
Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4

Ward Beullens1, Fabio Campos2, Sof́ıa Celi3, Basil Hess1, and Matthias J. Kannwischer4

1 IBM Research Europe, Zurich, Switzerland
2 RheinMain University of Applied Sciences, Wiesbaden, Germany

3 Brave Software
4 Quantum Safe Migration Center, Chelpis Quantum Tech, Taipei, Taiwan⋆⋆

contact@pqmayo.org

Keywords: MAYO · Oil and Vinegar · Arm Cortex-M4 · AVX2 · NIST PQC

Abstract. MAYO is a popular high-calorie condiment as well as an auspicious candidate in the ongoing
NIST competition for additional post-quantum signature schemes achieving competitive signature and
public key sizes. In this work, we present high-speed implementations of MAYO using the AVX2 and
Armv7E-M instruction sets targeting recent x86 platforms and the Arm Cortex-M4. Moreover, the
main contribution of our work is showing that MAYO can be even faster when switching from a bitsliced
representation of keys to a nibble-sliced representation. While the bitsliced representation was primarily
motivated by faster arithmetic on microcontrollers, we show that it is not necessary for achieving
high performance on Cortex-M4. On Cortex-M4, we instead propose to implement the large matrix
multiplications of MAYO using the Method of the Four Russians (M4R), which allows us to achieve
better performance than when using the bitsliced approach. This results in up to 21% faster signing.
For AVX2, the change in representation allows us to implement the arithmetic much faster using shuffle
instructions. Signing takes up to 3.2× fewer cycles and key generation and verification enjoy similar
speedups. This shows that MAYO is competitive with lattice-based signature schemes on x86 CPUs, and
a factor of 2-6 slower than lattice-based signature schemes on Cortex-M4 (which can still be considered
competitive).

1 Introduction

Most public-key cryptographic algorithms that are deployed today are vulnerable to efficient attacks from
large-scale quantum computers. Due to this threat, it is important to transition to quantum-safe alterna-
tives. The US National Institute of Standards and Technology (NIST) selected three quantum-safe digital
signature algorithms for standardization in 2022 [oST22]: Crystals-Dilithium [LDK+], FALCON [PFH+], and
SPHINCS+ [HBD+]. Additionally, NIST is running a process to standardize more quantum-safe signature
schemes. One of the most efficient schemes submitted to this process in terms of communication size and
speed is MAYO, a multivariate signature scheme.

MAYO [Beu22,BCC+23] is a variant of the Oil and Vinegar scheme (OV) [Pat95,KPG99]. The Oil and
Vinegar scheme is one of the oldest, and arguably the most studied multivariate digital signature scheme.
With small signature sizes, and fast signing and verification, OV has withstood the test of time remarkably
well since its invention in 1995. Its major drawback is its relatively large key sizes. The MAYO variant of
the scheme solves the problem of large key sizes while preserving very good computational efficiency and
signature size, which makes it a promising candidate in the latest NIST standardization project.

In this work, we focus on implementing the MAYO signature scheme in a high-speed manner. We target
both AVX2 and Arm platforms. We follow the specification of the MAYO scheme as given by [BCC+23], but
we propose a change to this specification that results in significant implementation speed-ups. The results of
our speed-ups can be found in section 6, where we also compare our cycle counts with those of other NIST
PQC algorithms.

Contributions. The contribution of our work is fivefold:

⋆⋆ Part of this work was done while the author was at Academia Sinica.



– In section 4, we present the first high-speed implementations of the MAYO signature scheme as submit-
ted to the “on-ramp” additional call for quantum-safe signature algorithms by NIST for standardiza-
tion [NIS22]. We target the AVX2 and the Armv7E-M instruction sets, and present speed records on
Intel Skylake, Intel Icelake, and Arm Cortex-M4.

– In section 3, we present a constant-time Gaussian elimination procedure tuned for the MAYO signature
scheme with a methodology similar to that of [CKY21], but adapted for non-square matrices.

– In section 5, we propose a change to the current MAYO specification [BCC+23, on 01/06/2023]: While
the current version of MAYO uses a bitsliced representation for public keys, private keys, and all outputs
of the PRNG, we show that this choice is not ideal. This choice was mainly motivated by platforms
that achieve the best performance with bitsliced field arithmetic, such as the Arm Cortex-M4. Platforms
for which better arithmetic exists (such as those implementing AVX2 or Arm Neon), suffer with this
choice. We instead propose using the nibble-sliced representation5, which is commonly found in other
multivariate cryptosystems such as OV [BCH+23].

– In section 5, we propose to use the Method of the Four Russians (M4R) [ADKF70,AH74] for costly
matrix multiplications within MAYO on the Cortex-M4. This essentially trades field multiplications
for table look-ups with the latter being much cheaper on embedded platforms. These efficiency gains
motivate our usage of M4R. Note that this method is compatible with other multivariate cryptosystems,
specially those that use a nibble-sliced representation, such as OV [BCH+23]. However, determining if OV
implementations using M4R are superior is not obvious and left to future work. Using M4R, we achieve
modest speed-ups of up to 21% over the previous implementations that use the bitsliced representation.
However, M4R can only be efficiently implemented if matrices are in nibble-sliced representation. On-
the-fly conversion outweighs the gains achieved.

