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Abstract Among candidates for the NIST PQC additional call for digital signatures, there exist
seven UOV-based multivariate schemes. Further, four UOV-based candidates, MAYO, QR-UOV,
VOX, and SNOVA, achieve small public key size compared with the plain UOV. This work gives a
new security analysis for these UOV variants with small public keys. Our main contributions are the
following two points: First, we show that the rectangular MinRank attack originally proposed on the
Rainbow scheme by Beullens is applicable to MAYO, QR-UOV, and VOX. Second, we explain the
construction of SNOVA from a different point of view from the original papers, and reconsider its
security analysis. Through our analysis, we show that all parameters of VOX and some parameters
of SNOVA submitted in the additional call do not satisfy the claimed security levels.
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1 Introduction

It is considered that by Shor’s algorithm, the existing cryptosystems are broken with a large scale
quantum computer. Therefore, it is required to develop cryptosystems resistant to quantum com-
puter attacks, which are called post-quantum cryptosystems (PQC). Multivariate public key cryp-
tosystems (MPKC) are based on the difficulty of the problem to find a solution to multivariate
quadratic equations over a finite field (MQ problem), and are one of the main candidate of PQC.
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NIST started the PQC standardization project [23] in 2016. Via some rounds, NIST announced
in 2022 that the three signature schemes (Dilithium, Falcon, SPHINCS+) will be standardized.
However, in order to ensure the variety of algorithms, NIST also announced to start the new
project of the PQC standardization of additional digital signature schemes [24]. In the additional
NIST PQC standardization, 40 signature schemes were accepted to the first round in June 2023, and
11 among them are multivariate schemes. In MPKC, UOV [19] is considered to be a fundamental
scheme, since it has no fatal attacks so far, and is constructed using simple algorithms. However, it
has a drawback to be a large public key compared to other PQC such as lattice-based cryptosystems.
To solve this problem, there have been proposed many UOV variants that try to reduce the public
key size. Indeed, four UOV-based schemes, MAYO [3], QR-UOV [13], VOX [25], and SNOVA [29],
that have small public keys compared with the plain UOV were submitted to the additional NIST
PQC standardization.

This work gives a new security analysis for these UOV variants with small public keys. First, we
show that the rectangular MinRank attack originally proposed on the Rainbow scheme is applicable
to MAYO, QR-UOV, and VOX. Second, we explain the construction of SNOVA, and reconsider its
security analysis.

In the first point, we show that the rectangular MinRank is applicable to some UOV variants.
This rectangular MinRank attack was originally proposed on Rainbow by Beullens [2] and suc-
ceeded in reducing the security level of Rainbow. In this paper, we confirme that the public keys of
MAYO, QR-UOV, and VOX have a MinRank problem when we apply a transformation performed
in the rectangular MinRank attack. Moreover, we estimate the complexity of the attack following
Beullens’ estimation [2] in his rectangular MinRank attack against Rainbow, and we check by some
experiments whether our estimation is reasonable. Due to our analysis, we show that all parameters
of VOX submitted in the additional NIST PQC standardization in June 2023 do not satisfy the
claimed security levels. On the other hand, we see that the proposed parameters of MAYO and
QR-UOV are secure against the rectangular MinRank attack, while the complexity of the attack is
reasonably close or equal to that of the best known attacks.

In the second point, we reorganize the construction of SNOVA [29], and reconsider its secu-
rity analysis. We explain the construction of the core part of SNOVA without using the matrix
ring Ml(Fq). The core part is a polynomial system whose almost coefficients are zero (i.e. sparse
polynomials), and therefore the technique of mixing and transforming was applied in SNOVA to
strengthen its security. We show in this paper that the core part is vulnerable for a forgery attack.
Next, as a reconsideration of the security analysis, we explain that all existing key recovery attacks
for UOV can be applied to the core part of SNOVA. Moreover, we propose efficient versions of the
reconciliation attack and the intersection attack for the core part of SNOVA. Finally, due to our
analysis, we show that some parameters of SNOVA [29] for l = 2 submitted in the additional NIST
PQC standardization do not satisfy the claimed security levels. Note that this security analysis
is inherent to the construction of SNOVA and will not affect the security of other UOV variants.
Against our new security analysis, the authors of SNOVA have recently proposed new parameters
in the recent version of ePrint (2024-02-08) [28]. We confirmed that these new parameters are secure
against our proposed security analysis. We note that Li et al. also report the result regarding the
KS attack, reconciliation attack and intersection attack as an independent work in [21], and seem
to further improve the reconciliation attack than our result.

This paper is organized as follows. In Section 2, we recall the construction and security analysis of
UOV. In Section 3, we describe the rectangular MinRank attack for MAYO, QR-UOV and VOX. In
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Section 4, we recall the construction of SNOVA. In Section 5, we reconsider the security of SNOVA
using the result in Section 4. In Section 6, we conclude our paper.

2 Unbalanced Oil Vinegar scheme (UOV)

2.1 The key generation of UOV with parameter (q, v, o,m)

Let v, o,m be positive integers, Fq the finite field with q elements, and set n := v + o. We use two
variable sets xv = (x1, . . . , xv), and xo = (xv+1, . . . , xn), and put x = (xv,xo). We call the first
variables xv the vinegar variables and the second variables xo the oil variables.

We explain the key generation of UOV with parameter (q, v, o,m). Randomly choose m square
matrices F1, . . . , Fm with size n over Fq in the following form:

Fk =



a
(k)
11 . . . a

(k)
1v a

(k)
1v+1 . . . a

(k)
1n

...
. . .

...
...

. . .
...

a
(k)
v1 . . . a

(k)
vv a

(k)
vv+1 . . . a

(k)
vn

a
(k)
v+11 . . . a

(k)
v+1v 0 . . . 0

...
. . .

...
...

. . .
...

a
(k)
n1 . . . a

(k)
nv 0 . . . 0


. (1)

Here, each coefficient a
(k)
ij is randomly chosen from the finite field Fq. We define m quadratic

polynomials f1, . . . , fm in n variables x as follows:

fk(x) = x · Fk · tx (1 ≤ k ≤ m). (2)

From the form of Fk, it is clear that fk(x) is a linear polynomial regarding variables xo.We define
a quadratic map F = (f1, . . . , fm) : Fn

q → Fm
q , and randomly choose a linear invertible map

T : Fn
q → Fn

q . Let T be the n×n matrix such that T (x) = x ·T . We compute the following matrices
Pk and quadratic polynomials pk (1 ≤ k ≤ m):

Pk := T · Fk · tT, pk(x) := x · Pk · tx. (3)

It is clear that pk(x) = fk(x ·T ). Then, the secret key of UOV with parameter (q, v, o,m) is given by
(f1, . . . , fm, T ), and the public key is the set of quadratic polynomials (p1, . . . , pm), which is equal
to the quadratic map P := F ◦ T : Fn

q → Fm
q . We skip the signature generation and verification

processes for UOV.

Remark 1 In general, the UOV scheme [19] satisfies the condition m = o, which is necessary in
the signature generation of UOV. However, in order to state MAYO [3, 4], QR-UOV [13, 12] and
VOX [25] in later sections, it is convenient not to assume the condition m = o.

It is known that the size of the public key of UOV can be reduced using the technique of Petzoldt
et al. [26] without declining the security. Moreover, the secret key T ∈ GLn(Fq) is often taken as
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T =

(
1v 0v×o

T0 1o

)
, (4)

where T0 is taken as a random o× v matrix. It is known that even if the form of T is restricted in
this way, it does not affect the security of UOV.

Beullens et al.proposed new parameters (Table 6 in the appendix) of UOV [5] based on the latest
MPKC security analysis, and submitted it to the additional NIST PQC standardization project [24].
A drawback of UOV is a large public key size compared with other PQC such as lattice-based and
isogeny-based cryptosystems. To reduce such a drawback, there have been submitted some variants
such as MAYO [3, 4], QR-UOV [13, 12], VOX [25] and SNOVA [28, 29].

