
Migrating Some Legacy e-Governance Applications to
Post-Quantum Cryptography

Paper accompanying the presentation at 5th NIST PQC Standardization Conference

Petr Muzikant, Jan Willemson, Peeter Laud
Cybernetica AS

e-mail: firstname.lastname@cyber.ee

January 2024

Abstract

This paper speaks about our experience in adding support for post-quantum cryptography to a
number of software components underlying and supporting the e-Governance processes of Estonia. In
the paper, we briefy introduce our approach with state of the art of post-quantum engineering and
our methodology. Then, we describe several Estonia’s e-Government-related projects and provide an
experience report about our eforts to make them quantum safe. We present some engineering problems
we had to tackle with, diferent project-specifc approaches, etc. Overall, we believe that this paper would
be benefcial for the general audience interested in practical adoption of post-quantum cryptography.

1 Introduction

Estonian e-Governance depends on a number software and hardware components, some of which are almost
a quarter of a century old. Recently, we have taken some of these (perhaps a bit more recent) components
and augmented them with the support for PQ-secure cryptographic primitives. The tasks of the augmented
components are related to user authentication, non-repudiation, and secure exchange of documents.

1.1 Challenge

Companies and organizations in general are slowly starting to give more and more focus to post-quantum
cryptography, and are starting to instruct their engineers (sometimes without any background in information
security) to prepare their product line for the arrival of quantum computers. These engineers may fnd
themselves struggling due to the novelty of the technology, and lack of documentation and support. Their
challenge is to implement post-quantum support in all system and architecture layers while keeping the
functionality, compatibility, interoperability, and efciency intact.

Our PQ-related work aims to improve this situation by exploring, researching, and solving engineering
problems in various systems. We base our research on the Estonian e-Government and e-Services ecosystem
which is one of the most advanced in Europe and which we are closely familiar with.

1.2 Overview of the Presentation

Our presentation covers our overall successful, but sometimes cumbersome attempts to implement post-
quantum security in Estonia’s “standard” systems for user authentication, encrypted fle exchange, digital
signature containers, and e-voting. From these experiences, we generalize outcomes suitable for any systems
and any engineer. Still, the main focus of the presentation is on our experience, not the generalizations.

Our work is defnitely not the frst report of adding PQC support to an existing application. Schardong,
Giron, Müller, and Custódio [1] created a PQ version of OpenID Connect. López-González, Arjona, Román,
and Baturone [2] developed a PQ-safe biometric authentication framework. Yao, Matusiewicz, and Zim-
mer [3] introduced PQ into Security Protocol and Data Model compliant device authentication. Paul,

1

mailto:firstname.lastname@cyber.ee

Scheible, and Wiemer [4] discussed PQ usage in banking protocols. The use of PQC in TLS has been
described by several authors [5, 6].

However, while the listed reports describe the created PQ-secure version of their application and discuss
its security and performance, the emphasis of our talk will be diferent. Our talk focuses on the engineer’s
experience of modifying the existing software and adding PQC support to it. We describe the engineering
process in creating PQ-secure components from the existing components. Hence the focus of the talk is also
diferent from PQC migration handbook(s) [7] that ofer support to managers in directing the migration,
but not to engineers that actually implement it.

The rest of this paper contains interesting details from our experience; these are covered in the presen-
tation to varying extent. Parts of the details and the talk are based on our publication [8].

2 Approach

Our technical choices have been afected by the state of the art in PQC implementation, by the suggestions
given by competent organizations (including NIST through its PQC standardization process), and by the
architecture and current implementation of the components we are upgrading to PQC. In this chapter, we
describe how we gathered the information that helped us to make these choices. Later, in chapter 3 we
elaborate where we chose a certain technology and why.

2.1 PQ libraries

Implementations of cryptographic algorithms in various systems and applications are usually provided by
standalone cryptography libraries. Thus we started by collecting information about open-source libraries
dedicated to or partially supporting post-quantum algorithms. The following paragraphs contain our fndings
together with brief descriptions of the libraries, and our notes targeted to ease the selection for developers
and engineers. In general, we acknowledge justifed warnings in the descriptions of several listed libraries
to not use them in production. One should always recognize the novelty and engineering immaturity of
post-quantum cryptography and be prepared to accept the associated risks.