– Using the nibble-sliced representation allows us to implement the F16 arithmetic within MAYO using
AVX2 shuffle instructions, which results in much better performance. Fundamentally, this technique is
also based on M4R. Using AVX2 shuffle instructions for field multiplication has been common practice
in multivariate cryptography for many years [CCC+09,DCP+20,BCH+23]. However, unlike existing ap-
proaches, we use both the high and the low nibbles of the lookup table AVX2 register, which doubles
the number of multiplications per shuffle instruction. Compared to the bitsliced implementation, the
resulting nibble-sliced implementations of MAYO uses up to 3.2× fewer cycles.

Source code. The source code of the implementations described in this paper is available under an Apache
2.0 license. The reference implementation and the AVX2 implementation are available at https://github.
com/PQCMayo/MAYO-C. The Arm Cortex-M4 implementation is available at https://github.com/PQCMayo/
MAYO-M4. The bitsliced and nibble-sliced variants are available in separate branches.

Related work. Most prior work [KKS+21,CKY21,Pet13,FG18] on implementations of multivariate signature
schemes targets the Rainbow [DCK+21] cryptosystem, since it was a finalist of the NIST Post-Quantum-
Cryptography (PQC) standardization process [oST]. However, many of these techniques can be adapted to
other OV-based schemes including MAYO. In [Beu22], Beullens provides a preliminary implementation of
MAYO. In [BCC+23], the authors present an updated set of parameters and, accordingly, a reference software
implementation based on bitsliced arithmetic. In [GMSS23], the authors present the first implementation of
MAYO on Arm microcontrollers. They use a modified parameter set to speed up the signing and verification
processes, which is very close but not identical to [BCC+23]. We vastly outperform these implementations.
It is worth noting that two implementations of MAYO on FPGA were recently proposed [SMA+23,HSMR23]
(we include some numbers of the latter in Table 6).

2 Preliminaries

In this section, we recall the MAYO signature scheme (subsection 2.1)6 and the Method of the Four Russians
(subsection 2.2).

5 The authors of [BCC+23] have agreed to incorporate these changes in the round-2 submission of their specification.
6 For an in-depth explanation, see [BCC+23, Chapter 1 & 2]

https://github.com/PQCMayo/MAYO-C
https://github.com/PQCMayo/MAYO-C
https://github.com/PQCMayo/MAYO-M4
https://github.com/PQCMayo/MAYO-M4


Notation. If X is a finite set, we write x
$←− X to denote that x is assigned a value chosen from X uniformly

at random. If A is an algorithm, we write x← A(y) to denote that x is assigned the output of running A on
input y. If k is an integer, we denote by [k] the set {0, . . . , k−1}. We denote by {xi}i∈[k] a sequence of objects
x0, . . . , xk−1 indexed by elements of [k]. We denote the base-2 logarithm by log, and we denote binomial
coefficients by

(
n
k

)
, i.e.,

(
n
k

)
= n!/k!(n− k)!. We use the standard Landau notation O(·) for asymptotics.

We denote by Fq a finite field with q elements and by Fm×n
q the set of (zero-indexed) matrices over Fq

with m rows and n columns. We denote by Ia ∈ Fq
a×a the identity matrix of size a-by-a. If A ∈ Fq

m×n and
b ∈ Fq

m, we denote by A[i, j] the entry in the i-th row and the j-th column of A, by A[:, i] ∈ Fq
m the i-th

column of A, and by A[i, :] ∈ Fq
n the i-th row of A. We denote by (Ab) ∈ Fq

m×(n+1) the matrix whose
first n columns are the columns of A, and whose last column is b. We say a matrix A ∈ Fq

n×n is upper
triangular if A[i, j] = 0 for all 0 ≤ j < i < n.

2.1 MAYO

Both an Oil and Vinegar [KPG99,Pat97] and a MAYO public key represents a multivariate quadratic map
P : Fn

q → Fm
q consisting of m homogeneous quadratic polynomials in n variables over a small finite field Fq.

The secret key represents a linear subspace O ⊂ Fn
q of dimension o, on which P vanishes, i.e. P(o) = 0 for

all vectors o ∈ O. In the case of Oil and Vinegar, o = m, and P is used directly to verify if a signature
s ∈ Fn

q is valid for a message m given that public key P: the signature is valid if P(s) = H(m), where H is
a salted hash function that outputs elements in Fm

q . Knowledge of the secret space O allows the signer to
sample such signatures by solving a system of m linear equations.