2.2 Review of the security analysis of UOV

We recall the security analysis of UOV with the parameter (q, v, o, o), i.e., the plain UOV.

Direct attack
In MPKC, the direct attack tries to directly and algebraically solve an instance of the MQ

problem related to the public key P = (p1, . . . , po). This attack is a forgery attack. For UOV,
the direct attack finds a solution to the underdetermined system of o inhomogeneous quadratic
equations P(x) = H(m) in n = v + o variables, where m is a message to be signed and H is a
hash function. Since it is enough to find a solution to the system P(x) = H(m), such a system
can be reduced to a system of o homogeneous quadratic equations in o + 1 variables by fixing v
variables in x and by homogenizing it. To solve such a reduced system, Gröbner basis algorithms
such as F4 [9], F5 [10] and XL [31] are often considered. The complexity of solving the system of o
homogeneous quadratic equations in o + 1 variables using the XL Wiedemann algorithm with the
hybrid approach is given by

min
k

qk · 3
(
o− k +Do+1−k,o

Do+1−k,o

)2(
o+ 2− k

2

)
, (5)

where 0 ≤ k ≤ o is the number of fixed variables in the hybrid approach, and Do+1−k,o is given by

the smallest integer d for which the coefficient of td in the function
(1− t2)o

(1− t)o+1−k
is less than or equal

to 1. For the underdetermined case, Thomae-Wolf [30] proposed the technique to reduce the size of
the MQ problem (namely, the numbers of variables and equations). Moreover, their technique was
improved by Furue et al. [14] and Hashimoto [17]. To be exact, the complexity of the direct attack
for UOV is given by using such techniques.

Kipnis-Shamir (KS) attack
The KS attack was proposed by Kipnis and Shamir [20], and is a key recovery attack for UOV.
First, we recall the matrix representation of quadratic polynomials. Let h ∈ Fq[x1, . . . , xn] be

a homogeneous quadratic polynomial. Then there exists a unique symmetric matrix H ∈ Mn(Fq)
such that

x ·H · ty = h(x+ y)− h(x)− h(y) x,y ∈ Fn
q . (6)
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We call H the symmetric representation matrix of h. Second, we set Fk to be the symmetric
representation matrix of fk, and Pk that of pk. Moreover, let T be the n × n matrix such that
T (x) = x · T . It is clear that

(P1, . . . , Po) =
(
T · F1 · tT, . . . , T · Fo · tT

)
. (7)

Finally, let {e1, . . . , en} be a standard basis of Fn
q , that is, e1 = (1, 0, . . . , 0) and so on. We define the

vinegar space V and the oil space O in Fn
q by V := Span{e1, . . . , ev}, and O := Span{ev+1, . . . , en}.

Then the KS attack tries to find vectors of the twisted oil space

O · T−1 := Span{ev+1T
−1, . . . , enT

−1} (8)

by computing stable subspaces ofXY −1 for various two invertible matricesX,Y ∈ Span{P1, . . . , Po}.
If the KS attack succeeds, an attacker can find an invertible matrix T ′ such that O · T−1T ′ = O,
which is an equivalent secret key. Namely, the attacker can forge a signature for any message using
T ′. The complexity of the KS attack is given by O(qv−o).

Reconciliation attack
Any element in the twisted oil space O · T−1 is a solution to the system of quadratic equations

p1(x) = · · · = po(x) = 0. A key recovery attack that finds such a solution is called the reconciliation
attack [7]. Since the dimension of O is o, the system p1(x) = · · · = po(x) = 0 can be reduced to a
system of o quadratic equations in n− o = v variables. However, since v is relatively larger than o,
such a reduced system has a lot of solutions which do not belong to the twisted oil space O · T−1.
Due to this fact, the reconciliation attack is harder than the direct attack in general .

Intersection attack
The intersection attack was proposed by Beullens [2], and is obtained by combining with the

reconciliation attack and the KS attack. Assume that the parameters v, o satisfy the condition
v < 2o. For simplicity, we set Q = P1 and R = P2. If P1 and P2 are not invertible, then we choose
two invertible linear combinations of P1, . . . , Po as Q and R. The intersection attack tries to find
a non-zero element x of O · T−1Q ∩ O · T−1R (⊂ V · tT ). Since xQ−1,xR−1 ∈ O · T−1, such an
element x satisfies the following 3o quadratic equations in n variables x:

p1(xQ
−1) = · · · = po(xQ

−1) = 0, p1(xR
−1) = · · · = po(xR

−1) = 0,

x ·Q−1 · P1 ·R−1 · tx = · · · = x ·Q−1 · Po ·R−1 · tx = 0.
(9)

Here, we have

x ·Q−1 · P1 ·R−1 · tx = 2p2(xR
−1), x ·Q−1 · P2 ·R−1 · tx = 2p1(xQ

−1)

when we set Q = P1 and R = P2. Note that even if we choose two invertible linear combinations
of P1, . . . , Po as Q and R, we will obtain two linear dependences. Moreover, the dimension of
O · T−1Q ∩ O · T−1R is at least 2o − v under the condition v < 2o. Therefore, the system can be
reduced to a system of 3o − 2 homogeneous quadratic equations in n − (2o − v − 1) = 2v − o + 1
variables. According to Beullens’ analysis [2], such a reduced system can be identified with a random
system of M := 3o − 2 homogenous quadratic equations in N := 2v − o + 1 variables. Then, the
complexity to solve the reduced system is given by
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min
k

qk · 3
(
N − k − 1 +DN−k,M

DN−k,M

)2(
N − k + 1

2

)
, (10)

where 0 ≤ k ≤ N − 1 is the number of fixed variables in the hybrid approach.
If the condition v < 1.5o is satisfied, then the intersection attack can be more efficient. However,

since the proposed parameters of UOV variants do not satisfy such a condition, we do not explain
the attack for v < 1.5o.

The intersection attack for v ≥ 2o is considered as follows. The probability that O · T−1Q ∩ O ·
T−1R is non zero is around 1/qv−2o+1. Thus, the system (9) is a system of M = 3o− 2 quadratic
homogeneous equations in n variables x, and has a solution belonging to O·T−1Q∩O·T−1R at the
probability 1/qv−2o+1. If the system (9) does not have a non-zero solution in O · T−1Q∩O · T−1R,
then we reselect Q,R. Therefore, the complexity to find a non-zero element O · T−1Q ∩ O · T−1R
is given by

min
k

qv−2o+1qk · 3
(
n− k − 1 +Dn−k,M

Dn−k,M

)2(
n− k + 1

2

)
, (11)

where n−M ≤ k ≤ n− 1 is the number of fixed variables in the hybrid approach.

Collision attack
As a cryptographic attack, the collision attack is considered for UOV. Strictly speaking, the

signature generation of UOV finds a solution x = s to P(x) = H(m||r) for a given message m and
randomly chosen salt r, and outputs (s, r) as a signature of m. Then the collision attack is to try
to find a pair (i, j) satisfying P(si) = H(m||rj) by collecting a lot of vectors {si}i and salts {rj}j .
See the document [5] for the detail.

3 Rectangular MinRank attack against MAYO, QR-UOV and VOX

In this section, we explain the rectangular MinRank attack against MAYO, QR-UOV and VOX.
The rectangular MinRank attack was originally proposed on Rainbow by Beullens [2]. Moreover,
[11] shows that the rectangular MinRank attack is applicable to MAYO and QR-UOV.

