kyber [SAB+22], and the signature
schemes Dilithium [LDK+22], SPHINCS+ [HBD+22] and Falcon [PFH+22]. While this will
greatly speed up the transition of existing systems to post-quantum cryptography (PQC),
some challenges will still need to be addressed in the process.
One of the main challenges in this transition process is the overhead in communication cost.
For 128 bits of classical security, the size of an ECDH public key is 32 bytes, whereas the size
of a Kyber ciphertext is 768 bytes, which is 24 times larger. This means that protocols that
make an extensive use of key exchange or key encapsulation will require more bandwidth
when migrating to PQC; such protocols include the IETF standard MLS [BBR+23], or
broadcast protocols. This additional cost may require to scale up the bandwidth capabilities
of the systems deploying these protocols, a cost that not all end users will be able to shoulder.

Multi-recipient KEMs (mKEMs). Fortunately, a simple primitive can help to ad-
dress some of the scalability challenges faced by PQC: multi-recipient KEMs, or mKEMs.
When encapsulating one key K to N distinct encapsulation keys (eki)i∈[N], the straightfor-
ward solution is to send N distinct ciphertexts cti – one for each eki. With a mKEM, one

2 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

may instead generate a single ciphertext ct⃗ that can be decrypted by all recipients. For a
formal definition, see Section 2.
What makes mKEMs appealing for PQC is the massive efficiency gains they can provide.
Recent works [KKPP20, HKP+21, AHK+23] have shown that lattice-based mKEMs can be
asymptotically (in N) one or two orders of magnitude more compact than the use of N
KEMs in parallel.

mKyber: a Kyber-based mKEM. We demonstrate the potential of mKEMs by
proposing mKyber, a mKEM construction based on Kyber. When encrypting the same mes-
sage to a large number of recipients, mKyber can be up to 16 times more compact than
Kyber, with an amortized cost of 48 bytes per recipient compared to 768 bytes per recipient
for Kyber. The algorithmic description and parameters of mKyber are very similar to those
of Kyber. From an implementation perspective, it means that existing implementations of
Kyber can be easily repurposed to implement mKyber, even in the case of highly optimized
and/or platform-specific implementations. From a security evaluation perspective, security
proof techniques and formal verification tools can be adapted. See Section 3 for more details.

amKyber: an even more secure mKEM. mKyber already enjoys the standard
notion of IND-CCA security. However, in some settings a stronger notion of IND-CCA
security with adaptive corruptions may be desired. Roughly, the latter requires IND-CCA
security against an attacker that can adaptively leak mKEM secret keys. This is particularly
important in applications using long-term mKEM key pairs. We therefore present amKyber,
adapted from [AHK+23], which satisfies the stronger security notion. The amKyber public
keys are only 256 bits larger than those of mKyber and the ciphertexts are only twice larger,
i.e. 8 times more compact than for Kyber. The algorithms of amKyber are built by adapting
in a simple way the building blocks of mKyber: the IND-CPA secure encryption scheme and
the FO transform. Therefore, amKyber is easy to implement given an mKyber implementation
and security proofs and formal verification tools for mKyber can be adapted.

Application: MLS and its variants. An immediate application of (post-quantum)
mKEMs is to reduce the bandwidth cost of post-quantum deployments of secure group
messaging such as the Messaging Layer Security (MLS) protocol (IETF RFC 9420 [BBR+23]).
Minimizing bandwidth has been a primary design goal for MLS in the interest of scalability
and supporting devices connected over low bandwidth networks (e.g. 2G cell phone networks).
MLS was also designed specifically to make post-quantum secure deployments as easy as
possible.1

The MLS use case is particulary significant as MLS is proving to be an unexpectedly versatile
tool with use cases already reaching well beyond its original domain of human-to-human
secure messaging. MLS’s scalable key agreement functionality for dynamic groups means it
will serve as a key component underpinning higher-level multi-party cryptographic protocols
such as Group Private Set Intersection, Privacy Preserving Federated Learning and end-
to-end encrypted real-time voice/video communication. Its efficiency is also making it an
attractive tool for IoT fleet command, control and coordination.
We show that mKEMs can greatly improve the scalability of MLS. Events such as removal
of users can affect the efficiency of (standard) MLS, and mKEMs provide a simple way
to mitigate this. In addition, the flexibility of mKEMs allows to come up with optimized
variants of MLS. See Section 4 for more details.

Application: broadcast. The private broadcast functionality of mKEMs is a funda-
mental one. As such, post-quantum mKEMs have applications outside of MLS. For example,
mKEMs allow for more efficient synchronization of fleets of (cloud based) Hardware Security
Modules (HSMs). Such fleets underpin the security of major cloud providers. Privately syn-
chronizing secret states across HSM fleets is indispensable for ensuring reliable operations
and preventing loss due to hardware failure. See Section 5 for more details.

1For example, this consideration was an important driver for the MLS working group’s switch from the initial
ART sub-protocol relying on Diffie-Hellman based Non-Interactive Key Agreement to the TreeKEM design, which
instead made use of generic KEMs.

3

2 What is an mKEM?

2.1 Syntax

A multi-recipient key-encapsulation mechanism (mKEM) allows encapsulating a single key
for multiple recipients. It consists of the following algorithms.
Parameter Generation: mKEM.Setup() → pp returns a fresh public parameter pp.
Key Generation: The key generation algorithm mKEM.Keygen(pp) → (ek, dk) takes as

input a public parameter pp returns a fresh public/secret key pair (ek, dk).
Encapsulation: The (multi-recipient) encapsulation algorithm mKEM.Encap(pp, (eki)i∈[N]) →

(ct⃗,K) takes in a sequence (of any length n > 0) of public keys and outputs a (multi-
recipient) ciphertext ct⃗ and an encapsulated key K.