MAYO is a variant of the Oil and Vinegar scheme, where P has the same structure with the exception
that the dimension of the space O on which P evaluates to zero is “too small”, i.e., dim(O) = o, with o less
than m. Reducing the dimension of O drastically shrinks the key sizes. However, it also means that the OV
signing algorithm does not work anymore. To solve this problem, P is not used directly in the signature and
verification procedure. Instead, the verifier “whips up” P into a k-fold larger map P⋆ : Fkn

q → Fm
q , with m

polynomials in k sets of n variables (k is a parameter of the scheme). Concretely, P⋆ is defined as:

P⋆(x1, . . . ,xk) :=

k∑
i=1

EiiP(xi) +

k∑
i=1

k∑
j=i+1

EijP ′(xi,xj) ,

where P ′(x,y) := P(x + y) − P(x) − P(y), and where for all i ∈ {1, . . . , k} and all j ∈ {i + 1, . . . , k} the
matrix Eij ∈ Fm×m

q is fixed and public. These matrices are chosen such that, under the correspondence
between vectors in Fm

q and polynomials in Fq[X] of degree at most m, multiplication by Eij corresponds
to multiplication by powers of X modulo an irreducible polynomial f(X) ∈ Fq[X] of degree m. A MAYO
signature S = (s1, . . . , sk) ∈ Fnk

q is considered valid if P⋆(s1, . . . , sk) = H(m).
To compute P⋆(S), the verifier (as seen in 3) first computes P(si) and P ′(si, sj) for all i ∈ {1, . . . , k}

and all j ∈ {i + 1, . . . , k}, and then combines said variables to obtain P⋆(s). Since the Eij matrices act as
multiplication by powers of X (mod f(X)), the verifier can multiply the polynomials corresponding to P(si)
and P ′(si, sj) with the appropriate powers of X and perform a single reduction modulo f(X). Computing
the evaluations of P and P ′ is computationally more demanding than combining the results.

Similarly, to sign a message (as seen in 2), the signer has to partially evaluate P and P ′ on k vectors
(v1, . . . ,vk) ∈ Fn−o

q , and combine the results to calculate the coefficients of a system of linear equations,
Ax = y, whose solution will determine a signature. The most computationally demanding steps of signing are
the partial evaluations of P and P ′ and the Gaussian elimination used to solve the linear system. Hence, these
should be the main focus of optimization efforts. In contrast, the task of combining the partial evaluations
into A and y, and the task of obtaining a signature s from a solution x to the system Ax = y accounts for
only a small fraction of the signing time, and, therefore, does not need careful optimization.

Polynomial evaluation as matrix multiplication. The
(
n+1
2

)
coefficients of each of them polynomials (p1, . . . , pm)

in the MAYO public key P are arranged in the upper-diagonal part of n-by-n matrices Pk such that

pk(x) = xTPkx



for all 1 ≤ k ≤ m. Moreover, we have

p′k(x,y) := pi(x+ y)− pi(x)− pi(y) = xTPky + yTPkx .

The matrices Pk are split in 3 parts as follows

P(k) =

(
P

(1)
k P

(2)
k

0 P
(3)
k

)
,

where P
(1)
k ∈ F(n−o)×(n−o)

q and P
(3)
k ∈ Fo×o

q are upper-diagonal, and P
(2)
k ∈ F(n−o)×o

q . The matrices P
(1)
k and

P
(2)
k are expanded from a short seed using an AES-based expansion function, while P

(3)
k is stored as part of

the public key.
To compute P(si) and P ′(si, sj) for all 1 ≤ i < j ≤ k, it suffices to compute STPkS for all k ∈ [m], where

S ∈ Fq
n×k is the matrix whose columns are s1, . . . , sk. The value of P(si)k can be found on the diagonal of

STPkS and P ′(si, sj)k is the sum of the entries at locations (i, j) and (j, i) in the matrix STPkS.
Matrix-matrix multiplications (with the left matrix possibly being upper-diagonal) are used extensively

as part of the signing and verification algorithms of MAYO, which means they should be implemented and
optimized carefully.

In 1 (KeyGen), 2 (Sign), and 3 (Verify), we give simplified pseudocode for the MAYO signature scheme,
but for a detailed specification we refer to [BCC+23]. In particular, we refer to the full specification for the
Compute y and Compute A functions, that respectively compute the right-hand side and the left-hand side
of the system of linear equations Ax = y. Implementing these functions is relatively straightforward and
cheap and was not the focus of the optimization effort of this paper.

Algorithm 1 KeyGen ()

Output: A key pair (pk, sk)

1: //Derive O and the P
(1)
i ,P

(2)
i from random seedsk.

2: seedsk
$←− {0, 1}λ+64

3: (seedpk,O)← SHAKE256(seedsk) //O ∈ Fq
(n−o)×o

4: {P(1)
i ,P

(2)
i }i∈[m] ← AES-128-CTR(seedpk) //P

(1)
i ∈ Fq

(n−o)×(n−o),P
(2)
i ∈ Fq

(n−o)×o

5: //Compute P
(3)
i ∈ Fo×o

q .
6: for i from 0 to m− 1 do
7: P

(3)
i ← Upper(−OT(P

(1)
i O−P

(2)
i ))

8: return (pk = (seedpk, {P(3)
i }i∈[m]), sk = seedsk).