3.1 Preliminary

We consider the case of a general multivariate scheme in this subsection. Let F = (f1, . . . , fm) :
Fn
q → Fm

q be an easily-invertible map of a general multivariate scheme, S : Fm
q → Fm

q , T : Fn
q → Fn

q

be the secret key, and P = (p1, . . . , pm) be the corresponding public key. Recall that P = S ◦F ◦ T
holds. We set Fi to be the symmetric representation matrix of fi and Pi that of pi. If we take
S ∈ Mm(Fq) and T ∈ Mn(Fq) as S(x) = x · S and T (y) = y · T , then, we have

(P1, . . . , Pm) =
(
T · F1 · tT, . . . , T · Fm · tT

)
· S (12)

By using this relation, some attacks for MPKC have been proposed so far, such as MinRank attacks.
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Let (G1, . . . , Gm) be a set of n-by-n matrices over Fq, and g
(j)
i denotes the j-th column vector

of Gi, namely,

Gi =
(
g
(1)
i g

(2)
i · · · g(n)

i

)
∈ Mn(Fq).

Then, we define the new set (G̃1, . . . , G̃n) of n-by-m matrices as follows:

G̃1 :=
(
g
(1)
1 g

(1)
2 · · · g(1)

m

)
, G̃2 :=

(
g
(2)
1 g

(2)
2 · · · g(2)

m

)
, . . . G̃n :=

(
g
(n)
1 g

(n)
2 · · · g(n)

m

)
.

Then, when we apply this deformation to (P1, . . . , Pm) and (F1, . . . , Fm), the following is easily
proven from (12): (

P̃1, . . . , P̃n

)
=
(
T · F̃1 · S, . . . , T · F̃n · S

)
· tT.

Unlike the case of general MinRank attacks using (12), the rectangular MinRank attack [2] was

proposed by using this deformation
(
P̃1, . . . , P̃n

)
.

3.2 Rectangular MinRank attack for UOV when m > v

The rectangular MinRank attack can be applied to UOV with the parameter (q, v, o,m) having the
condition m > v. Let (F1, . . . , Fm) be the set of representation matrices of the easily-invertible map
F of UOV with the parameter (q, v, o,m). From this condition, it is easily seen that the deformation
matrices F̃v+1, . . . , F̃n ∈ Mn×m(Fq) are of rank ≤ v since they have the following form:(

∗v×m

0o×m

)
.

Let (P1, . . . , Pm) be the set of representation matrices of the public key P. Then, we have
(P̃1, . . . , P̃n) = (T F̃1, . . . , T F̃n) · tT. Since F̃v+1, . . . , F̃n are of rank ≤ v, there exists a linear com-
bination of P̃1, . . . , P̃v+1 ∈ Mn×m(Fq) whose rank is ≤ v.

The rectangular MinRank attack against UOV with the parameter (q, v, o,m) under m > v
tries to find a non-zero element of the twisted oil space O · T−1. The rectangular MinRank attack
is constructed as follows. Since dimO · T−1 = o, there exists a non-zero n-by-1 vector with the
following form:

a = (a1, a2, . . . , av+1, 0, . . . , 0) ∈ O · T−1.

Then, it is shown that
∑v+1

i=1 aiP̃i = (P̃1, . . . , P̃n)·ta = (T F̃1, . . . , T F̃n)·t(a·T ) is a linear combination

of T F̃v+1, . . . , T F̃n. Thus, this linear combination is of rank ≤ v. Namely, the vector a gives a
solution to the MinRank problem for (P̃1, . . . , P̃v+1) with the target rank v. Moreover, for i =
1, . . . ,m, we have p1(a) = · · · = pm(a) = 0, where P = (p1, . . . , pm) is a public key of UOV. As
a result, the vector a = (a1, a2, . . . , av+1, 0, . . . , 0) we want to find is a common solution of the
following problems.

(i) Rank

(
v+1∑
i=1

aiP̃i

)
≤ v, (ii) p1(a) = · · · = pm(a) = 0.
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3.3 Complexity analysis

In this subsection, we describe the estimation of the complexity to solve above problems (i) and
(ii). This is done along Beullens’ estimation [2] for the original rectangular MinRank attack against
Rainbow.

First, consider problem (i). Fix an integer m′ such that v + 1 ≤ m′ ≤ m. Let P̃ ′
i be the n ×

m′ submatrix constructed from the (1, 1)-component to the (n,m′)-component of P̃i. Then one
considers to apply the support minor modeling method [1] to the MinRank problem (P̃ ′

1, . . . , P̃
′
v+1)

with the target rank v. Let I ′ be the ideal in Fq[a, c] generated by the bilinear equations obtained

from the support minor modeling, where c is the set of
(
m′

v

)
minor variables. (See [1] and [2] for

the detail description.) For b ∈ N≥1, set

R′(b) :=

b∑
i=1

(−1)i+1

(
m′

v + i

)(
n+ i− 1

i

)(
v + b− i

b− i

)
.

Let I ′b,1 be the subspace of (b, 1)-degree homogeneous polynomials of I ′ in Fq[a, c]. If the above
MinRank problem behaves like a random instance, then dimFq

I ′b,1 is predicted as R′(b) for 1 ≤ b ≤
v + 1 by the result of Bardet et al. [1].

Next, one considers adding problem (ii) to I ′. We assume that p1(a), . . . , pm(a) behaves like a
semi-regular system, where a = (a1, a2, . . . , av+1, 0, . . . , 0). Let I be the ideal generated by I ′ and
p1(a), . . . , pm(a), namely,

I := I ′ + 〈p1(a), . . . , pm(a)〉 ⊂ Fq[a, c].

We define

bmin := min
{
b ∈ N

∣∣ dimFq Ib,1 = dimFq Fq[a, c]b,1 − 1
}
. (13)

By applying to Ibmin,1 the bilinear XL algorithm [27] with Wiedemann algorithm [32, 6], we can
find a solution a to problems (i) and (ii) with the following complexity:

3

(
m′

v

)2(
v + bmin

bmin

)2

(v + 1)
2
. (14)

Following the idea of Beullens’ estimation [2], in order to guess bmin, we define the following two
series in t1 and t2:

G′(t1, t2) :=
1

(1− t1)v+1
+

(
m′

v

)
t2 +

v+1∑
b=1

((
m′

v

)(
v + b

b

)
−R′(b)

)
tb1t2

G(t1, t2) := G′(t1, t2) · (1− t21)
m.

These series are derived to compute a part of the Hilbert series of Fq[a, c]/I
′ and Fq[a, c]/I. Then

we consider that bmin is predicted by

b
(predict)
min := min {b ∈ N | G(t1, t2)b,1 ≤ 1} , (15)

where G(t1, t2)b,1 is the coefficient of tb1t2.
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Remark 2 The complexity of (i) by the support minor modeling is given by replacing bmin with
b′min in (14), where

b′min := min
{
b ∈ N

∣∣ R′(b) ≥ dimFq
Fq[a, c]b,1 − 1

}
.

3.4 Rectangular MinRank attack against MAYO signature scheme

MAYO signature scheme is a variant of the UOV scheme proposed by Beullens [3]. The public key
is almost same as that of UOV with the parameter (q, v, o,m). Note that the signature process is
achieved by some techniques such as “whipping transformation”.

Here, we estimate the complexity of the rectangular MinRank attack against MAYO. In Table 7

in the appendix, we confirmed that bmin is equal to b
(predict)
min for some small parameters of MAYO.

From the experiments in Table 7, we use b
(predict)
min instead of bmin, and theoretically estimate the

complexity of the rectangular MinRank attack against MAYO by (14).
Table 1 shows the complexity of the attack against the parameters proposed in [4]. Here, m′ in

Table 1 represents the value between v+1 and m such that the complexity of the attack is minimum.

The value b
(predict)
min is given by (15) for this m′. “RecMin” in the table means the complexity of the

rectangular MinRank attack against MAYO given by (14) as bmin = b
(predict)
min . “Best” means the

best complexity among the existing attacks stated in [4].