Extract: The deterministic algorithm mKEM.Ext(pp, i, ct⃗) → cti takes as input a position
index i and a multi-recipient ciphertext ct⃗ and returns an individual ciphertext cti for
the i-th recipient.

Decapsulation: The decapsulation algorithm mKEM.Decaps(pp, dki, cti) → K/⊥ takes as
input a secret key dki and an individual ciphertext cti. If decapsulation succeeds it
returns the encapsulated key K (else ⊥).

If the size of the individual ciphertext cti output by mKEM.Ext is independent of N , then
we say that the mKEM is efficiently decomposable.

2.2 Security

We now define IND-CCA security for mKEMs, through what is a straightforward adaptation
of the standard KEM security definition, with the difference that the adversary now gets
challenged on a set of keys of its choosing, instead of a single public key. Our definition
distinguishes between two different flavors, depending on whether (adaptive) corruptions by
the adversary are allowed. Even though no specific attacks exploiting adaptive corruptions
are known, the distinction is meaningful: known proof techniques for the weaker security
notion fail when corruptions are allowed due to the so-called commitment problem. This is
discussed further in Section 2.3.

The security experiment is described in Fig. 1. Roughly, it illustrates a game between a
challenger and a stateful adversary A that runs in two parts. The first one, A1, gets a list of
N public keys of an mKEM, of which it selects a subset on which it wants to be challenged.

∗Then, A2 is given a ciphertext vector ct⃗ and a key K∗ , and must decide whether K∗ is a
∗ ∗random key, independent of ct⃗ , or ct⃗ is an encapsulation of K∗ under the subset of keys

chosen by A1. In order to succeed, the adversary can make use of a state shared between both
of its parts, as well as a decryption oracle, which allows it to query for decryptions of any
ciphertext under any key, provided the query is not part of the challenge. For the stronger
security notion where adaptive corruptions are allowed, A is additionally given access to a
corruption oracle, which simply returns the secret key of the queried key-pair. Finally, the
adversary wins if it guesses correctly without having corrupted any of the keys from the
challenge set.

Definition 1. Let mKEM be an mKEM scheme and N an integer. We say that mKEM is
IND-CCA secure if, for all adversaries A running in polynomial time,

Pr[ExpIND-CCA
mKEM,N,1(A) → 1] − Pr[ExpIND-CCA

mKEM,N,1(A) → 0]

is negligible in the security parameter.

2.3 Security with Adaptive Corruptions

Adaptive corruptions allow an adversary to decide, on the fly, what to corrupt depending
on its full view (e.g. including public parameters, keys and ciphertexts). This makes it a
strong, yet realistic type of adversary which is why various regular KEM and PKE schemes
have been the subject of security analyses in adaptive corruptions models. For example,

4 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

Alg. 1 Experiment ExpIND-CCA Alg. 2 Oracle Dec(i ∈ [N], ct)
mKEM,N,b(A)

1: if ct ∗ ≠ ⊥1: (A1, A2) ← A
2: if ∃j i∗ = i ∧ ct = mKEM.Ext(pp, j, ct ∗)2: pp ← mKEM.Setup() j
3: return ⊥3: for i ∈ [N] do
4: return mKEM.Decaps(pp, dki, ct)4: (eki, dki) ← mKEM.Keygen(pp)

5: C ← ∅
6: ((i∗ ∈ [N])j∈[n], st) ← A1

O(pp, (eki)i∈[N])j
∗

7: (ct⃗ ,K0
∗) ← mKEM.Encap(pp, (eki∗)j∈[n])

8: K1
∗ ← {0, 1}κ

j

Alg. 3 Oracle Cor(i ∈ [N])
∗

9: b ′ ← AO
2 (st, ct⃗ ,Kb

∗) 1: C ← C ∪ {i}
10: return b = b ′ ∧ {ij ∗ | j ∈ [n]} ∩ C = ∅ 2: return dki

Figure 1: IND-CCA security experiments for mKEM. With (adaptive) corruptions
(IND-CCAa-mu), the oracle set is O := {Dec, Cor}. Without corruptions (IND-CCAmu),
the oracle set is O := {Dec}.

their security is often analyzed in the multi-user setting, e.g. [BBM00, ABH+21]. Here,
the IND-CCA adversary chooses which out of N (independently generated) key pairs to
challenge. Thus we can define two multi-user security notions for an mKEM: the standard
non-adaptive notion IND-CCAmu in which the adversary decides prior to receiving any inputs
which keys it will corrupt and IND-CCAa-mu, the strictly stronger adaptive notion in which
the adversary can decide on the fly as the execution progresses which (non-challenge) secret
keys to corrupt.2 We depict both in Figure 1.

Security proofs of mKEMs and KEMs typically consider IND-CCAmu, e.g. [BBM00, ABH+21,
Kur02, BBS03, BBKS07, PPS14, KKPP20]. For Diffie-Hellman (DH) based schemes this
allows proving tighter security bounds, i.e., the security loss of the reduction to the DH
assumption does not depend on N , see e.g. in [ABH+21] (HPKE) or in [Kur02] (a DHIES-
based mKEM). Note that this affects the choice of concrete parameters for the scheme. The
above proof techniques (which all use random self-reducibility) cannot be used to prove tight
IND-CCAa-mu security. To the best of our knowledge, all reductions to date proving IND-
CCAa-mu of KEMs or mKEMs lose either the factor N (using the standard hybrid argument)
or at least the number of corrupted keys [AHKM22].