Note that MAYO sets the size of the finite field to be 16: F16. It also provides 4 parameter sets: MAYO1,
MAYO2, MAYO3 and MAYO5. The first two parameters are for NIST security level 1, the third for NIST
security level 3, and the fourth for NIST security level 5.

2.2 Method of the Four Russians

The Method of the Four Russians (M4R) was first presented by Arlazarov, Dinic, Kronrod, and Faradzev [ADKF70]
and received its name in [AH74, Chapter 6]. It was originally presented for multiplying boolean matrices,
but it can be straightforwardly extended for matrix multiplication over small fields, and in particular over
F16.

For matrix multiplication, the algorithm works as follows: given a small integer t, to compute the product
of a (n×m) matrix A and a (m× k) matrix B, one divides A into m/t vertical stripes Ai, and B into m/t

horizontal stripes Bi, which allows the product AB to be computed as
∑k

i=0 AiBi. Multiplication, then,
works as follows:

– For each stripe, compute all linear combinations of the rows of Bi as a look-up table T to store 16t · k
field elements.



Algorithm 2 Sign (seedsk,M)

Input: Secret key seedsk
Input: Message M
Output: Signature (S, salt)

1: //Rederive O and P
(1)
i ,P

(2)
i from seedsk.

2: (seedpk,O)← SHAKE256(seedsk)

3: {P(1)
i ,P

(2)
i }i∈[m] ← AES-128-CTR(seedpk)

4: //Hash salted message.

5: salt
$← {0, 1}λ+64

6: t← SHAKE256(M∥salt) // t ∈ Fq
m

7: V
$← Fq

k×(n−o)

8: for i from 1 to m do
9: Li ← (P

(1)
i +P

(1)T
i ) ·O+P

(2)
i //Li ∈ Fq

(n−o)×o

10: Mi ← V · Li //Mi ∈ Fq
k×o

11: Yi ← V ·P(1)
i ·V

T //Yi ∈ Fq
k×k

12: //Build linear system Ax = y.
13: A← Compute A({Mi}i∈[m])
14: y← t+ Compute y({Yi}i∈[m])
15:
16: //Try to sample a random solution x to Ax = y.
17: x← SampleSolution(A,y) //x ∈ Fq

ko ∪ {⊥}
18: if x = ⊥ then // Retry if there are no solutions

19: go to 7

20: //Output the signature.

21: X← Matrixify(x) //X ∈ Fq
k×o, s.t. x is concatenation of rows of X

22: S← (V + (OX)T,X) //S ∈ Fq
k×n

23: return (S, salt).

Algorithm 3 Verify (pk,M, Sig)

Input: Public key pk = (seedpk, {P(3)
i }i∈[m])

Input: Message M
Input: Signature Sig = (S, salt)
Output: An boolean to indicate if the signature is valid.

1: //Derive P
(1)
i ,P

(2)
i from seedpk.

2: {P(1)
i ,P

(2)
i }i∈[m] ← AES-128-CTR(seedpk)

3: //Hash salted message.

4: t← SHAKE256(M∥salt) // t ∈ Fq
m

5: //Compute P∗(s).
6: for i from 1 to m do

7: Yi ← S

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
ST

8: y← Compute y({Yi}i∈[m]) //y = P∗(s)
9: return y == t // Accept signature if y = t.



– Use each row in Ai as an index to look up the corresponding row from T and accumulate the product.

If t = 2, we can illustrate the method with the following example, given the following matrix product:

AB =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
...

...
...

...
an−1,0 an−1,1 an−1,2 an−1,3



b0,0 b0,1
b1,0 b1,1
b2,0 b2,1
b3,0 b3,1


To compute this product using M4R (with t = 2), we split the matrices into stripes:

AB =


a0,0 a0,1
a1,0 a1,1
...

...
an−1,0 an−1,1


[
b0,0 b0,1
b1,0 b1,1

]
+


a0,2 a0,3
a1,2 a1,3
...

...
an−1,2 an−1,3


[
b2,0 b2,1
b3,0 b3,1

]

For each stripe of B, we now compute a 256-entry look-up table T with each entry containing k = 2 field
elements. Then, we go through the stripes of A and use (ai,j , ai,j+1) as index to the look-up table T .

Using M4R in cryptography. As the method uses look-up tables, one has to be careful to not leak secret data
through the addresses used for look-ups. It is, hence, essential to either only use this trick when the matrix
used for indexing is public or make use of constant-time table look-ups. Luckily, the former is the case for
all major matrix multiplications in MAYO and the latter can be used in AVX2.

3 System-solving using Gaussian elimination.

In this section, we describe how the system of linear equations is solved during signing in our MAYO imple-
mentations, which is independent of the proposed change in representation (independent of both bitsliced and
nibble-based representations taking into account the considerations presented in the following paragraphs).