Table 1 Estimated gate count of the rectangular MinRank attack (RecMin) and the best known attack (Best)
in MAYO [4]

(q, v, o,m) m′ b
(predict)
min

RecMin Best
log2(#gates) log2(#gates)

(16, 58, 8, 64) 59 22 159 143
(16, 60, 18, 64) 62 21 168 143

(16, 89, 10, 96) 90 33 231 207

(16, 121, 12, 128) 122 46 310 272

For example, for (q, v, o,m) = (16, 58, 8, 64), the value m′ runs between 59 and 64, and m′ = 59

minimizes the complexity of the rectangular MinRank attack. Also, for m′ = 59, we have b
(predict)
min =

22, and then the complexity of the attack is 2159 gates. From Table 1, we see that the rectangular
MinRank attack does not reduce the security level for the proposed parameters in [4].

Remark 3 Define

R(b) :=

(
m′

v

)(
v + b

b

)
−G(t1, t2)b,1.

Following Beullens’ estimation [2], it is considered that R(b) predicts the dimension of Ib,1. In our
experiments in Table 7 in the appendix, since there had been non-trivial syzygies in the quadratic
equations obtained by problems (i) and (ii), R(b) did not equal to the dimension of Ib,1. However,

since R(b) − dim Ib,1 was very small, the values of bmin and b
(predict)
min matched. From this, we can

expect that those non-trivial syzygies do not affect the values of bmin and b
(predict)
min . Note that if

we take the influence of those syzygies into account, we have bmin ≥ b
(predict)
min . Thus, the estimated
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complexity of the rectangular MinRank attack by b
(predict)
min gives a lower bound of the accurate

complexity. Therefore, it does not change the fact that the currently proposed parameters of MAYO
is secure against the rectangular MinRank attack.

3.5 Rectangular MinRank attack against QR-UOV

In this subsection, we show that the rectangular MinRank attack is applicable to QR-UOV [13].
QR-UOV is constructed by using representation of an extension field in a matrix algebra over

Fq. Let V,O, l be positive integers and set v := V l,m = o := Ol,N := V +O,n := v + o = Nl. For
an irreducible polynomial f(t) ∈ Fq[t] with degree l, we define the embedding

ϕ : Fql = Fq[t]/(f(t)) → Ml(Fq)

by (1, t, . . . , tl−1) · ϕ(g) = (g, gt, . . . , gtl−1) for g ∈ Fql . Then, by Theorem 1 in [13], there exists an
invertible symmetric matrix W ∈ Ml(Fq) such that Wϕ(g) is symmetric for any g ∈ Fql . We also
define the following extended embedding:

ϕ : MN (Fql) 3 (aij) 7→ (ϕ(aij)) ∈ Mn(Fq).

Then, we have W (N) · ϕ(tT ) = tϕ(T ) ·W (N) for any T ∈ MN (Fql), where

W (N) :=

W

. . .

W

 ∈ Mn(Fq).

The key generation is done as follows. Randomly choose o symmetric matrices F1, . . . , Fo in
MN (Fql) in the following form:

Fi =

(
∗V ∗V×O

∗O×V 0O

)
.

The easily-invertible map F = (f1, . . . , fo) of QR-UOV is given by

fi(x) := x ·W (N) · ϕ(Fi) · tx (1 ≤ i ≤ o),

where x = (x1, . . . , xn). Next, randomly choose an invertible matrix T ∈ MN (Fql). The public key
P = (p1, . . . , po) is given by

pi(x) := x · tϕ(T ) ·W (N) · ϕ(Fi) · ϕ(T ) · tx, (1 ≤ i ≤ o). (16)

We explain how the rectangular MinRank attack is applied to QR-UOV. First, since W (N) ·ϕ(Fi)
and tϕ(T ) ·W (N) ·ϕ(Fi) ·ϕ(T ) are symmetric, the symmetric representation matrix Pi of pi is equal
to 2 · tϕ(T ) ·W (N) · ϕ(Fi) · ϕ(T ). Next, by tϕ(T ) ·W (N) = W (N) · ϕ(tT ), we have

2−1 ·W (N),−1 · Pi = ϕ(tT · Fi · T ).
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Thus, an attacker can obtain the matrices {tT ·F1 ·T, . . . , tT ·Fo ·T} from the public key {p1, . . . , po}.
It is clear that these matrices are the symmetric representation matrices of UOV with the parameter
(ql, V,O, o). Since we have o = lO > V for the proposed parameters of QR-UOV, we can apply the
rectangular MinRank attack to these matrices.

As in the case of MAYO, we did some experiments regarding bmin and confirmed that bmin =

b
(predict)
min in Table 8 in the appendix. Thus, we use b

(predict)
min instead of bmin, and theoretically estimate

the time complexity of the rectangular MinRank attack against QR-UOV.
Table 2 shows the complexity of the attack against the proposed parameters in [12]. Here, m′

in Table 2 represents the value between V + 1 and o such that the complexity of the attack is

minimum. The value b
(predict)
min is given by (15) for this m′. “RecMin” means the complexity of the

rectangular MinRank attack against QR-UOV given by (14) as bmin = b
(predict)
min . “Best” means the

best complexity among the existing attacks stated in [12].

Table 2 Estimated gate count of the rectangular MinRank attack (RecMin) and the best known attack (Best)
in QR-UOV [12]

Security
(q, V,O, l) m′ b

(predict)
min

RecMin Best
level log2(#gates) log2(#gates)

I

(7, 74, 10, 10) 75 18 162 148
(31, 55, 20, 3) 56 20 153 151
(31, 60, 7, 10) 61 19 157 152
(127, 52, 18, 3) 53 22 158 150

III

(7, 110, 14, 10) 111 27 229 211
(31, 82, 29, 3) 84 28 220 215
(31, 89, 10, 10) 90 29 220 216
(127, 76, 26, 3) 78 29 219 211

V

(7, 149, 19, 10) 150 35 292 277
(31, 108, 38, 3) 109 40 279 279
(31, 112, 12, 10) 113 41 290 275
(127, 102, 35, 3) 105 35 277 277

For example, for (q, V,O, l) = (7, 74, 10, 10), the value m′ runs between 75 and 100, and m′ = 75

minimizes the complexity of the rectangular MinRank attack. Also, for m′ = 75, we have b
(predict)
min =

18, and then the complexity of the attack is 2162 gates. From Table 2, we see that the proposed
parameters of QR-UOV are secure against the rectangular MinRank attack.

3.6 Rectangular MinRank attack against VOX

VOX [25] is constructed by mixing some random quadratic polynomials into UOV. Moreover, using
the technique of QR-UOV, VOX reduces the size of the public key.

Let V,O, l, t be positive integers and set v := V l,m = o := Ol,N := V +O,n := v+ o = Nl. Let
notations ϕ,W be as in 3.5. The key generation is done as follows. Randomly choose t symmetric
matrices F1, . . . , Ft ∈ MN (Fql) and o− t symmetric matrices Ft+1, . . . , Fo in the following form:



12 Yasuhiko Ikematsu, Hiroki Furue and Rika Akiyama

Fi =

(
∗V ∗V×O

∗O×V 0O

)
∈ MN (Fql), (t+ 1 ≤ i ≤ o). (17)

The easily-invertible map F = (f1, . . . , fo) of VOX is given by

fi(x) := x ·W (N) · ϕ(Fi) · tx (1 ≤ i ≤ o),

where x = (x1, . . . , xn). Next, randomly choose invertible matrices S ∈ Mo(Fq) and T ∈ MN (Fql).
Moreover, we define linear maps S : Fo

q → Fo
q and T : Fn

q → Fn
q associated with S and tϕ(T ),

respectively. Then, the public key of VOX is given by P = (p1, . . . , po) := S ◦ F ◦ T : Fn
q → Fo

q.
As in the case of QR-UOV, an attacker can obtain the set of matrices (tT ·F1 ·T, . . . , tT ·Fo ·T ) ·S

from the public key (p1, . . . , po). We try to apply the rectangular MinRank problem to this set. Put

(P̄1, . . . , P̄o) := (tT · F1 · T, . . . , tT · Fo · T ) · S.