For the case of mKyber we do not know of any proof of IND-CCAa-mu where the reduction
has a non-exponential security loss in N (resulting from guessing the set of corrupted keys).
We stress that, we believe it to be very unlikely that there is an actual attack on mKyber
exploiting adaptivity in the multi-user setting. Instead, our current proof techniques do not
work here for a technical (i.e. the so-called “commitment”) problem. It is possible that new
proof techniques could be used in the future to prove IND-CCAa-mu of mKyber.
We also note that in applications where key pairs live for very short time periods, which
makes corruptions unlikely, IND-CCAmu can be sufficient. This is the case e.g. for TLS. In
contrast, for applications like MLS we can expect keys to live for significantly longer periods
of time, especially in large groups.

3 Kyber-based mKEMs

This section defines two mKEM constructions: mKyber in Section 3.1 and amKyber in Sec-
tion 3.2. The latter is secure with (adaptive) corruptions but slightly less efficient. We also

2Outside this section we use the term IND-CCA to refer to either, for simplicity. Which one is meant will be
clear from the context.

5

propose in Section 3.3 concrete parameters for mKyber and amKyber. Assuming there are
many recipients, instantiating (a)mKyber with these parameters results in shorter ciphertexts
over instantiating them with the parameters of Kyber (which would be secure, though).

3.1 The mKyber Construction

Simplifications. For conciseness, the description of Kyber in Fig. 2 is heavily simplified
compared to the one in [SAB+22]. For example:

• Some calls to hash functions or PRFs are omitted or merged together;
• We assume that A is part of ek. For compactness, in practice ek instead contains a

seed seedA, which can be extended to A by passing it into a XOF: A := XOF(seedA).
• We simplify details relative to the bit representation of mathematical objects. We also

omit transitions between the NTT representation and the coefficient representation.

Making A part of the public parameters. In MLWE-based KEMs such as Kyber,
the matrix A is different for each keypair. For mKyber, the matrix A is the same for all
keypairs in order to enable the benefits of mKEMs. See also [KKPP20].

Syntax. As explained in (previous section), the syntax of mKEMs is different than for
regular KEMs. The encapsulation procedure (Algorithm 7) now takes N encapsulation keys
instead of one as in a regular KEM (Algorithm 6).
Also note that for mKEMs, the encapsulation procedure outputs a multi-recipient ciphertext()
ct⃗ := u, (vi)i∈[N] , but a user with the decryption key dki only needs the partial ciphertext
cti = (u, vi) as input to its decapsulation procedure (Algorithm 9).

Decomposable CCA transform. Our mKEM construction is efficiently decompos-()
able, allowing to convert a multi-recipient ciphertext ct⃗ := u, (vi)i∈[N] of size O(N) into a
single-recipient ciphertext cti = (u, vi) of size O(1), where u is independent of the encryption
keys. Decomposability [KKPP20] can be exploited for further efficiency gains, see Section 4
In order to achieve decomposability in a CCA setting, we also require a CCA transform
with a decomposable flavor. To this effect, we replace the Fujisaki-Okamoto transform
[FO13, HHK17] used in Kyber by a decomposable variant introduced in [KKPP20].

3.2 The amKyber Construction Secure with Adaptive Corruptions

This section describes a variant of mKyber called amKyber, proposed in [AHK+23], which
achieves the stronger adaptive security notion of IND-CCAa-mu defined in Figure 1. We
describe amKyber in Figs. 3 and 4.

Like mKyber (and Kyber), the amKyber mKEM is built by applying an FO transform to an
underlying CPA secure mPKE (or PKE in the case of Kyber). As shown in [AHK+23], the FO
transform preserves the (quantum and classic) adaptive security of the underlying mPKE
resulting in an adaptively secure mKEM. Thus, en lieu of the mPKE underlying mKyber
(which we shall call mKyberPKE), we use one called amKyberPKE which [AHK+23] shows to
be an adaptively secure IND-CPA mPKE. amKyber is then obtained from amKyberPKE by
applying the same FO as produces mKyber from mKyberPKE.

In more detail, amKyberPKE adapts to the mPKE setting, the ideas of [GW09] for building
adaptively-secure broadcast encryption. At a high level, amKyberPKE runs two parallel in-
stances of mKyberPKE. In particular, an amKyberPKE public key consists of two mKyberPKE
public keys, bl (left) and br (right) but the corresponding amKyberPKE secret key contains
just one of the two matching mKyberPKE secret keys. Which one is chosen privately and
at random during key generation. As such, we can use an alternative public key generation
method for the other key pair which does not produce the corresponding secret key but
therefore allows for a more compact representation of the resulting amKyberPKE public key.
Namely, rather than encoding the two mKyberPKE public keys explicitly as (bl, br), they
are instead encoded as the (much shorter) pair (bl, seed) where seed is a string of 256 bits.
Together they define the second public key to be br := HashToEk(seed) − bl where HashToEk

6 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

Alg. 4 Kyber.Keygen (pp)

1: seed ← {0, 1}256

← {0, 1}2562: seed ′

3: A, s, e := PRF(seed ′) ▷ A ∈ Rk×k
q

4: b := A · s + e ▷ b, s, e ∈ Rk
q

5: ek := (A, b)
6: dk := (s, ek, seed)
7: return ek, dk

Alg. 6 Kyber.Encap (ek = b)

1: msg ← {0, 1}256

2: msg := H(msg)
3: (K ′ , coin) := G(msg, H(ek))

′ ′′ 4: r, e , e := PRF(coin)
′ ′ ∈ R1×k▷ u, r, e q5: u := r · A + e

Alg. 8 Kyber.Decaps (dk, ct = (u, v))

1: (s, b, seed) ← dk
2: u := Decompress(u, du)
3: v := Decompress(v, dv)
4: msg := Decode(v − u · s)
5: (K ′ , coin) := G(msg, H(ek))

′ ′′ 6: r̄, ē , ē := PRF(coin)