In the MAYO signing algorithm, the signer samples a uniformly random solution (if it exists) to a system
of linear equations Ax = y for a rectangular matrix A ∈ Fq

m×ko and y ∈ Fq
m. Our implementations use

constant-time Gaussian elimination to solve this problem. To randomize the solving procedure, we sample
a random vector r ∈ Fq

ko and set y′ = y +Ar. Then, we solve the system Ax′ = y′ for x′ using Gaussian
elimination on the augmented matrix

(
A y′), and output x = x′ − r. Note that x is a solution because

Ax = Ax′ −Ar = y + Ar −Ar, and one can check that if r is chosen uniformly at random, then x is a
uniformly random solution to Ax = y. While it is possible to sample a random solution directly, this method
was chosen in [BCC+23] because it is simple to implement in constant time.

This constant-time Gaussian elimination procedure consists of ko iterations: one for each column of A.
Initially, we start with R = 0 and maintain the invariant that the top R rows of A form a full-rank matrix
in row echelon form with leading ones (i.e. the first non-zero entry of each row is equal to 1 and it is strictly
left of the non-zero entries in the rows below it). At iteration i:

– if there are no non-zero entries in column i in rows below R, nothing is done,
– otherwise, we perform elementary row operations on the bottom m − R rows to force a 1 on position
(R+ 1, i) and zeros on all the entries below it. We set R := R+ 1.

Care needs to be taken to avoid leaking the value R throughout the Gaussian elimination process, e.g.,
we cannot use R as an index to directly read and write from A. We follow a methodology similar to that
of [CKY21], adapted for non-square matrices. To create row R + 1, we move through r from 1 to m, and,
conditionally (but in constant time), add row r of A into a buffer row b, if r > R and if the pivot in the
buffer is zero. Then, we multiply the buffered row by bq−2

i (which is equal to the inverse of bi if bi ̸= 0).
This procedure ensures that either b = 0, if there was no pivot available in column i; or, otherwise, b is a
linear combination of rows below R with a 1 in location i. Subsequently, we scan through the rows of A and
conditionally write b to row r if r = R+1 and if bi is nonzero. We conditionally add −ar,ib to row r of A if
r > R+1. This constant-time version of Gaussian elimination is slower than the usual variable-time version,
but both versions have an asymptotic complexity of O(m2ko).



Platform-specific considerations. Our AVX2 implementation stores rows of the augmented matrix in the
low nibbles of 256-bit vectors. This allows for efficient elementary row operations using vpxor and vpshufb

instructions because the vpshufb instruction does table lookups using the low nibbles as indices. On the
Cortex-M4 platform, we keep the rows of the augmented matrix in bitsliced representation throughout the
Gaussian elimination. We bitslice them in the beginning and un-bitslice at the end. [CKY21] states that
bitslicing is undesirable as individual elements have to be accessed as pivots requiring to un-do the bitslicing.
We work around this by extracting only the pivot elements from the bitsliced representation which we achieve
in 14 instructions (excluding memory operations). While this is costly, it is still a performance improvement
over previous implementations.

4 Bitsliced MAYO implementation

In this section, we present our implementation using the bitsliced representation for MAYO keys and PRNG
output. This implementation is compatible with the MAYO round-1 specification as submitted to NIST PQC
process. We present both our AVX2 and Arm Cortex-M4 implementations with this representation. Details
on the AVX2 instruction set can be found in [int] and for the Cortex-M4 instruction set in [arm]. Both the
bitsliced and the improved nibble-sliced implementation don’t perform any secret dependent branching and
table lookups: we validate that property in the AVX2 implementations using Valgrind and the ctgrind [Lan10]
method as part of our test harness.

4.1 AVX2

Bitsliced arithmetic in AVX2. In our bitsliced AVX2 implementation, we fit 64 elements of F16 in an AVX2
register in a bit-interleaved fashion: the least significant bits of the 64 elements go to the first 64 bits of the
AVX registers, the 2nd bits of the elements go to bits 65 to 128 in the AVX2 register, and so on. Adding
two vectors of 64 field elements, then simply corresponds to XORing the corresponding AVX2 registers.
Moreover, we can multiply the 64 field elements with a scalar b ∈ F16 by using 17 AVX2 instructions (8
vpand, 4 vpcmpeqq, 3 vpxor, 2 vpshufd, 1 vpbroadcastb, 1 vpermpd, and 1 vpshufb), as shown in Figure 1.

Note that because of bitslicing, each 64-bit block of the output is an F2-linear combination of the four 64-
bit blocks in the input register, where the linear combination depends on the scalar b. For example, if b = x+1,
then multiplication by b maps a0+a1x+a2x

2+a3x
3 to (a0+a3)+(a0+a1+a3)x+(a1+a2)x

2+(a2+a3)x
3,

so, if the 64-bit blocks in the input register are A0, A1, A2, A3, respectively, then the first 64-bit block of the
output should be A0 ⊕A3, and the next 64-bit block should be A0 ⊕A1 ⊕A3, etc.