PQClean (C)1 This library collects clean implementations of NIST-submitted algorithms under unifed
API (very similar to the ofcial API required by NIST with mild modifcations). It is not a standalone
library, rather a source of up-to-date, revised, and tested source code – the authors encourage developers to
copy the code from PQClean into their project and build it themselves. We have learned that this approach is
particularly benefcial when developing embedded or limited systems (see section 3.1 for our experience with
PQClean on an embedded device), where cryptographic agility is less important at runtime, but switching
to diferent algorithms is still straight-forward thanks to the unifed API.

libOQS (C)2 OpenQuantumSafe project provides a well-maintained standalone C library libOQS. It also
provides a collection of post-quantum Key Encapsulation Mechanisms (KEMs) and Digital Signature (DS)
algorithms under a common API. On the lower level, it utilizes the previously mentioned PQClean as well
as other sources including ofcial submissions or GitHub repositories. Its current usability and availability is
very high since OpenQuantumSafe also provides wrappers of this library for other programming languages
as well as some popular cryptographic applications (e.g. OpenSSL, OpenSSH, and OpenVPN forks with
libOQS as a provider).

Language or system specifc libraries In case a targeted system consists of a single technology stack,
one could opt for a library specifc for this stack. For example, there exist pqm43 (a library optimized for
ARM Cortex-M4 family of microcontrollers) and rustpq/pqcrypto4 (a binding library from Rust to PQClean).

1https://github.com/PQClean/PQClean
2https://github.com/open-quantum-safe/liboqs
3https://github.com/mupq/pqm4
4https://github.com/rustpq/pqcrypto

2

https://4https://github.com/rustpq/pqcrypto
https://3https://github.com/mupq/pqm4
https://2https://github.com/open-quantum-safe/liboqs
https://1https://github.com/PQClean/PQClean

BouncyCastle (Java)5 We make some comments specifc to the BouncyCastle (BC) library. Since
BCv1.71, developers can use a new post-quantum cryptography BC provider, but unfortunately, this fact
and the whole usage of these new features is quite poorly communicated. The only resource we could fnd is
a very brief webpage from KeyFactor6 (an ofcial sponsor of the “Legion of the Bouncy Castle”, a non-proft
organization looking after BouncyCastle) with some examples and a link to a recording of one workshop
presenting these features. General developers and engineers aiming to utilize PQ in BouncyCastle might
appreciate some ofcial documentation or whitepapers, because their only available resource is the source
code itself. There is also a signifcant diference in how BouncyCastle interprets post-quantum cryptography
objects – more on that in section 2.2.1.

Custom wrappers Another quite fexible option is to create and maintain custom-made wrappers over
abovementioned libraries (most probably libOQS as it is the most all-rounded). This allows engineers to
introduce another custom-made layer between their software and post-quantum cryptography libraries to
increase interoperability without changing their code base too much. A reliable tool for creating such
wrappers is SWIG7 , which requires to create a single fle in C, where developers choose which functions from
the C library to expose in the target language, which argument types it should accept, and even do some
custom pre-processing.

Enhancing the currently used library Lastly, one could contribute to their currently used library by
implementing PQ support and sharing it publicly.

2.2 Data structures

Another issue we had to face was the interpretation of new post-quantum cryptography objects in an already
established technology stack. More precisely, how to identify them and tell the system components how to
recognize them.

2.2.1 ASN.1 Notation

ASN.1 notation is the most commonly used format to store (not-only) cryptographic objects. It can be
specifed on every level, from X509 certifcates down to exact algorithm-specifc parameters or values. We
acknowledge NIST’s approach in PQC submissions to operate with post-quantum cryptography objects as
raw bytes while the internal structure of objects is up to the authors of algorithms themselves. Apart from
that, there are (some already expired) RFC drafts aiming to specify exact ASN.1 structures for diferent
PQ objects. However, almost all of them are lacking ofcial Object Identifers (OIDs) for these algorithms,
which are essentially required for inclusion into existing systems. Systems could work with PQ objects as
raw bytes during transfer between components, but there still needs to be information about what those
bytes are representing.

This is probably the main reason why OpenQuantumSafe organization came up with temporary OIDs
specifed in a simple and public table8 . The following storyline is confusing and shows that proper standard-
ization in this area is absolutely necessary. At frst, they specifed OIDs only for digital signature algorithms
as they did not implement KEMs at the time. Then, BouncyCastle used those OIDs and came up with new
ones for KEMs (without disclosing it anywhere, only deeply hidden in the source code). OpenQuantumSafe
then included those in their current table and flled new ones for KEMs missed by BouncyCastle. For now,
developers might want to use OIDs from the mentioned table from OpenQuantumSafe9 .