Alg. 5 mKyber.Keygen(pp ∋ A)

1: seed ← {0, 1}256

← {0, 1}2562: seed ′

3: s, e := PRF(seed ′)
4: b := A · s + e
5: ek := b
6: dk := (s, ek, seed)
7: return ek, dk

()
Alg. 7 mKyber.Encap (eki = bi)i∈[N]

1: msg ← {0, 1}κ

2: msg := H(msg)
3: K ′ := H(msg)
4: coin := G1(msg)
5: r, e ′ := PRF1(coin)

′′′ ′′ 6: v := r · b+e +Encode(msg) ▷ v, e ∈ Rq 6: u := r · A + e
7: u := Compress(u, du) u := Compress(u, du)7:

8: v := Compress(v, dv) 8: for i ∈ [N] do
9: return ct := (u, v),K := KDF(K ′ , ct) 9: coini := G2(eki, msg)

10: e′′ i := PRF2(coini)
11: vi := r · bi + e′′ i + Encode(msg)
12: vi := Compress(vi, dv)()
13: ct⃗ := u, (vi)i∈[N]

′ 14: return ct⃗,K := KDF(K , ct)

()
Alg. 9 mKyber.Decaps dki, cti = (u, vi)

1: (si, bi, seedi) ← dk
2: u := Decompress(u, du)
3: vi := Decompress(vi, dv)
4: msg := Decode(vi − u · si)
5: K ′ := H(msg)
6: coin := G1(msg)

R
e-

en
cr

yp
tio

n

12: if ct̄ = ct 12: ū := Compress(ū, du)
′ 13: return K := KDF(K , ct) 13: v̄i := Compress(v̄i, dv)

14: else 14: ct̄ i := (ū, v̄i)
15: return K := KDF(seed, ct) 15: if ct̄ i = cti

16: return K := KDF(K ′ , cti)
17: else
18: return K := KDF(seedi, cti)

R
e-

en
cr

yp
tio

n′ ′ 7: ū := r̄ · A + ē := PRF1(coin)7: r, e
′′ v̄ := r̄ · b + e + Encode(msg) coini := G2(eki, msg)8: 8:

e ′′ i := PRF2(coini)
′

9: ū := Compress(ū, du) 9:

u := r · A + ev̄ := Compress(v̄, dv) 10: 10:
′′¯ vi := r · bi + ei + Encode(msg)ct := ū, ̄v 11: 11:

Figure 2: Side-by-side comparison of Kyber (Algorithms 4, 6 and 8) and mKyber
(Algorithms 5, 7 and 9). The main algorithmic differences are highlighted, and we
discuss them in Section 3.1.

7

is a public hash function mapping seeds to public keys. To generate an amKyberPKE key
pair first choose a uniform random seed. Next flip a fair coin and, depending on the outcome,
generate either (dkl, bl) or (dkr, br) using mKyberPKE key generation algorithm. Finally, set
remaining mKyberPKE public key such that bl := HashToEk(seed) − br.

Alg. 10 amKyber.Keygen(pp = A)

1: (ek ′ , dk ′) := mKyber.Keygen(pp)
2: seed ← {0, 1}256

3: swpEk ← {0, 1}
4: if swpEk = 1
5: ek ′ := HashToEk(seed) − ek ′

6: return ek := (ek ′ , seed), dk := (dk ′ , swpEk, ek ′ , seed)

() ()
Alg. 11 mKyber.Encap (eki = bi)i∈[N] Alg. 12 amKyber.Encap (eki)i∈[N]

1: msg ← {0, 1}κ

2: msg := H(msg)
′ 3: K := H(msg)

4: (u, ∗) := CpaEncU(msg)
5: for i ∈ [N] do
6: vi := CpaEncV(msg, eki, G2(msg, eki))()
7: ct⃗ := u, (vi)i∈[N]

′ 8: return ct⃗,K := KDF(K , ct)

1: msg ← {0, 1}κ

2: msg := H(msg)
K ′ 3: := H(msg)

4: msgl, msg := G3(msg)r
5: (ul, ∗) := CpaEncU(msgl)
6: u := (ul, ur)
7: (ur, ∗) := CpaEncU(msg)r
8: for i ∈ [N] do
9: (bl, seed) := eki

10: br := HashToEk(seed) − bl

11:

12:

swpC := G4(msg, eki) ∈ {0, 1}
if swpC = 1

13: (bl, br) ← (br, bl)

14: vl := CpaEncV(msg, bl, G2(msgl, eki))
15: vr := CpaEncV(msg, br, G2(msg , eki))r
16: vi := (vl, vr, swpC)()
17: ct⃗ := u, (vi)i∈[N]

′ 18: return ct⃗,K := KDF(K , ct))

Figure 3: Key generation of amKyber (Algorithm 10) as well as a side-by-side com-
parison of the encapsulation of mKyber (Algorithm 11) and amKyber (Algorithm 12).
The main algorithmic differences are highlighted, and we discuss them in Section 3.2.

To encrypt msg to multiple recipients, amKyberPKE also runs mKyberPKE’s encryption twice:
It first generates two vectors u called ul and ur. Then, for each recipient, it flips a fair coin
(using the random oracle on msg as required by the FO transform) to decide which of the
recipient’s keys, bl or br, goes to the recipients left mKyber instance (i.e. with public key ul)
and which goes to the right instance. To decrypt msg, the recipient in amKyberPKE runs
mKyberPKE with the secret key it knows and the corresponding invocation indicated by the
sender.

Security. amKyber uses the same parameters as mKyber. The adaptive security proof of
amKyber can be found in [KKPP20, AHK+23]. In particular, [KKPP20] proves mKyberPKE
to be (non-adaptively) IND-CPA secure mPKE. Next, in [AHK+23] proves their transfor-
mation of mKyberPKE into amKyberPKE results in an adaptively IND-CPA secure mPKE.