Then, by the result in 3.1, we have the following(
˜̄P1, . . . ,

˜̄Po

)
=
(
tT · F̃1 · S, . . . , tT · F̃N · S

)
· T.

From the definition of F1, . . . , Fo, we have

F̃i =

(
∗V×t ∗V×o−t

∗O×t 0O×o−t

)
, (V + 1 ≤ i ≤ N).

Thus, if t < O and V < o− t, then F̃V+1, . . . , F̃N are of rank t+ V at most. Thus, we can consider
the following MinRank problem over Fql :

Rank

(
V+1∑
i=1

ai
˜̄Pi

)
≤ t+ V . (18)

For VOX, the rectangular MinRank attack is to solve this MinRank problem using the support
minor modeling [1]. We can not add the quadratic equations p1 = · · · = po = 0 since F1, . . . , Ft are
random matrices. Note that it is efficient to apply the support minor modeling to the transposition

version, namely, to the MinRank problem of o×N matrices t ˜̄P1, . . . ,
t ˜̄PV+1 with rank t+ V :

Rank

(
V+1∑
i=1

ai · t ˜̄Pi

)
≤ t+ V . (19)

If we get a solution a = (a1, . . . , aV+1, 0, . . . , 0) ∈ FN
ql to (19), we can recover an equivalent key in

polynomial time.
Table 3 shows the complexity of the rectangular MinRank attack (19) against the parameters of

VOX submitted in the additional NIST PQC standardization in June 2023 [25]. “RecMin” means
the complexity of the rectangular MinRank attack (19) using the support minor modeling [1].
“Best” means the best complexity among the existing attacks stated in [25]. As seen in the ta-
ble, the rectangular MinRank attack can break all three proposed parameters. For example, for
(q, V,O, l, t) = (251, 9, 8, 6, 6), VOX can be broken in 51 gates.
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Table 3 Estimated complexity of the rectangular MinRank attack (RecMin) and the best known attack
(Best) in VOX [25]

Security
(q, V,O, l, t)

RecMin Best
level log2(#gates) log2(#gates)

I (251, 9, 8, 6, 6) 51 146

III (1021, 11, 10, 7, 7) 55 210

V (4093, 13, 12, 8, 8) 55 285

Remark 4 We reported our result in this subsection to the NIST PQC forum, and the authors
of VOX proposed new parameter sets in [22]. However, Guo et al. broke their new parameters by
improving our attack. See [16] for the details.

4 Reorganizing the construction of SNOVA

In this section, we explain the construction of SNOVA. In particular, we state it from a different
point of view from the original papers [28, 29].

4.1 Main technique to reduce the public key size used in SNOVA

In this subsection, we explain the technique of SNOVA to reduce the size of the public key of UOV.
We note that the explanation here is different from the description in [28, 29] (See Remark 5).

In UOV in 2.1, a matrix Pk has generated only one quadratic polynomial pk(x) as in (3). In
SNOVA, this one-to-one correspondence (Pk 7→ pk) is improved as follows. Let l be a positive
integer, and F1, . . . , Fo, P1, . . . , Po be matrices defined as in (1) and (3) with parameter (q, lv, lo, o).

We have Pi = T · Fi · tT . We prepare a matrix variable X :=

x(1)

...
x(l)

, where x(i) = (x
(i)
1 , . . . , x

(i)
ln ).

We also divide x(i) into two subsets x
(i)
v = (x

(i)
1 , . . . , x

(i)
lv ), x

(i)
o = (x

(i)
lv+1, . . . , x

(i)
ln ). Then, we define

two systems of quadratic polynomials f ′
k,ij = f ′

k,ij(X) and p′k,ij = p′k,ij(X) (1 ≤ k ≤ o, 1 ≤ i, j ≤ l):

f ′
k =

f ′
k,11(X) . . . f ′

k,1l(X)
...

. . .
...

f ′
k,l1(X) . . . f ′

k,ll(X)

 := X · Fk · tX, p′k =

p′k,11(X) . . . p′k,1l(X)
...

. . .
...

p′k,l1(X) . . . p′k,ll(X)

 := X · Pk · tX.

We call P1, . . . , Po the core matrices of SNOVA and {p′k,ij} the core (quadratic) polynomials of
SNOVA.

It is clear that p′k,ij(X) = f ′
k,ij(X · T ), and f ′

k,ij(X) is a linear polynomial regarding variables

x
(1)
o , . . . ,x

(l)
o when x

(1)
v , . . . ,x

(l)
v are fixed as scalars. Thus, the core polynomials {p′k,ij} can be

identified with the public key of UOV with parameter (q, l2v, l2o, l2o).
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The verification process is done by using the quadratic map (p′1, . . . , p
′
o) = {p′k,ij} : Ml×ln(Fq) →

Ml(Fq)
o. A verifier can construct l2o quadratic polynomials {p′k,ij} in l2n variables X from only the

core matrices P1, . . . , Po. In particular, a core matrix Pk generates l2 quadratic polynomials. Thus,
if the core matrices P1, . . . , Po are the public key, then the size of the public key is small compared
with {p′k,ij}. This is the main technique to reduce the size of the public key used in SNOVA. Note
that, the core polynomials are vulnerable for a forgery attack. SNOVA will be constructed by further
improving this technique.

Remark 5 Wang et al.[28, 29] explained the technique used in SNOVA in a slightly different method.
They define an n× n matrix Fk = (Fk,ij)1≤i,j≤n as a matrix over the matrix ring Ml(Fq). Namely,
each component Fk,ij is an element of Ml(Fq). However, since Mn(Ml(Fq)) = Mln((Fq), their
construction is equivalent to the above our construction.

4.2 A forgery attack for the core polynomials {p′
k,ij}

As stated in [28], SNOVA is constructed by improving the technique in 4.1, since the core poly-
nomials {p′k,ij} are sparse quadratic polynomials. The authors of SNOVA considered that the core
part might be vulnerable. Due to our analysis, the consideration is right, and the core polynomials
{p′k,ij} are actually vulnerable for a forgery attack. In this subsection, we show the method to forge
a signature for the core polynomials {p′k,ij}.

Let M = (M (1), . . . ,M (o)) ∈ Ml(Fq)
o be a message to be signed. To forge a signature for this

M, we must solve the quadratic equations

p′k,ij(X) = M
(k)
ij , (1 ≤ i, j ≤ l, 1 ≤ k ≤ o). (20)

Here, we note that p′k,ij(X) is a polynomial in variables x(i) and x(j) by its definition.

First, we have p′k,11(X) = p′k,11(x
(1)). Therefore, the system of equations

p′1,11(x
(1)) = M

(1)
11 , . . . , p′o,11(x

(1)) = M
(o)
11

is o quadratic equations in ln variables x(1). Since the parameter o used in SNOVA is small, it is
efficient to find a solution to this system. Let y(1) ∈ Fln

q be a solution to this system.

Next, we focus on the system of equations in x(2):

p′1,12(y
(1),x(2)) = M

(1)
12 , . . . , p′o,12(y

(1),x(2)) = M
(o)
12 ,

p′1,21(y
(1),x(2)) = M

(1)
21 , . . . , p′o,21(y

(1),x(2)) = M
(o)
21 ,

p′1,22(x
(2)) = M

(1)
22 , . . . , p′o,22(x

(2)) = M
(o)
22 .

This is equivalent to the system of o quadratic equations in ln − 2o variables since the first two
system are 2o linear equations. Thus, it is also easy to solve this system. Let y(2) be a solution to
this second system.