There is one signifcant diference between libOQS and BouncyCastle library. libOQS follows NIST’s rule
about raw bytes and implements its applications following this approach. However, BouncyCastle is already

5https://www.bouncycastle.org/
6https://doc.primekey.com/bouncycastle/post-quantum-hybrid-cryptography-in-bouncy-castle
7https://swig.org/
8https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md\#oids
9Update: new OID related discussion has been conducted at https://github.com/open-quantum-safe/oqs-provider/issu

es/351

3

https://github.com/open-quantum-safe/oqs-provider/issu
https://7https://swig.org
https://6https://doc.primekey.com/bouncycastle/post-quantum-hybrid-cryptography-in-bouncy-castle
https://5https://www.bouncycastle.org

only incorporating post-quantum objects based on the proposed ASN.1 drafts. Therefore the two libraries
are not compatible with each other, and the developers must act accordingly10 .

2.2.2 JSON Web Algorithms

Certain applications transfer cryptographic objects utilizing JSON Web Tokens. For algorithm identifcation,
they usually use JSON Web Algorithms [9]. E.g. in the digital signature context, ES256 means ECDSA
using P-256 and SHA-256 (hash-then-sign construct). For the identifcation of post-quantum algorithms,
only a few RFC drafts are available11 . However, the problem is that they are defning the algorithm identifers
only for the digital signature part (e.g. CRYDI5 means CRYSTALS-Dilithium parameter set 5), but not
for the hash part. The developers trying to replace the original identifers must think about what data will
be signed and verifed in their components and whether it is compatible with external parts of the system.
One solution could be to introduce a similar sufx (e.g. CRYDI5-256). Another solution might be to always
use a specifc hash function (e.g. SHA-512) everywhere, or not hash the signed data at all if the data to
be signed is very small. Currently, it is up to the developer to determine which approach delivers the best
compatibility and ease of transition.

2.3 Hybrid mode

We acknowledge the hybrid post-quantum + classical cryptography modes. However, our projects were more
focused on post-quantum cryptography implementation experience, hence our additions to the components
make use of only PQ algorithms. Once we fgure out the details, we will start adding back the classical
cryptography in a hybrid mode.

2.4 Methodology

In this section we describe the methodology we used to add support for PQ algorithms to a number of
software components.

2.4.1 Preparation

Our frst step for implementing post-quantum algorithms in an existing application is to identify all locations
in the codebase, network and business processes, where the public key infrastructure (PKI) objects are used.
We trace the data fow from start to end of the object’s lifetime, as there are diferences in how individual
processes interact with them. Identifying these data fows helps us understand the extent of required changes
in the code.

When transferring cryptographic data objects between diferent parts of the architecture, it is important
to consider the Maximum Transmission Unit (MTU) to ensure that longer keys and signatures ft into the
containers. Additionally, caution is needed when implementing the Falcon PQ digital signature algorithm
as its output length is not fxed and may vary.

Data formats and possible conversions between them also have to be considered. For example, cryp-
tographic libraries might yield raw bytes, but the rest of the system may handle data in ASN.1, Base64,
or PEM encoded formats. Identifying the formats of the existing data fows is the key to ensuring the
compatibility across the whole system architecture, and detect any areas that require modifcation.

BPMN (Business Process Model and Notation) diagrams are a format suitable for visualizing all the
above-mentioned information. Figure 1 shows such preparation process for the Web-eID component described
in section 3.1. PQC related objects and operations are denoted in red.

2.4.2 Technological Constraints

Before transitioning to post-quantum algorithms, it is essential to assess the technological and computational
boundaries of the current system. Increased memory usage is expected when generating PQ keypairs,

10We have found only one not-well-maintained repository exploring the compatibility between libOQS and PQ-BouncyCastle:
https://github.com/Open-QKD-Network/oqs-bouncycastle.

11Most up-to-date: https://www.ietf.org/archive/id/draft-ietf-cose-post-quantum-signatures-01.txt

4

https://www.ietf.org/archive/id/draft-ietf-cose-post-quantum-signatures-01.txt
https://github.com/Open-QKD-Network/oqs-bouncycastle

Figure 1: PQC authentication infrastructure components overview

creating signatures, and verifying them. In real-time applications, performance may be impacted. Relevant
measurements can be found in [10, 11, 12, 13].