8 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

()
Alg. 13 mKyber.Decaps dki, cti = (u, vi)

1: (si, bi, seedi, ek ′) ← dk
2: u := Decompress(u, du)
3: vi := Decompress(vi, dv)
4: msg := Decode(vi − u · si)

′ 5: K := H(msg)
6: (ū, ∗) := CpaEncU(msg)
7: v̄ := CpaEncV(msg, bi, G2(msg, eki))
8: ct̄ i := (ū, ̄v)
9: if ct̄ i = cti

′ 10: return K := KDF(K , cti)
11: else
12: return K := KDF(seedi, cti)

Alg. 15 CpaEncU(msg)
′ 1: r, e := PRF1(G1(msg))

′ 2: u := r · A + e
3: u := Compress(u, du)
4: return (u, r)

Figure 4: Side-by-side comparison of decapsulation of mKyber (Algorithm 11) and
amKyber (Algorithm 12). The main algorithmic differences are highlighted, and we
discuss them in Section 3.2.

()
Alg. 14 amKyber.Decaps dki, cti = (u, vi)

1: (dk ′ , swpEk, bl, seed) := dki
2: br := HashToEk(seed) − bl

3: (vl, vr, swpC) := vi
4: (ul, ur) := ui
5: eki := (bl, seed)
6: if swpEk XOR swpC = 0
7: side := l
8: else
9: side := r

10: (s, b, seed) := dk ′

11: u := Decompress(uside , du)
12: v := Decompress(vside , dv)
13: msg := Decode(v − u · s)
14: K ′ := H(msg)
15: msgl, msg := G3(msg)r
16: for side ∈ {l, r} do
17: (ūside, ∗) := CpaEncU(msgside)
18: coin := G2(msgside, eki)
19: v̄side := CpaEncV(msg, bside, coin)

20: swpC := G4(msg, eki)
21:

22:

if (ūl, ̄vl, ̄ur, ̄vr, swpC) = (ul, vl, ur, vr, swpC)
return K := KDF(K ′ , cti)

23: else
24: return K := KDF(seedi, cti)

Alg. 16 CpaEncV(msg, eki = bi, coini)

1: (∗, r) := CpaEncU(msg)
′′ 2: ei := PRF2(coini)

′′ 3: vi := r · bi + ei + Encode(msg)
4: return vi := Compress(vi, dv)

9

The same paper also proves that the FO transform of [KKPP20] applied to amKyberPKE
produces amKyber; an adaptively IND-CCAa-mu secure mKEM. We note that all of the above
security statements hold both against classical and quantum adversaries.
Together, these results provide strong evidence for the security of amKyber design.

Efficiency. An amKyber public key has only 256 bits in addition to an mKyber public key.
An amKyber ciphertext is twice larger than an mKyber ciphertext. Note that asymptotically,
amKyber is still 8 times smaller than the sum of sizes of N Kyber ciphertexts.

3.3 Parameters Selection

In Table 1, we propose concrete mKyber parameters targeting the NIST security level I (at
least as hard as key-recovery on AES-128). As discussed in Section 1, the parameters are
largely similar to those of Kyber; we only tweaked the parameters (du, dv, |msg|), as it allows
to greatly decrease the size of |v|. While Kyber and mKyber are largely similar, the mKEM
setting impact both the efficiency analysis and the security analysis. We analyse both of
them separately.

Table 1: Parameter sets of Kyber512 and mKyber512.

Parameters Sizes in bytes
q n k η1 η2 du dv |msg| |ek| |u| |v|

Kyber512 3329 256 2 3 2 10 4 32 800 640 128
mKyber512 3329 256 2 3 2 11 3 16 768 704 48

Efficiency. Let us note |x| the size in bytes of an object. In the KEM regime, it is of
interest for most applications to minimize the ciphertext size |ct|, the encapsulation key
size |ek|, or some linear combination of the two. In the mKEM regime, a multi-recipient ()
ciphertext is of the form ct⃗ := u, (vi)i∈[N] . Therefore there is a high incentive to minimize
|vi|, since asymptotically |ct⃗ | ∼ N · |vi|. There are a few tricks we can use to minimize |vi|.

1. Shorter msg. In Kyber, the message msg is 256 bits long across all parameter sets.
However, if we note κ is the targeted bit-security level (i.e. κ ∈ {128, 192, 256} for the
NIST level I, III, V), it suffices to take a message of κ bits.

2. Coefficient dropping. When applying the previous idea, we only need to encode κ
bits in a polynomial vi of 256 coefficients. We only need to send κ coefficients of vi
instead of n coefficients. In effect, this divides |vi| by factor 256/κ, which is a factor
two when κ = 128.

3. Bit dropping. It is customary to apply bit dropping on u and v. This is parametrized
by du and dv, which are the number of bits sent per coeffient of u and vi, respectively.
The bitsize of vi is therefore κ · dv.
Since our goal is to minimize |vi|, we reduce dv from 4 to 3. This increases the decryption
failure rate (DFR), so we increase du from 10 to 11 in order to keep the DFR low.

Putting these optimisations together, we manage to obtain |vi| = 48.

Security. Both Kyber and mKyber rely on MLWE for the security of the encapsulation
key. For the ciphertext, due to the simultaneous presence of additive noise and rounding
(via Compress), they both rely on a hybrid between MLWE and MLWR which we will call ()
MLWER. The major difference is that a mKyber multi-ciphertext ct⃗ := u, (vi)i∈[N] contains
a number of MLWER samples that is affine in N . This new parameter has varying impacts on
the existing methods to solve MLWE, MLWR and MLWER. There are roughly three families
of such methods:

1. Lattices. Methods based on (primal or dual) lattice reduction are usually the most
relevant for most parametrizations of lattice-based schemes. For these methods, having
a large number of samples provide results little to no advantage.