New security analysis for UOV-based signature candidates with small public key size 15

By repeating similar processes, we finally obtain the system of o quadratic equations in ln−2(l−
1)o variables. If v, o satisfy ln− 2(l− 1)o ≥ o, then the final system has a solution y(l) with a high
probability. As a result, we obtain a solution y = (y(1), . . . ,y(l)) to (20).

Since the parameters v, o satisfy v > o in general, the condition ln− 2(l − 1)o > o are satisfied.
Thus, this forgery attack works.

4.3 Construction of SNOVA

In this subsection, we describe the construction of SNOVA, and explain how the authors of
SNOVA [28] resolve the vulnerability of the core polynomials {p′k,ij}.

There are two techniques in order to resolve the vulnerability of the core polynomials. First one
is mixing the core matrices P1, . . . , Po, and second is transforming them by elements of a subfield
in the matrix ring Ml(Fq).

4.3.1 Mixing the core matrices

Randomly choose l × l matrices A1, . . . , Al2 and B1, . . . , Bl2 . Moreover, randomly choose ln × ln
matrices Q11, . . . , Ql21 and Q12, . . . , Ql22. Then we define the polynomial matrices hk and gk:

hk :=

l2∑
i=1

Ai ·X ·Qi1 · Fk ·Qi2 · tX ·Bi, (1 ≤ k ≤ o).

gk :=

l2∑
i=1

Ai ·X ·Qi1 · Pk ·Qi2 · tX ·Bi, (1 ≤ k ≤ o).

Here, hk and gk are the sets of l2 quadratic polynomials Hk = {hk,ij}ij and Gk = {gk,ij}ij in the
variablesX, respectively. By modifying in this way, it is considered to be difficult to apply the forgery
attack in 4.2 to G = {gk,ij}k,ij . However, it is also difficult to execute the signature generation

algorithm, since hk,ij is NOT a linear polynomial regarding variables x
(1)
o , . . . ,x

(l)
o because of the

multiplication of Qij . To resolve this issue, it is necessary to use a subfield in multiplying of Qij .

4.3.2 Transforming by a subfield

First, let S be a symmetric matrix in Ml(Fq) such that its characteristic polynomial is irreducible
over Fq. Then the algebra A generated by S in Ml(Fq) forms an l-dimensional subfield in Ml(Fq).

Next, randomly choose non-zero l × l matrices R11, . . . , Rl21 and R12, . . . , Rl22 in A. Set

Qij :=

Rij

. . .

Rij

 ∈ Mn(A) ⊂ Mln(Fq).
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Moreover, we choose the secret key T from Mn(A) ⊂ Mln(Fq). Since A is commutative, we have
QijT = TQij . By defining hk, gk using these Qij and T , the signature generation algorithm works.
In fact, we have

Qi1 · Pk ·Qi2 = Qi1 · T · Fk · tT ·Qi2 = T ·Qi1FkQi2 · tT.

Here, Qi1FkQi2 is a matrix whose lower right components are zero as in (1). Thus, hk,ij is a linear

polynomial regarding variables x
(1)
o , . . . ,x

(l)
o when x

(1)
v , . . . ,x

(l)
v are fixed as scalars. Therefore, we

can apply the signature generation algorithm of UOV.

4.3.3 Summary

As a result, the construction of SNOVA is summarized as follows. Randomly choose the following:

1. ln× ln matrices F1, . . . , Fo whose lower right components are zero,

2. a matrix T0 ∈ Mo×v(A), and set T =

(
1lv 0lv×lo

T0 1lo

)
,

3. l × l matrices A1, . . . , Al2 and B1, . . . , Bl2 ,

4. non-zero matrices R11, . . . , Rl21 andR12, . . . , Rl22 inA, and setQij :=

Rij

. . .

Rij

 ∈ Mln(Fq).

Then, the secret key is {Fk}k, T , and the public key is {Pk := TFk
tT}k, and {Ai, Bi, Ri1, Ri2}i.

The verifier generates gk from the public key in the verification process. Here, since the data
{Ai, Bi, Ri1, Ri2} are generated randomly, we can compress them to a seed. As a result, the public
key size almost depends on P1, . . . , Po. Moreover, we can apply the technique of Petzoldt et al. [26]
to P1, . . . , Po.

5 Revisiting the security analysis of SNOVA

In this section, we recall the security analysis of SNOVA stated in [29]. In 5.1, we explain how the
authors of SNOVA [29] analyzed the security of SNOVA.

5.1 Review of the security analysis of SNOVA

In this subsection, we briefly review the key recovery attacks used in the SNOVA document [29] in
order to analyze the security of SNOVA.

A key recovery attack for SNOVA tries to find a secret key T or an equivalent key. The key
recovery attacks in the document [29] are considered using the information of the core matrices
of SNOVA. As stated in Remark 5, the core matrices P1, . . . , Po are originally defined using the
n × n matrices Fk = (Fk,ij)1≤i,j≤n over Ml(Fq). Moreover, the core quadratic polynomials {p′k,ij}
generated by P1, . . . , Po can be seen as the public key of UOV with the parameter (q, l2v, l2o, l2o).
We call such a UOV instance {p′k,ij} the core polynomial UOV. The authors of SNOVA considered
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Table 4 The complexity estimation (in log2(#gates)) evaluated in the document of SNOVA [29]

(q, v, o, l)
Direct Collision KS Intersection Equivalent MinRank
attack attack attack attack attack attack

I
(16, 28, 17, 2) 171 151 181 275 192 151
(16, 25, 8, 3) 175 159 617 819 231 148
(16, 24, 5, 4) 188 175 1221 1439 286 150

III
(16, 43, 25, 2) 231 215 293 439 279 212
(16, 49, 11, 3) 230 213 1373 1631 530 215
(16, 37, 8, 4) 291 271 1861 2192 424 217

V
(16, 61, 33, 2) 308 279 453 727 386 279
(16, 66, 15, 3) 307 285 1841 2178 707 280
(16, 60, 10, 4) 355 335 3205 3602 812 278

whether each key recovery attack can be applied to the core matrices P1, . . . , Po and the core
polynomial UOV {p′k,ij}, and analyzed their complexity estimations.

(i) KS attack:
The authors of SNOVA considered that since the components of F1, . . . , Fo are in the non-

commutative ring Ml(Fq), the oil space O cannot be defined. From such a consideration, they
concluded that the KS attack can not be applied to the core matrices P1, . . . , Po. On the other hand,
they considered the KS attack for the core polynomial UOV {p′k,ij}. Since the core polynomial UOV

is an instance of UOV with parameter (q, l2v, l2o, l2o), its complexity is given by O(ql
2(v−o)).

(ii) Reconciliation attack:

In the document, the reconciliation attack is applied to only the core polynomial UOV {p′k,ij}.
Since the core polynomial UOV is an instance of UOV with parameter (q, l2v, l2o, l2o), this attack
solves the quadratic system of l2o equations in l2v variables. They concluded that this attack is not
efficient compared to the direct attack.

(iii) Intersection attack:
As in the case of the KS attack, they considered only the intersection attack for the core polyno-

mial UOV, that is, the intersection attack for an instance of UOV with parameter (q, l2v, l2o, l2o).
Its complexity is given by using the estimation in 2.2.

(iv) Equivalent attack:

This attack tries to recover T using the relation T−1 · Pk · tT−1 = Fk (1 ≤ k ≤ o), and the

fact that the lower right lo × lo submatrix of each Fk is zero. Since T−1 =

(
1lv 0lv×lo

−T0 1lo

)
and T0

consists of lvo unknowns, this attack forms l2o3 quadratic equations in lvo variables. By solving
these quadratic equations, the secret key T is recovered. See [29] for its complexity estimation.