In regular applications meant to be run on desktop, laptop, or server machines, these constraints are not
as signifcant as they are on slow networks or limited devices. In other cases, actual post-quantum algorithms
need to be adjusted. For example, Gonzalez et al. [14] propose streaming public keys and signatures into
the limited memory of an attached HSM component. Another work by Gonzalez and Wiggers [11] suggests
using key encapsulation instead of digital signatures to reduce computational overhead.

2.4.3 Implementation

After identifying all locations and constraints, one can begin changing the codebase. We usually start at
the beginning of the data lifecycle and implement post-quantum support one step at a time. Post-quantum
algorithms are generally not available natively in used cryptographic libraries, therefore library extensions
may be required. Data format conversions may occur during these steps, adding to the potential fragility of
the implementation.

General overview of the steps is depicted in Figure 2.

3 Applications

In this chapter, we describe our experience from working with several (mostly e-Government) components
and applications, together with the encountered engineering problems and how we dealt with them.

3.1 Web-eID

Web-eID12 is a suite of applications, extensions, and tools developed by Estonian Information Systems
Authority13 . It enables authentication and digital signing with public-key cryptography on the web using
smart cards. The authentication workfow is similar to the Transport Layer Security: Client Certifcate
Authentication (TLS-CCA) [15, Sec. 4.4.3] and it has been introduced as a successor of previously used
OpenEID framework (which had certain technical challenges on the web browser platform due to its design).

12https://web-eid.eu
13https://ria.ee

5

https://13https://ria.ee
https://12https://web-eid.eu

Figure 2: General PQ implementation methodology steps

Estonian citizens can use it to login into various state (e.g. taxing portal), but also private (e.g. internet
banking) e-services using their national ID cards and a web browser.

The system is built upon Estonian Public Key Infrastructure, so it works with RSA and Elliptic Curve
Cryptography (ECC) digital signatures. Our goal was to make it support also CRYSTALS-Dilithium and
Falcon algorithms.

Our result is available at https://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web.

Environment Setting We have decided to build this proof of concept on top of our previous work [16],
where we utilized Web-eID to login users into open-source cloud service Nextcloud14 . It consists of an
instance of Nextloud running on a Docker container and a modifed Web-eID version capable of working
with custom-personalized smart cards. Therefore, our aim was to

1. modify an authentication device (not a smart card, more on that later) to be able to produce post-
quantum digital signatures,

2. for the Web-eID framework to be able to transport and identify these signatures and incorporate them
into its workfow, and

3. for the Nextcloud web application to use modifed Web-eID validation library to verify these signatures,
ultimately producing an authentication result.

Certifcation Infrastructure Authentication workfow in Web-eID is based on digitally signing certain
challenges, and verifying a certifcate of a public key tied to the private key which produced the signature.
Therefore, we have created a post-quantum X.509 certifcates using Python asn1crypto package, where
PublicKeyInfo’s algorithm feld is 1.3.6.1.4.1.2.267.7.8.7 (Dilithium5 according to OpenQuantumSafe’s

14https://github.com/Muzosh/Smart-Card-Authentication-On-The-Web

6

https://14https://github.com/Muzosh/Smart-Card-Authentication-On-The-Web
https://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web

OIDs). Certifcate data is hashed with SHA512, and the hash is then signed using our own libOQS wrapper
for Python. On the other side, Web-eID validation library is modifed to be able to load these certifcates
and verify digital signatures with them (see the next subsection for details).

Missing PQ in PHP Nextcloud is written in PHP, so we have used a Web-eID validation library written
in PHP. However, there was no libOQS wrapper for this language, so we had to create our own using
SWIG (later on, we also created similar wrappers for Python and Go, but the process is more or less the
same). There is also an option to use PHP’s internal extension for OpenSSL in combination with PQ-capable
OQS-OpenSSL15 . However, there are some limitations for algorithm identifers, which are hard-coded.

In order to not having to implement all the logic of certifcate loading and processing before verifcation,
we chose to integrate new libOQS wrapper in a popular cryptography library PHPSecLib16 .

Embedded Device Is Not a Smart Card Multiple works in the industry have shown that post-quantum
cryptography is too demanding for smart cards [17, 18, 19]. Therefore, we decided to use a diferent au-
thentication device: a rather small, ESP32-S3 programmable microcontroller communicating with PCs over
USB-C serial port. The development was based on the ESP-IDF and PlatformIO technology stacks, under-
going multiple stages with diferent experiments (mostly related to storage). In the end, it was programmed
to behave very similarly to a smart card – waiting for APDU commands, processing and returning responses.