10 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

2. Algebraic. Algebraic methods, such as Arora-Ge and its variants, rely on linearization.
They require a large number of samples: (k · n)D, where D is the size of the support of
the errors (both due to additive noise and to rounding). While the required number of
samples is too large in the KEM regime, mKEM ciphertexts contain a large number of
MLWER samples. The relevance of Arora-Ge therefore needs to be re-assessed.
Fortunately, the ciphertexts in mKyber are very noisy. Indeed, each vi undergoes heavy
bit dropping on each coefficient, see Table 1. This makes the required number of
samples much larger than 2κ, which rules out the Arora-Ge attack in its current form.

3. Combinatorial. Combinatorial methods, such as BKW, combine lattice attacks and
guessing. Like Arora-Ge, BKW and its variants need a large number of samples and
therefore need to be considered for mKyber. Fortunately, they are also very sensitive
to the size of the errors’ supports. Due to the heavy rounding performed on the vi,
BKW requires an intractable number of samples and is in effect inoperative against the
parameters in Table 1.

A fully detailed discussion on the security analysis of mKEMs against known attacks can be
found in [HKP+21, Appendix G]. The insights and trade-offs discussed in this section are
summarized in Table 2.

Table 2: Impact of parameters on security and performance metrics. Terminology:
↗ (resp. =, resp. ↘) indicates that increasing this parameter has a positive (resp.
essentially neutral, resp. negative) impact on the considered metric.

Communication cost Correctness Ciphertext security
ek u Arora-Ge BKW Latticevi

N = = = = ↘ ↘ =
q ↘ = = ↗ = = ↘
n ↘ ↘ = ↘ ↗ ↗ ↗
k ↘ ↘ = ↘ ↗ ↗ ↗

= = = ↘ ↗ ↗ ↗η1

= = = ↘ ↗ ↗ ↗η2

= ↘ = ↘ ↗ ↗ ↗du

= = ↘ ↘ ↗ ↗ ↗dv

4 Application: MLS and its Variants

MLS and TreeKEM. Messaging Layer Security (MLS), is a protocol for end-to-end
security. MLS has been standardized by IETF under RFC 9420 [BBR+23] in March 2023,
and enjoys the support of several industry actors (Google, Amazon, Cisco, etc.).
The notion of continuous group key agreement (CGKA) was put forward to capture the
notion of secure group management which lies at the core of secure group messaging and
other protocols. The main function of a CGKA is to ensure the secure distribution of a
shared key K inside a group of N users connected to an untrusted server. A CGKA must
be able to support the addition or removal of users to the group, as well as properties such
as forward secrecy and post-compromise security.
Inside MLS, the sub-protocol TreeKEM3 performs the function of a CGKA. In TreeKEM,
the N users inside a group are positioned at the leaves of a binary tree called the ratchet
tree, see Fig. 5a. To each node i of the ratchet tree is associated an encapsulation keypair
(eki, dki). The ratchet tree maintains the following tree invariant [BBR+23, §4.2]:

(TI) “The private key for a node in the tree is known to a member of the group if and only
if the node’s subtree contains that member’s leaf.”

3While the term “TreeKEM” itself does not appear in the MLS RFC [BBR+23], it is implemented through
the concept of “ratchet trees”. The term TreeKEM is commonly used as shorthand in research articles to refer to
this particular part of MLS. We follow the same practice here.

9

11

A critical operation in MLS/TreeKEM consists of a user refreshing their cryptographic keys
inside the ratchet tree. They do so via the following steps:

1. Generate a node secret s0 for their leaf node;
2. For each node i in their direct path, i.e. the path from their leaf node to the root,

starting from the leaf node, use the node secret si as follows:
(a) Pass si into a PRF to derive its parent node’s secret sparent(i) = si+1 (except when

i is the root).
(b) Pass si through a PRF with a different input than in Item 2a and use the output

to derive a KEM key pair (eki, dki).
(c) Compute a ciphertext cti encrypting si+1 under the encapsulation key of the sibling

node of i using the KEM-DEM paradigm and concretely HPKE, defined in RFC
9180 [BBLW22]. (Except for the leaf node)

3. Broadcast a commit message containing all the (eki, cti) for i on the path of the user.
One can show that this preserves the tree invariant (TI). This method enjoys great communi-
cation complexity; a commit message contains ⌈log N⌉ public keys and as many ciphertexts.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(a) TreeKEM, complete ratchet tree

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

(b) TreeKEM after a user has been removed and
their direct path blanked out. The three boxed
ciphertexts encrypt the same value: the node secret
of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2 3 41 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

(c) m-ary TreeKEM [KKPP20], full ratchet tree (d) Chained CmPKE [HKP+21]

Figure 5: Illustration of the refresh operation for four scenarii (involving three dis-
tinct CGKAs). In each scenario, the leftmost user refreshes their cryptographic keys
by broadcasting a commit message. Each figure highlights the nodes for which the
commit message contains a public key () or a ciphertext (). When k ciphertexts
encrypt the same message, they are regrouped in a same box (); when this is
the case, we may use a mKEM multi-ciphertext instead of k KEM ciphertexts.