Our method for doing the scalar multiplication on 64 bitsliced field element first uses two vpshufd

instructions and one vpermpd instruction, to shuffle around the 64-bit blocks of the input. This gives us
four 256-bit vectors, such that each 64-bit block of the input appears at locations 1-64, 65-128, 129-192, and
193-256 in one of the four vectors. Therefore, the result of the scalar multiplication can be formed by masking
out 64-bit blocks of these 4 vectors and XORing the results together (4 vpand and 4 vpxor instructions).
The masks are created from b using one vpbroadcastb, one vpshufb, 4 vpands, 4 vpcmpeqq instructions,
and five pre-loaded 256-bit vectors.

For the MAYO1 and MAYO2 parameter sets, we require scalar multiplication of vectors of length 64, which
perfectly fits into one AVX2 register as described above. The MAYO3 and MAYO5 parameter sets require
scalar multiplication of vectors of length 96 and 128, respectively. We use an analogous strategy: for MAYO3

we use three 128-bit SSE2 vectors to store the vector, and for MAYO5 we use two 256-bit AVX2 vectors.

Matrix multiplications. The matrix multiplications that need to be performed inside KeyGen, Sign, and
Verify comes in batches of size m ∈ {64, 96, 128}. For example, during key generation, the m matrices

P
(1)
1 , . . . ,P

(1)
m are all multiplied by O from the right (see line 7 of 1). We represent and sample a batch of

m matrices M(1), . . . ,M(m) ∈ Fq
n×m in a doubly interleaved format, such that for each location (i, j), all

m field elements M
(1)
i,j , . . . ,M

(m)
i,j sit contiguously in memory using the bitsliced representation previously

described. Multiplying a batch of m matrices by a single matrix can then be done in parallel using vector
additions and vector scalar multiplications.



static

inline void bitsliced_64_vec_mul(const __m256i *in, unsigned char b, __m256i *out){

// prepare constants

const __m256i lut_b = _mm256_setr_epi8(

0x00, 0x13, 0x26, 0x35, 0x4c, 0x5f, 0x6a, 0x79,

0x98, 0x8b, 0xbe, 0xad, 0xd4, 0xc7, 0xf2, 0xe1,

0x00, 0x13, 0x26, 0x35, 0x4c, 0x5f, 0x6a, 0x79,

0x98, 0x8b, 0xbe, 0xad, 0xd4, 0xc7, 0xf2, 0xe1);

const __m256i mask1 = _mm256_set_epi64x(16, 16, 16, 1 );

const __m256i mask2 = _mm256_set_epi64x(32, 8, 32, 128);

const __m256i mask3 = _mm256_set_epi64x(64, 64, 4, 64 );

const __m256i mask4 = _mm256_set_epi64x(128, 32, 8, 32 );

// permute quadwords

__m256i in_1234 = *in;

__m256i in_3412 = _mm256_permute4x64_epi64(in_1234, 0b01001110);

__m256i in_2143 = _mm256_shuffle_epi32(in_1234, 0b01001110);

__m256i in_4321 = _mm256_shuffle_epi32(in_3412, 0b01001110);

// mask and combine

__m256i lookup = _mm256_shuffle_epi8(lut_b, _mm256_set1_epi8(b));

*out = in_1234 & _mm256_cmpeq_epi64(lookup & mask1, mask1);

^ in_2143 & _mm256_cmpeq_epi64(lookup & mask2, mask2);

^ in_3412 & _mm256_cmpeq_epi64(lookup & mask3, mask3);

^ in_4321 & _mm256_cmpeq_epi64(lookup & mask4, mask4);

}

Fig. 1: C code with Intel intrinsics for multiplying 64 bitsliced field elements by the element b ∈ F16.

4.2 Arm Cortex-M4

Matrix multiplications. We borrow the bitsliced arithmetic from [CKY21], which is straightforwardly ex-
tended to all matrix multiplications required in MAYO. Due to the bitsliced representation of the public
key and the sampled matrices, no additional bitslicing operation is required: this dramatically improves
performance.

Verification. We make use of the method for computing STPkS presented in [CKY21]. However, as S is a
matrix for MAYO (rather than a vector as in Rainbow and OV), we cannot efficiently compute STPkS in a
single pass. We instead, first compute both PkS and STPkS with the method of using 16 (for F16) accumu-
lators to minimize the number of field multiplications. There is one notable difference: when computing the
public map in a single pass, one can omit a large portion of the computation for each variable that is zero.
Implementations of OV [BCH+23] and Rainbow [CKY21] explicitly check for zero variables in the outer loop
and skip ahead. This also allows working with only 15 accumulators instead of 16. However, said trick does
not help when computing the two products separately and results in a slowdown. We, hence, do not check
for zero variables and use 16 accumulators instead.