Web-eID native application knows how to communicate only with smart cards using PC/SC protocol
stack (available in common operating systems). We have introduced an application-wide abstraction of
an authentication device in this framework, keeping the compatibility with smart cards, but also added
another module of serial devices capable of communicating via serial ports. Web-eID authors have been
notifed of this contribution and it can serve as a starting point for possible future implementations of other
authentication devices.

Memory Management on an Embedded Device Another issue was a rather problematic memory
management of post-quantum algorithms on the embedded device. ESP operating system framework allows
for “tasks” (its version of processes) to have only maximum 8KB of stack memory, no matter how much
memory is soldered to the device. This was nowhere near enough for PQClean source code to run in the main
“loop” task (designated for waiting and responding to commands from PC). For security reasons, PQClean
tries to minimize dynamic allocations, therefore it allocates all its necessary memory into the stack. To
solve this issue, we had to modify the PQClean source-code for the device, allowing functions to dynamically
allocate objects in the heap memory while utilizing safe memory management techniques (e.g. using unique
pointers in C++).

Some Remaining Issues Since this project was our frst experience with a post-quantum implementation,
we do not view this as a fnal product ready to enhance the security of Estonian authentication infrastructure.
First, there is no possibility to properly certify the embedded device. At this moment, there is no Secure Boot
and Flash Encryption implemented. Private keys are stored in the fash memory symmetrically encrypted
by a key derived from user’s PIN. Also, post-quantum algorithms (Dilithium and Falcon) are hardcoded in
more places than we would like. There was no room for cryptographic agility in every component due to the
limitations of the platform.

3.2 CDOC 2.0

CDOC 2.0 [20] is a specifcation defning the process of securing, storing, and exchanging encrypted doc-
uments. It can be perceived as a fle format for storing encrypted data together with intended recipients,
featuring additional security measures with an optional server back-end. The current Java reference imple-
mentation17 supports fve scenarios diferentiated by a specifc algorithm used for encrypting all data per
recipient (ECDH, RSA, and pre-shared symetric key), and whether a back-end server for key exchange is
used or not.

15https://github.com/Muzosh/OQS-openssl-in-PHP
16https://github.com/phpseclib/phpseclib/pull/1920
17https://github.com/open-eid/cdoc2-java-ref-impl

7

https://17https://github.com/open-eid/cdoc2-java-ref-impl
https://16https://github.com/phpseclib/phpseclib/pull/1920
https://15https://github.com/Muzosh/OQS-openssl-in-PHP

We have expanded this number of scenarios by two: using CRYSTALS-Kyber-1024 with and without a
key exchange server, and we will describe our experience in the following subsections.

Existing Product, New Cryptography Unlike in the previous case, where we were building an entire
post-quantum authentication system with a large number of components, this application consists of only
one component. Therefore, our approach has changed as well. Thanks to well defned scenarios, we were
able to easily (after creating an analysis of PKI data fows) duplicate all code related to previous scenarios
and make the used cryptographic library to work with post-quantum objects.

The original implementation used BouncyCastle, so a version update was required to enable post-quantum
capabilities. We also learned that new BouncyCastle version can be used as a provider for Java Keytool, a
popular commandline application for cryptographic object management.

Serverless Scenario We started by analysing two existing scenarios (the RSA encryption, and the ECDH
key establishment), deciding that, among them, RSA is more similar to the new KEM scheme. Figures 3
and 4 depict these similarities. Note that CDOC 2.0 foresees the scenario where the same document may be
encrypted for several recipients; this is depicted by using diferent colours in the fgures.

Figure 3: Encryption of Key Encryption Key in RSA serverless scenario

Figure 4: Encapsulation of Key Encryption Key in CRYSTALS-Kyber serverless scenario

Both approaches create a random Key Encryption Key (KEK), which is used to encrypt (using one-time-
pad) the File Master Key (FMK), a key that ultimately encrypts the payload. KEK is created for each
recipient individually. See Figure 5 for the overview of Recipient Capsule, an essential metadata container
targeted for each recipient.

On the receiving end, the new Kyber post-quantum scenario is similar to the RSA decryption as well.
See Figures 6 and 7.