Blanking. When a user j is removed from a group in TreeKEM, in order to preserve the
tree invariant (TI), all the nodes in their path are blanked out, meaning that these nodes are
now considered empty. A blank node becomes populated again if: (i) a user i refreshes their
key by broadcasting a commit message and (ii) the user i has the blank node in their path.
Note that, due to the tree invariant (TI), a user may not generate a node secret for a node
that is not in their co-path. By blanking up to ⌈log N⌉ nodes, removing users may disrupt
the topology of the ratchet tree. This is illustrated by Fig. 5b: the ninth user (from the left)
has been removed from the group and their direct path blanked out. When the leftmost user
sends a commit message, they now need to send 6 ciphertexts instead of 4, since the node
secret of the root needs to be encrypted to 3 nodes instead of 1. In large groups, blank nodes
can have a significant adverse effect on the efficiency of TreeKEM.
Our first application of mKEMs is TreeKEM. When implemented with a mKEM instead of a
KEM, the efficiency of TreeKEM is more resilient to topology changes provoked by removing
users. For the example of Fig. 5b, switching from Kyber to mKyber decreases the (m)KEM-
related overhead from 12320 to 6176 bytes, a 50% improvement.

12 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

m-ary TreeKEM. A second application of mKEMs can be found by leveraging their
flexibility to explore the design space of TreeKEM for better trade-offs. Indeed, instead of
a binary tree, one could instantiate TreeKEM with an m-ary tree, for m > 2. An example
is provided in Fig. 5c for m = 4. In a commit message for a full ratchet tree, this reduces
the number of public keys to ⌈log N⌉ but increases the number of ciphertexts to (m −m
1) ⌈log N⌉, so it’s far from obvious that it would be a good trade-off in general. m
Fortunately, for each layer of the ratchet tree, the m−1 ciphertexts in this layer all encrypt the
same message. This means these m − 1 KEM ciphertexts can be replaced by a single mKEM
ciphertext for m − 1 recipients, which size may be much shorter in practice. For 16 users,
switching from (binary) TreeKEM with Kyber to 4-ary TreeKEM with mKyber decreases the
(m)KEM-related bandwidth overhead from 6272 to 3232 bytes. A more detailed presentation
of m-ary TreeKEM is found in [KKPP20]

Chained CmPKE. A final application of mKEMs can be found by taking the m-ary
TreeKEM idea to the extreme: by setting m = N , we get a flat tree. This is the basis of the
Chained CmPKE protocol, illustrated in Fig. 5d; for this example, the bandwidth overhead
related to mKyber is 1472 + (N − 1) · 48 = 2192 bytes, a 65% gain compared to the standard
TreeKEM with Kyber.
Note that the bandwidth overhead is linear in N . Fortunately, we can also exploit the fact
that mKyber is efficiently decomposable. The uploaded commit message contains a multi-
recipient ciphertext that is a N -uple (u, (vi)i), but each recipient only needs to download
(u, vi) to decrypt the message. This allows further savings in the overall protocol. More
details can be found in [HKP+21].

Table 3: Comparison of the bandwidth costs when using Kyber vs mKyber, for the
four scenarii in Fig. 5. For clarity, these numbers ignore (m)KEM-independent values
that may be included in the commit message4.

Cost with Kyber Cost with mKyber
Reference Description ek ct Overhead ek u vi Overhead

Fig. 5a TreeKEM (full tree) 4 4 6272 4 4 4 6080
Fig. 5b TreeKEM (blanked) 4 6 12320 4 4 6 6176
Fig. 5c 4-ary TreeKEM 2 6 6208 2 2 6 3232
Fig. 5d Chained CmPKE 1 15 7808 1 1 15 2192

5 Application: Broadcast Scenario

The broadcast scenario, in which one sender transmits the same keying material simulta-
neously to multiple receivers with authentic static public-keys (discussed within NIST SP
800-56A-rev2) remains an important use-case for the cloud. In particular, this is the case
for vendors that network a collection of hosts in a high-availability setting that require the
synchronization of cryptographic state/keys across hosts.
A common example of such an application is within a fleet of cloud Hardware Security
Modules (HMSs) that provides a key management system to generate, manage and distribute
key material for encryption and authentication of user data across cloud computing or large
cluster environments. In order for the fleet to synchronize state across all other members, it
must first establish a key transport mechanism. To achieve this, SP 800-56A-rev2 relaxes the
prohibition against the reuse of an ephemeral Diffie-Hellman key pair in broadcast scenarios,
such that the key transport sender can use the same ephemeral key pair when establishing
key-wrapping keys with the multiple key-transport receivers.
In such broadcast scenarios, key agreement is often performed by first collecting all static
public-keys of members in the group (HSMs) into a public-key repository, which can then

4In addition to the (m)KEM-related overhead, commit messages also contain additional data such as a signa-
ture, a hash, a constant-size header, etc. See [AHKM22, Figure 8] for an estimate.

13

be distributed among the fleet so that individual key exchanges can be performed by users
as needed. As such, the asymmetric cryptography used in key establishment across large
groups can bottleneck fleet performance, particularly in settings in which group members are
dynamic and members are changing frequently, or in systems that rotate key establishment
keys frequently for forward security requirements. Such issues are exacerbated further when
considering the requirement for quantum-resistance. Post-quantum KEMs generally have
much larger public keys and ciphertexts than their classical counter parts e.g., 800B for a
Kyber512 public key vs. 33B for a (compressed) ECDH P-256 public key.
Using an mKEM instead of a KEM mitigates this bottleneck in multiple ways. First, it dras-
tically decreases bandwidth and computation requirements from the sender, asymptotically
16 times with mKyber instead of Kyber. Second, since the goal is to establish a single group
key, the sender equipped with a regular KEM has to use the KEM-DEM paradigm to wrap
the group key. On the other hand, an mKEM already produces a single key. This means
that to send a key to N members with Kyber, the sender generates N Kyber ciphertexts
and N symmetric encryptions, while with mKyber it generates one mKyber ciphertext and
no symmetric encryptions. In other words, we take advantage of the fact that Kyber already
consists of an underlying encryption scheme where we can choose the key to be the same.
This reduces sender and receiver computation and bandwidth cost.