(v) MinRank attack:
The author of SNOVA discovered that there exists a linear combination of the representation

matrices of the core polynomial UOV {p′k,ij} with rank lv. Then, they estimated the complexity of

MinRank problem with l2o square matrices of size l2n and the target rank lv. While they did not
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give a method to recover an equivalent key from a solution to the MinRank problem, they adopted
this complexity to the security estimation of SNOVA from a conservative point of view.

Table 4 shows the proposed parameters of SNOVA in the additional NIST PQC standardization
and the complexity estimations they gave in the document [29].

5.2 Revisiting the security analysis of SNOVA

In this subsection, we reconsider the security analysis of SNOVA based on the construction we
reorganized in Section 4.

As seen in 5.1, the authors of SNOVA claimed that since SNOVA and its core matrices are
constructed using the non-commutative ring Ml(Fq), some key recovery attacks cannot be applied
to SNOVA. However, the core matrices P1, . . . , Po can be identified with a part of the public key of
UOV with parameter (q, lv, lo, o). Thus, we can apply some key recovery attacks of UOV to the core
matrices P1, . . . , Po. Moreover, since the secret key T is in Mn(A), we can make some key recovery
attacks more efficient.

(i) KS attack:
The core matrices P1, . . . , Po are public information and have the structure of UOV with param-

eter (q, lv, lo, o). Therefore, the KS attack works for P1, . . . , Po, and its complexity is O(ql(v−o)).
This version of the KS attack is efficient compared with the KS attack in 5.1 (i).

(ii) Reconciliation attack:
We can also apply the reconciliation attack to the core matrices P1, . . . , Po to recover the secret

key T or an equivalent key. Moreover, by using the fact that the secret key T is in Mn(A) and
P1, . . . , Po are not necessarily symmetric matrices in SNOVA, we can make the reconciliation attack
more efficient.

Let x be a non-zero element in the twisted oil space O · T−1, namely x ∈ O · T−1, where the

oil space O is defined by O := {(
lv︷ ︸︸ ︷

0, . . . , 0,

lo︷ ︸︸ ︷
∗, . . . , ∗) ∈ Fln

q }. Since T is in Mn(A), the secret key T is
commutative with

Sdiag :=

S
. . .

S

 ∈ Mln(Fq),

where S is the l × l symmetric matrix in 4.3.2. Thus, we have for i = 0, . . . , l − 1,

x · Si
diag ∈ O · T−1Si

diag = O · Si
diagT

−1 = O · T−1.

From this, we have

x · Si
diag · Pk · Sj

diag ·
tx = 0, (0 ≤ i, j ≤ l − 1, 0 ≤ k ≤ o). (21)

By solving this system, we might be able to obtain an element in the twisted oil space O·T−1. Since
the dimension of O · T−1 is lo, this system (21) can be reduced to a system of l2o homogeneous
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quadratic equations in ln − (lo − 1) = lv + 1 variables, which has only one solution belonging to
the twisted oil space up to a scalar factor. Here, since Pk is not necessarily symmetric for the case
of SNOVA, two polynomials x · Si

diag · Pk · Sj
diag · tx and x · Sj

diag · Pk · Si
diag · tx are not necessarily

equal. Therefore, the complexity of the reconciliation attack is evaluated by

min
k

qk · 3
(
lv − k +Dlv+1−k,l2o

Dlv+1−k,l2o

)2(
lv + 2− k

2

)
, (22)

where max{0, lv + 1− l2o} ≤ k ≤ lv is the number of fixed variables in the hybrid approach.

(iii) Intersection attack:
We can apply the intersection attack to the core matrices P1, . . . , Po. Let Q,R be two randomly

chosen invertible linear combinations of P1, . . . , Po. Let x be an element in O · T−1Q ∩ O · T−1R.
Since we have xQ−1,xR−1 ∈ O · T−1, we obtain

x ·Q−1Si
diag, x ·R−1Si

diag ∈ O · T−1 (0 ≤ i ≤ l − 1).

From this, we have for 0 ≤ i, j ≤ l − 1, 0 ≤ k ≤ o

x ·Q−1Si
diag · Pk · Sj

diag
tQ−1 · tx = 0, x ·Q−1Si

diag · Pk · Sj
diag

tR−1 · tx = 0,

x ·R−1Si
diag · Pk · Sj

diag
tQ−1 · tx = 0, x ·R−1Si

diag · Pk · Sj
diag

tR−1 · tx = 0.
(23)

As a result, the intersection attack for the core matrices P1, . . . , Po finds an element x · Q−1 in
O · T−1 by solving the above system, if O · T−1Q ∩ O · T−1R 6= 0. Since the system (23) has 2l
redundant equations, it is reduced to a system of 4l2o− 2l homogeneous quadratic equations in ln
variables.

The case v < 2o
In this case, the dimension of O·T−1Q∩O·T−1R is at least 2lo− lv > 0. Thus the system can be

reduced a system of M := 4l2o− 2l homogeneous quadratic equations in N := ln− (2lo− lv− 1) =
2lv− lo+1 variables. Moreover, our experiments in Table 9 in the appendix show that this reduced
system behaves like a random system of M homogeneous quadratic equations in N variables. The
complexity to solve the reduced system is given by

min
k

qk · 3
(
N − k − 1 +DN−k,M

DN−k,M

)2(
N − k + 1

2

)
, (24)

where 0 ≤ k ≤ N − 1 is the number of fixed variables in the hybrid approach.

The case v ≥ 2o
In this case, the probability that O · T−1Q ∩ O · T−1R 6= 0 is around 1/qlv−2lo+1. Thus, the

system (23) is a system of M := 4l2o − 2l homogeneous quadratic equations in ln variables, and
has a solution belonging to O · T−1Q ∩ O · T−1R at the probability 1/qlv−2lo+1. Our experiments
in Table 9 in the appendix show that the system (23) in the case v ≥ 2o also behaves like a random
system of M homogeneous quadratic equations in ln variables. Note that, for the case of v ≥ 2o,
the reduced system does not have non-zero solutions when O · T−1Q ∩ O · T−1R = 0. For that
reason, Rankd = #Columnsd can happen with high probability in Table 9.
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The complexity to find a non-zero element in O · T−1Q ∩ O · T−1R is given by

min
k

qlv−2lo+1qk · 3
(
ln− k − 1 +Dln−k,M

Dln−k,M

)2(
ln− k + 1

2

)
, (25)

where max{0, ln−M} ≤ k ≤ ln− 1 is the number of fixed variables in the hybrid approach.

(iv) Equivalent attack:
It is clear that the equation system of the equivalent attack in 5.1 (iv) is the full reconciliation

attack (see 3.3 in [2]), and contains that of the reconciliation attack in 5.2 (ii). The dominant part
of the equivalent attack is considered to be the part of the reconciliation attack . Therefore, it is
enough to analyze the reconciliation attack.

From the above, we could indeed apply the key recovery attacks to the core matrices P1, . . . , Po,
and it is efficient compared with the key recovery attacks for the core polynomial UOV {p′k,ij}.
Thus, it is considered that we should analyze the security of the core matrices instead of the core
polynomial UOV. Table 5 shows the complexity estimations of KS attack, reconciliation attack and
intersection attack for the core matrices P1, . . . , Po.

Table 5 Our complexity estimation (in log2(#gates)) evaluated in 5.2

(q, v, o, l)
KS Reconciliation Intersection

attack attack attack

I
(16, 28, 17, 2) 93 132 (k = 2) 87 (k = 0)
(16, 25, 8, 3) 209 209 (k = 15) 221 (k = 0)
(16, 24, 5, 4) 309 270 (k = 30) 349 (k = 0)

III
(16, 43, 25, 2) 149 193 (k = 6) 120 (k = 0)
(16, 49, 11, 3) 461 438 (k = 66) 529 (k = 0)
(16, 37, 8, 4) 469 388 (k = 45) 507 (k = 0)

V
(16, 61, 33, 2) 229 277 (k = 17) 167 (k = 1)
(16, 66, 15, 3) 617 575 (k = 87) 690 (k = 0)
(16, 60, 10, 4) 805 695 (k = 112) 922 (k = 0)

Here, the security level I, III and V mean that all classical attacks require 2143, 2207 and 2272

classical gates to break the scheme, respectively. From this table, the parameters for l = 2 do not
satisfy the claimed security levels.