Key Exchange Server Scenario Key exchange scenario disables storing the key capsules (necessary for
revealing KEK, therefore FMK, therefore payload decryption) in the CDOC fle header, but demands storing
them on a server. The process here is similar to the previously described serverless scenario, except for one
signifcant aspect. In order to convince the server that a recipient is eligible to obtain their key capsule, they

8

Figure 5: Recipient Capsule in transit created for each recipient

Figure 6: Decryption of Key Encryption Key in RSA serverless scenario

must frst authenticate to the server using TLS client authentication with the same public key as the public
key stored in the key capsule.

For Kyber scenario, this inherently means that the recipient must authenticate with a TLS certifcate
having Kyber public key in the subjectPublicKeyInfo feld. Creation of these certifcates was not prob-
lematic since it was similar to Web-eID. However, there are issues with such certifcates at the TLS level of
PQ integration.

For the purpose of releasing the key capsule, it would be enough to have a Kyber public key in the
subjectPublicKeyInfo feld and just checking at the key exchange server that this certifcate is valid and
trusted (i.e. signed by the certifcate authority using either a classical or even a post-quantum signature
scheme). However, Java SSL implementation has problems reading such certifcates, thus not allowing to
establish the connection. Second, the protocol currently proposes to use the TLS connection as is, so the
subjectPublicKeyInfo feld in the client certifcate is actually used to decrypt the data sent by the client.

Such functionality is currently experimental – P. Schwabe, D. Stebila, and T. Wiggers proposed a PQ-
KEM version of TLS in [21], and CloudFlare further elaborated with its implementation. We plan to explore
this technology for this and following projects in the future.

For now, we overcame this issue by utilizing a classical certifcate (i.e. ECC or RSA for both for
subjectPublicKeyInfo as well as for signing the certifcate itself), but embedding a Kyber public key
into another feld: id-ce-subjectAltPublicKeyInfo (OID: 2.5.29.72). This allows the usage of post-
quantum key exchange server scenario without signifcant or not-well-thought-out changes to the underlying
SSL/TLS framework.

3.3 ASiC-E

Associated Signature Container Extended (ASiC-E) [22] is a standard for storing digital signatures. This
standard is widely used in Estonia for sharing digitally signed containers based on the XAdES/eIDAS
protocol stack. It specifes the format of the container as well as the metadata fle for algorithm identifcation,
checksums, signature values, etc.

ASiC-E formatted signatures are also used in Estonian Internet voting system [23] where the signed votes
have this format. We are currently working on a PQ safe version of the voting system, including creating
CRYSTALS-Dilithium signatures in ASiC-E format. We have created a fork of a Python package for ASiC-
E pyasice18 , added a command-line interface to it and integrated our previously created Python wrapper
of libOQS. It is able to create and verify post-quantum containers with Dilithium parameter set 3 digital
signatures. There were only two issues within this project.

18https://github.com/thorgate/pyasice

9

https://18https://github.com/thorgate/pyasice
https://2.5.29.72

Figure 7: Decapsulation of Key Encryption Key in CRYSTALS-Kyber serverless scenario

Missing w3.org SignatureMethod Identifers In the original protocol and package, signature identi-
fers were specifed by URIs with w3.org root. For example, RSA with SHA-256 was identifed with the URI
"http://www.w3.org/2001/04/xmldsig-more#rsa-sha256". For our implementation, we are temporarily
using dilithium3. This means, that ofcial tools like DigiDoc4 Client19 can open the container, but can
not verify it (see Figure 8).

Figure 8: Verifcation status of PQ ASiC-e container

Automatic modifcation of installed modules Package pyasice depends on asn1crypto module to
be able to load PQ certifcates and verify them. Vanilla version of this module is pretty fexible for post-
quantum usage, but there are classical algorithm OIDs hard-coded. We have used a Python Hatch framework
which can include scripts to run when the package is being installed via the pip tool. This allowed us to
automatically modify asn1crypto fles (adding OID for Dilithium parameter set 3) during an installation of
our post-quantum version of pyasice.

3.4 OCSP and TSA server

As mentioned above, we are currently working on a quantum-safe system for Internet voting used in Estonia.
It consists of multiple research topics for post-quantum primitives and protocols (e.g. mix-nets and zero-
knowledge proofs) that are very diferent from the primitives NIST is currently standardizing. However,
there are two required services that only depend on standard public-key primitives: online certifcate status
protocol (OCSP) and timestamping servers. These should be migrated to PQ algorithms currently being
standardized.