While the remaining multiplications to compute the final result in OV and Rainbow are negligible,
the number of remaining multiplications in MAYO is significantly higher making up a large portion of the
total runtime. It is, hence, important to consider the best strategy for performing those multiplications. We
consider 3 different methods for performing the multiplications, which we describe in Figure 2. [CKY21]
and [BCH+23] use Method 1 as the number of multiplications is negligible. This method uses 14 multiply-
accumulate operations. Method 2 is described in [CKY21], but not implemented. It uses the minimum
number of multiplications (3 multiply-accumulate operations, and 22 addition operations). Method 3 uses 14
multiply-accumulate operations but only uses multiplications by x and x−1 which can be implemented much
more efficiently than general-purpose multiplications. Choosing between Method 2 and Method 3 depends
on the cost ratio between multiplications and additions. For the bitsliced variant, Method 3 is faster as



Input: Accumulators a1, . . . , a15

Output: a1 + a2 · x+ · · ·+ a15 · (x3 + x2 + x+ 1)

Algorithm 4 Method 1

1: r = a1 + a2 · (x)
2: r += a3 · (x + 1)
3: r += a4 · (x2)
4: r += a5 · (x2 + 1)
5: r += a6 · (x2 + x)
6: r += a7 · (x2 + x + 1)
7: r += a8 · (x3)
8: r += a9 · (x3 + 1)
9: r += a10 · (x3 + x)
10: r += a11 · (x3 + x + 1)
11: r += a12 · (x3 + x2)
12: r += a13 · (x3 + x2 + 1)
13: r += a14 · (x3 + x2 + x)
14: r += a15 · (x3 + x2 + x + 1)
15: return r

Algorithm 5 Method 2

1: a12 += a15; a3 += a15

2: a8 += a14; a6 += a14

3: a10 += a13; a7 += a13

4: a8 += a12; a4 += a12

5: a9 += a11; a2 += a11

6: a8 += a10; a2 += a10

7: a8 += a9; a1 += a9

8: a4 += a7; a3 += a7

9: a4 += a6; a2 += a6

10: a4 += a5; a1 += a5

11: a2 += a3; a1 += a3

12: r = a4 + a8 · x
13: r = a2 + r · x
14: r = a1 + r · x
15: return r

Algorithm 6 Method 3

1: a10 += a5 · x−1

2: a12 += a11 · x
3: a7 += a10 · x−1

4: a6 += a12 · x
5: a14 += a7 · x−1

6: a3 += a6 · x
7: a15 += a14 · x−1

8: a8 += a3 · x
9: a13 += a15 · x−1

10: a4 += a8 · x
11: a9 += a13 · x−1

12: a2 += a4 · x
13: a1 += a9 · x−1

14: a1 += a2 · x
15: return a1

Fig. 2: Different methods for obtaining the final accumulated result in the evaluation of multivariate polyno-
mials after using the trick from [CKY21].

multiplication by x or x−1 can be implemented in just 5 eor instructions (operating on 32 field elements in
parallel).

5 Improving the MAYO implementation

In this section, we describe the proposed change of the representation of MAYO’s keys and PRNG output to
a nibble-sliced representation. This implementation of this method is not compatible with round-1 MAYO as
submitted to the NIST PQC process7. We also examine how we use M4R, and propose the changes to both
the AVX2 and Arm Cortex-M4 implementations.

Proposed specification change. Our proposed change concerns the representation and sampling of the matrices

P
(1)
i ,P

(2)
i ,P

(3)
i , and Li. In the round-1 submission, MAYO uses a bitsliced representation for the batch of

matrices A0, . . . ,Am−1. The representation encodes elements of the vectors (A0[i, j], . . . ,Am−1[i, j]) in a
bitsliced fashion meaning the least significant bits occupy the first m bits. The bitsliced vectors are then
stored in a column-major form. We propose to discard the bitslicing and, instead, store two field elements
packed into one byte with the first element in the least significant four bits. The order of the element
batches remains the same. This corresponds to the common column-major Macaulay matrix representation
in lexicographic order. Note that this change modifies both the sampling process and the public key format.
It also modifies the format of the expanded secret key.

5.1 AVX2

M4R in MAYO on AVX2. We implement M4R on AVX2 to perform the various matrix multiplications
performed inside MAYO. We take advantage of vpshufb instructions instead of traditional table lookups to
speed up our implementation. A single vpshufb instruction corresponds to 32 lookups in a table with 16
bytes. Since the size of the table is limited, we are forced to use M4R with t = 1, i.e., we use single 4-bit
field elements as indices for the table and the result of the lookup is a single byte that corresponds to the
result of two multiplications. Doing 32 of these lookups in parallel means we can do 64 field multiplications
per vpshufb instruction. Our strategy is similar to the shuffle-based implementation of [BCH+23], with the
difference that we lookup two multiplications instead of just one, which doubles the number of multiplications
per vpshufb instruction.

The vpshufb instruction expects the 32 indices in the low nibbles of an AVX2 register, so, to multiply
a vector of nibble-packed elements, we perform a lookup with the odd elements by masking out the high

7 The authors of [BCC+23] have agreed to incorporate these changes in the round-2 submission of their specification.



nibbles, and a lookup with the even elements after masking out the low nibbles and shifting down by four
bits. The lookups result in a register that holds the products involving the odd nibbles, and another holding
the products with even nibbles. Rather than interleaving them immediately, it is more efficient to accumulate
the odd products and the even products separately and interleave the accumulated results only once at the
end.