6 Conclusion

We gave a new security analysis for UOV variants with small public keys, MAYO,QR-UOV,VOX,
and SNOVA. First, we showed that the rectangular MinRank attack originally proposed on the
Rainbow scheme by Beullens is applicable to MAYO, QR-UOV, and VOX. Second, we reorganized
the construction of SNOVA, and reconsider its security analysis. Through our analysis, we showed
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that all parameters of VOX and some parameters of SNOVA submitted in the NIST PQC additional
call for digital signatures do not satisfy the claimed security levels.

Acknowledgements This work was supported by JST CREST Grant Number JPMJCR2113, Japan, and
JSPS KAKENHI Grant Number JP19K20266, JP22KJ0554 and JP22K17889, Japan.

References

1. Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R., Smith-Tone, D., Tillich, J.P, Verbel, J.:
‘Improvements of algebraic attacks for solving the rank decoding and MinRank problems’, ASIACRYPT
2020, LNCS 12491, pp.507-536, Springer

2. Beullens, W.: ‘Improved Cryptanalysis of UOV and Rainbow’, EUROCRYPT 2021, LNCS 12696, pp. 348–
373, Springer

3. Beullens, W.: ‘MAYO: Practical Post-quantum Signatures from Oil-and-Vinegar Maps’, SAC 2021, LNCS
13203, pp. 355–376, Springer

4. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: ‘MAYO’, Specification document of NIST
PQC Standardization of Additional Digital Signature Scheme (2023)

5. Beullens, W., Chen, M-S., Ding, J., Gong, B., Kannwischer, M.J., Patarin, J., Peng, B.Y., Schmidt,
D., Shih, C.J., Tao, C., Yang, B.Y.: ‘UOV’, Specification document of NIST PQC Standardization of
Additional Digital Signature Scheme (2023)

6. Cheng CM, Tung Chou T., Niederhagen R., Yang BY.: ‘Solving Quadratic Equations with XL on Parallel
Architectures’, CHES 2012, LNCS, 7428, pp. 356–373. Springer, 2012.

7. Ding, J., Yang, B.Y., Chen, C.H. O., Chen, M.S., Cheng, C.M.: ‘New differential-algebraic attacks and
reparametrization of Rainbow’, ACNS 2008, LNCS 5037, pp. 242–257, Springer

8. Ding, J., Gong, B., Guo, H., He, X., Jin, Y., Pan, Y., Schmidt, D., Tao, C., Xie, D., Yang, B.Y., Zhao, Z.:
‘TUOV’, Specification document of NIST PQC Standardization of Additional Digital Signature Scheme
(2023)

9. Faugère, J.C.: ‘A new efficient algorithm for computing Gröbner bases (F4)’, Journal of Pure and Applied
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Appendix A The proposed parameters of UOV [5]

Table 6 The proposed parameters of UOV [5] in the additional NIST PQC standardization project

Security
(q, v, o)

Public key Signature
level (bytes) (bytes)

I
(256, 68, 44) 43576 128
(16, 96, 64) 66576 96

III (256, 112, 72) 189232 200
V (256, 148, 96) 446992 260

Appendix B Experimental results

MAYO

In Table 7, we experimented whether bmin is equal to b
(predict)
min for some parameters. As seen in

the table, we have bmin = b
(predict)
min for each m′ between v + 1 and m.
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Table 7 Experiments for bmin and b
(predict)
min

(q, v, o,m) m′ bmin b
(predict)
min

(7, 5, 1, 6) 6 4 4

(7, 8, 1, 10)
9 5 5
10 4 4

(7, 8, 2, 10)
9 5 5
10 4 4

(16, 5, 1, 6) 6 4 4

(16, 8, 1, 10)
9 5 5
10 4 4

(16, 8, 2, 10)
9 5 5
10 4 4

QR-UOV

In Table 8, we experimented that bmin is equal to b
(predict)
min for some parameters. As seen in Table

8, we have bmin = b
(predict)
min .

Table 8 Experiments for bmin and b
(predict)
min

(q, V,O, l) m′ b
(predict)
min bmin

(7, 5, 2, 3) 6 4 4

(7, 6, 3, 3)
7 3 3
8 3 3
9 2 2

(7, 7, 3, 3)
8 4 4
9 3 3

(7, 8, 3, 3) 9 5 5

SNOVA
The upper half of Table 9 shows that the reduced systems stated in the case of v < 2o in

5.2 (iii) behave like a random system of M := 4l2o − 2l homogeneous quadratic equations in
N := ln− (2lo− lv−1) = 2lv− lo+1 variables. Here, Hd is the dimension of degree d part Id of the
homogeneous ideal I generated by a semi-regular system of M homogeneous quadratic equations in

N variables. The dimension Hd is computed by using the coefficient of td in 1−(1−t2)M

(1−t)N
. Moreover,

Rankd and #Columnsd mean the rank and the number of columns of the Macaulay matrix at degree
d for the reduced system of (23). For the case of v < 2o, since the reduced system has only one
solution up to a scalar factor, Rankd is always less than or equal to #Columnsd − 1. Actually, the
marked number by boldface in the table is equal to #Columnsd − 1.

The lower half of Table 9 shows that the system (23) in the case v ≥ 2o also behaves like a random
system of M := 4l2o− 2l homogeneous quadratic equations in ln variables. Note that, for the case
of v ≥ 2o, the reduced system does not have non-zero solutions when O · T−1Q ∩ O · T−1R = 0.
For that reason, Rankd = #Columnsd can happen with high probability in Table 9.
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Table 9 The rank and the number of columns of the Macaulay matrix at each degree d for the system (23).
For the case of v < 2o, we consider the reduced system of M equations in N variables.

(q, v, o, l) d = 2 d = 3 d = 4 d = 5 d = 6

(16, 7, 4, 2)
Hd 60 1260 10626

Rankd 60 1260 10625
#Columnsd 231 1771 10626

(16, 7, 4, 3)
Hd 138 4278 46376

Rankd 138 4278 46375
#Columnsd 496 5456 46376

(16, 7, 4, 4)
Hd 248 10168 135751

Rankd 248 10168 135750
#Columnsd 861 12341 135751

(16, 9, 5, 2)
Hd 76 2052 25878 169911

Rankd 76 2052 25878 169910
#Columnsd 378 3654 27405 169911

(16, 9, 5, 3)
Hd 174 6960 123410

Rankd 174 6960 123409
#Columnsd 820 11480 123410

(16, 9, 5, 4)
Hd 312 16536 367290

Rankd 312 16536 367289
#Columnsd 1431 26235 367290

(16, 6, 2, 2)
Hd 28 448 3430 15504

Rankd 28 448 3430 15504
#Columnsd 136 816 3876 15504

(16, 6, 2, 3)
Hd 66 1584 17550

Rankd 66 1584 17550
#Columnsd 300 2600 17550

(16, 6, 2, 4)
Hd 120 3840 52360

Rankd 120 3840 52360
#Columnsd 528 5984 52360

(16, 7, 2, 2)
Hd 28 504 4410 25116 100947

Rankd 28 504 4410 25116 100947
#Columnsd 171 1140 5985 26334 100947

(16, 7, 2, 3)
Hd 66 1782 22803 169911

Rankd 66 1782 22803 169911
#Columnsd 378 3654 27405 169911

(16, 7, 2, 4)
Hd 120 4320 72780 658008

Rankd 120 4320 72780 658008
#Columnsd 666 8436 82251 658008