OCSP server Creating a PQ OCSP server was quite straightforward. We used an open-source implemen-
tation20 which defnes specifc shell scripts and a Docker container with OpenSSL installed. It also has a
functionality of Certifcate Authority, thus allowing us to issue intermediate and client certifcates.

19https://github.com/open-eid/DigiDoc4-Client
20https://github.com/redislabs-training/ocsp-responder

10

https://20https://github.com/redislabs-training/ocsp-responder
https://19https://github.com/open-eid/DigiDoc4-Client
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

To make a post-quantum version of it, we added instructions to the Dockerfle to install OQS-OpenSSL
and our PQ version of pyasice. There were no signifcant engineering issues during this transformation and
it is working fawlessly so far.

TSA server The same can not be said about our efort to create a standards-based [24] post-quantum
timestamping server, which is also required for Estonian e-voting. So far, we have failed to create a post-
quantum version of it. We have put this task on hold, waiting for OpenSSL v3.3.

There are only a few open-source implementations for such a TSA. The implementation that we have
21focused on (the only one that seemed to do exactly what we need) is written in C and it is also utilizing

OpenSSL installed on the system. However, it is using OpenSSL C API, not the openssl command-line
program. The PQ capabilities of OQS-OpenSSL are not functional in OpenSSL C API. This has been
discussed with the maintainers of both OQS-OpenSSL as well as OpenSSL, and the conclusion is that the
said functionality will be targeted for OpenSSL version 3.3. See https://github.com/open-quantum-safe
/oqs-provider/issues/251 for more details on this issue. While waiting for the release of this version of
OpenSSL, we have prepared a Docker container with OQS-OpenSSL, where this TSA server will run. After
the release, we do not expect signifcant difculties in getting the TSA server to run.

Acknowledgments

Funded by the European Union under Grant Agreement No. 101087529. Views and opinions expressed are
however those of the author(s) only and do not necessarily refect those of the European Union or European
Research Executive Agency. Neither the European Union nor the granting authority can be held responsible
for them. Also funded by Estonian Research Council, grants no. PRG1780 and PRG2177.

References

[1] Frederico Schardong et al. “Post-Quantum Electronic Identity: Adapting OpenID Connect and OAuth
2.0 to the Post-Quantum Era”. In: Cryptology and Network Security. Springer International Publishing,
2022, pp. 371–390. doi: 10.1007/978-3-031-20974-1_20.

[2] Paula López-González et al. “A facial authentication system using post-quantum-secure data generated
on mobile devices”. In: Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking. ACM, Oct. 2022. doi: 10.1145/3495243.3558761.

[3] Jiewen Yao, Krystian Matusiewicz, and Vincent Zimmer. Post Quantum Design in SPDM for Device
Authentication and Key Establishment. Cryptology ePrint Archive, Paper 2022/1049. 2022. doi: 10.
3390/cryptography6040048. url: https:/eprint.iacr.org/2022/1049.pdf.

[4] Sebastian Paul, Patrik Scheible, and Friedrich Wiemer. Towards Post-Quantum Security for Cyber-
Physical Systems: Integrating PQC into Industrial M2M Communication. Cryptology ePrint Archive,
Paper 2021/1563. 2021. doi: 10.3233/JCS-210037. url: https:/eprint.iacr.org/2021/1563.pdf.

[5] Joppe W. Bos et al. “Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with
Errors Problem”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. IEEE Computer Society, 2015, pp. 553–570. doi: 10.1109/SP.2015.40.

[6] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without Handshake Sig-
natures”. In: CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020. Ed. by Jay Ligatti et al. ACM, 2020, pp. 1461–1480. doi:
10.1145/3372297.3423350.

[7] The PQC Migration Handbook. Applied Cryptography and Quantum Algorithms Cryptology Group
Netherlands National Communications Security Agency. 2023. url: https://english.aivd.nl/
publications/publications/2023/04/04/the-pqc-migration-handbook.

21https://github.com/kakwa/uts-server

11

https://21https://github.com/kakwa/uts-server
https://english.aivd.nl
https://10.1109/SP.2015.40
https:/eprint.iacr.org/2021/1563.pdf
https:/eprint.iacr.org/2022/1049.pdf
https://github.com/open-quantum-safe

[8] Petr Muzikant and Jan Willemson. “Deploying Post-Quantum Algorithms in Existing Applications and
Embedded Devices”. In: UbiSec 2023, https://research.cyber.ee/~janwil/publ/pqauth.pdf.