6 Further reading

Due to space constraints, this paper only gives a high-level view of mKEMs and their appli-
cations. We provide further references here.

Classical mKEMs. The possibility of saving bandwidth when encrypting to multiple
recipients has first been studied in [BBM00, Kur02, BBS03], via multi-recipient constructions
based on El Gamal and Cramer-Shoup, which rely on classical assumptions. The term mKEM
has been coined by Smart [Sma05] and studied further in works [HK07, BF07, MH13].

Post-quantum mKEMs. Comparatively, the study of post-quantum mKEMs is much
more recent. A LPN-based construction was proposed in [CLQY18] but later proven in-
secure due in [KKPP20] to a misuse of the Fujisaki-Okamoto transform. The first secure
constructions for post-quantum mKEMs have been proposed in [KKPP20] and further devel-
oped in [HKP+21, AHK+23]. These three papers propose multi-recipient adaptations of the
LPR/Lindner-Peikert framework [LPR10, LP11], which underlied many of the candidates to
the 2017 NIST PQC call: Kyber (future ML-KEM), FrodoKEM, Saber, etc.5

Applications. The works of [KKPP20, HKP+21, AHKM22] apply mKEMs in the context
of secure messaging, particularly the MLS protocol [BBR+23]. The present work proposes a
natural application in the context of broadcast scenarios (Section 5), and we expect further
applications to be found.

References

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and
Doreen Riepel. Analysing the HPKE standard. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS,
pages 87–116. Springer, Heidelberg, October 2021.

[AHK+23] Joël Alwen, Dominik Hartmann, Eike Kiltz, Marta Mularczyk, and Peter
Schwabe. Post-quantum multi-recipient public key encryption. In Weizhi Meng,
Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023, pages 1108–
1122. ACM, 2023.

5[KKPP20] also proposed mKEMs based on SIDH/SIKE and CSIDH; the recent cryptanalytic advances on
CSIDH [BS20, Pei20] and SIDH [CD23, MMP+23, Rob23] make these insecure.

14 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

[AHKM22] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided
continuous group key agreement. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 69–82. ACM Press, November
2022.

[BBKS07] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica Staddon.
Multirecipient encryption schemes: How to save on bandwidth and computa-
tion without sacrificing security. IEEE Transactions on Information Theory,
53(11):3927–3943, 2007.

[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.
Wood. Hybrid Public Key Encryption. RFC 9180, February 2022.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer, Heidelberg,
May 2000.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Proto-
col. RFC 9420, July 2023.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in
multi-recipient encryption schemeas. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 85–99. Springer, Heidelberg, January 2003.

[BF07] Manuel Barbosa and Pooya Farshim. Randomness reuse: Extensions and im-
provements. In IMA International Conference on Cryptography and Coding,
pages 257–276. Springer, 2007.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of
CSIDH. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 493–522. Springer, Heidelberg, May 2020.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, vol-
ume 14008 of LNCS, pages 423–447. Springer, Heidelberg, April 2023.

[CLQY18] Haitao Cheng, Xiangxue Li, Haifeng Qian, and Di Yan. Cca secure multi-
recipient kem from lpn. In ICICS, pages 513–529. Springer, 2018.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. Journal of Cryptology, 26(1):80–101, January
2013.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption
systems (with short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 171–188. Springer, Heidelberg, April 2009.

[HBD+22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas West-
erbaan, and Ward Beullens. SPHINCS+. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer, Heidelberg,
November 2017.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key
encapsulation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 553–571. Springer, Heidelberg, August 2007.

[HKP+21] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest,
and Bas Westerbaan. A concrete treatment of efficient continuous group key
agreement via multi-recipient PKEs. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 1441–1462. ACM Press, November 2021.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

15

[KKPP20] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest.
Scalable ciphertext compression techniques for post-quantum KEMs and their
applications. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 289–320. Springer, Heidelberg, December
2020.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened cipher-
text. In David Naccache and Pascal Paillier, editors, PKC 2002, volume 2274 of
LNCS, pages 48–63. Springer, Heidelberg, February 2002.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and Technology, 2022. avail-
able at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS,
pages 319–339. Springer, Heidelberg, February 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, May / June 2010.

[MH13] Takahiro Matsuda and Goichiro Hanaoka. Key encapsulation mechanisms from
extractable hash proof systems, revisited. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 332–351. Springer,
Heidelberg, February / March 2013.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin
Wesolowski. A direct key recovery attack on SIDH. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 448–
471. Springer, Heidelberg, April 2023.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–
492. Springer, Heidelberg, May 2020.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. FALCON. Technical report, National Institute of Stan-
dards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[PPS14] Alexandre Pinto, Bertram Poettering, and Jacob C. N. Schuldt. Multi-recipient
encryption, revisited. In Shiho Moriai, Trent Jaeger, and Kouichi Sakurai, edi-
tors, ASIACCS 14, pages 229–238. ACM Press, June 2014.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS,
pages 472–503. Springer, Heidelberg, April 2023.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and
Jintai Ding. CRYSTALS-KYBER. Technical report, National Institute of Stan-
dards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[Sma05] Nigel P. Smart. Efficient key encapsulation to multiple parties. In Carlo Blundo
and Stelvio Cimato, editors, SCN 04, volume 3352 of LNCS, pages 208–219.
Springer, Heidelberg, September 2005.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	Introduction
	What is an mKEM?
	Syntax
	Security
	Security with Adaptive Corruptions

	Kyber-based mKEMs
	The mKyber Construction
	The amKyber Construction Secure with Adaptive Corruptions
	Parameters Selection

	Application: MLS and its Variants
	Application: Broadcast Scenario
	Further reading
	References