[9] M. Jones. JSON Web Algorithms (JWA). May 2015. doi: 10.17487/rfc7518.

[10] Sajimon P C, Kurunandan Jain, and Prabhakar Krishnan. “Analysis of Post-Quantum Cryptography
for Internet of Things”. In: 2022 6th International Conference on Intelligent Computing and Control
Systems (ICICCS). IEEE, May 2022. doi: 10.1109/iciccs53718.2022.9787987.

[11] Ruben Gonzalez and Thom Wiggers. “KEMTLS vs. Post-quantum TLS: Performance on Embedded
Systems”. In: Security, Privacy, and Applied Cryptography Engineering. Springer Nature Switzerland,
2022, pp. 99–117. doi: 10.1007/978-3-031-22829-2_6.

[12] George Tasopoulos et al. “Performance Evaluation of Post-Quantum TLS 1.3 on Resource-Constrained
Embedded Systems”. In: Information Security Practice and Experience. Springer International Pub-
lishing, 2022, pp. 432–451. doi: 10.1007/978-3-031-21280-2_24.

[13] Manohar Raavi et al. “QUIC Protocol with Post-quantum Authentication”. In: Lecture Notes in Com-
puter Science. Springer International Publishing, 2022, pp. 84–91. doi: 10.1007/978-3-031-22390-
7_6.

[14] Ruben Gonzalez et al. “Verifying Post-Quantum Signatures in 8 kB of RAM”. In: Post-Quantum
Cryptography. Springer International Publishing, 2021, pp. 215–233. doi: 10.1007/978 - 3- 030 -
81293-5_12.

[15] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. Aug. 2018. doi:
10.17487/RFC8446. url: https://www.rfc-editor.org/info/rfc8446.

[16] Petr Muzikant. “Cloud Service Access Control using Smart Cards”. MA thesis. Brno University of
Technology, 2022.

[17] Aurélien Greuet. Smartcard and Post-Quantum Crypto. 2021. url: https : / / csrc . nist . gov /
Presentations/2021/smartcard-and-post-quantum-crypto.

[18] Luk Bettale, Marco De Oliveira, and Emmanuelle Dottax. “Post-Quantum Protocols for Banking
Applications”. In: Smart Card Research and Advanced Applications. Springer International Publishing,
2023, pp. 271–289. doi: 10.1007/978-3-031-25319-5_14.

[19] Lukas Malina et al. “Towards Practical Deployment of Post-quantum Cryptography on Constrained
Platforms and Hardware-Accelerated Platforms”. In: Innovative Security Solutions for Information
Technology and Communications. Springer International Publishing, 2020, pp. 109–124. doi: 10.1007/
978-3-030-41025-4_8.

[20] CDOC 2.0 spetsifkatsioon, v0.9. Tech. rep. D-19-12. Cybernetica AS, 2023.

[21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake signatures.
Cryptology ePrint Archive, Paper 2020/534. https : / / eprint . iacr . org / 2020 / 534. 2020. doi:
10.1145/3372297.3423350. url: https:/eprint.iacr.org/2020/534.pdf.

[22] ETSI EN 319 162-1. Electronic Signatures and Infrastructures (ESI); Associated Signature Containers
(ASiC); Part 1: Building blocks and ASiC baseline containers. Version 1.1.1. Apr. 2016. url: https://
www.etsi.org/deliver/etsi_en/319100_319199/31914201/01.01.01_60/en_31914201v010101p.
pdf.

[23] Sven Heiberg et al. “Improving the Verifability of the Estonian Internet Voting Scheme”. In: Electronic
Voting - First International Joint Conference, E-Vote-ID 2016, Bregenz, Austria, October 18-21, 2016,
Proceedings. Ed. by Robert Krimmer et al. Vol. 10141. Lecture Notes in Computer Science. Springer,
2016, pp. 92–107. doi: 10.1007/978-3-319-52240-1_6.

[24] Robert Zuccherato et al. Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP). RFC
3161. Aug. 2001. doi: 10.17487/RFC3161. url: https://www.rfc-editor.org/info/rfc3161.

12

https://www.rfc-editor.org/info/rfc3161
www.etsi.org/deliver/etsi_en/319100_319199/31914201/01.01.01_60/en_31914201v010101p
https:/eprint.iacr.org/2020/534.pdf
https://www.rfc-editor.org/info/rfc8446
https://research.cyber.ee/~janwil/publ/pqauth.pdf