For setting up the multiplication tables, we use the fast method described in [BCH+23]. Since we do
two multiplications per lookup, we use their method twice, and interleave the tables. In Verify we use a
faster, variable-time method that avoids on-the-fly computation and uses index-dependent table lookups of
precomputed tables instead.

The Intel Skylake architecture processes one vpshufb per cycle and the Ice Lake architecture two vpshufb
instructions per cycle, both with one cycle latency. The products are accumulated using vpxor which has
a throughput of three instructions per cycle. On Skylake, assuming everything can be pipelined perfectly,
we expect to be bottlenecked only by the vpshufb instructions and an upper limit of 64 multiply-and-
accumulate operations per cycle. On Ice Lake, three ports can handle vpxor and vpshufb instructions. Every
64 multiplications generate two micro-operations (one vpxor and one vphufb), and we can handle three of
these micro-operations per cycle, so we expect an upper limit of 64 · 3/2 = 96 multiply-and-accumulate
operations per cycle. Our experimental results are close to these theoretical upper limits.

Vectorization for the parameter sets. MAYO allows very natural vectorization since most arithmetic in F16

occurs m times independently. In MAYO1 and MAYO2 with m = 64, the parallel operations fit in one AVX2
vector. In MAYO3 with m = 96 and MAYO5 with m = 128, they occupy two AVX2 vectors. In the case of
MAYO3, we overlap two vectors, which duplicates 32 operations and allows to easily extend the method to
values of m that are not a multiple of 64.

MAYO matrix multiplications with AVX2. We consider groups of matrix multiplications as they occur in
KeyGen, Sign, and Verify.

– KeyGen: Computing −OT(P
(1)
i O − P

(2)
i ) consists of two matrix multiplications: P

(1)
i O with upper tri-

angular P
(1)
i followed by OT multiplied by the resulting product. Only the multiplication tables of O

are needed for the multiplications. The code for P
(1)
i O is shown in Figure 3. The computation consists

of applying shuffle and xor operations v2o
2 times in interleaved form, and de-interleaving the results at

the end of each linear combination. For this, we use in total v2o
2 vpshufb and vpxor instructions for

multiply-and-accumulate, for de-interleaving 5vo vpxor, vo vpand/vpsrlw/vpsllw instructions, and v2

vpsrlw and 2v2 vpand instructions for extracting the nibbles of P
(1)
i .

– Sign: The three matrix multiplications for V · P(1)
i · VT and V · Li can be grouped using only the

multiplication tables for the upper triangular V ∈ Fv×k
q .

– Verify: The five matrix multiplications involved in S

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
ST are computed using only the mul-

tiplication tables of triangular S ∈ Fn×k
q . The two matrix multiplications in S(1)P

(1)
i + S(2)P

(2)
i are

combined in a single function which allows to do the de-interleaving only once.

5.2 Arm Cortex-M4

M4R for MAYO on Cortex-M4. We consider the use for of M4R the three largest matrix multiplications in

MAYO: (P
(1)
i +P

(1)T
i )O and P

(1)
i VT in Sign, and P

(1)
i O in KeyGen. Since P

(1)
i are public matrices, we can

use M4R without any timing side-channel concerns. We compute (P
(1)
i + P

(1)T
i )O as P

(1)
i O + P

(1)T
i O in

order to not have to expand to a full square matrix. However, we do both operations at same time to avoid
recomputing the linear combinations of the stripes of O. Since two F16 elements are packed into one byte, it
appears natural to use t = 2. This results in look-up tables of 256 · k bytes (15 to 32 KB), which we consider
acceptable. Using t = 3 seems infeasible as it would require multiple hundred KB of look-up tables.

We have to overcome three obstacles to apply M4R (as presented in subsection 2.2) to these multiplica-
tions:



Algorithm 7 Matrix multiplication using M4R and illustrated for the P
(1)
i O batched matrix multiplication.

A[r, c] refers to the element in row r in column c. Note the different representations of inputs and outputs.

P
(1)
i is in column-major Macaulay form, i.e., using (row, column, batch) indexing with two elements stored

in one byte. POi is using (row, batch, column) indexing with 8 elements stored in one uint32_t. If o is not
divisible by 8, we pad with zeros accordingly.

Input P
(1)
i : m upper triangular matrices of dimension v × v

Input O: matrix of dimension v × o
Input/Output POi: m upper triangular matrices of dimension v × o

1: ou32 ←
⌈
o
8

⌉
2: uint32_t table[ou32 · 256]
3: uint32_t rows[ou32 · 8]
4: for col← 0 to v by 2 do
5: table← 0
6: rows← 0
7: for i← 0 to o do // Pack first and second row of stripe

8: rows[i/8] = rows[i/8]⊕ (O[col, i])≪ (4 · (i%8))
9: rows[ou32 · 4 + (i/8)] = rows[ou32 · 4 + (i/8)]⊕ (O[col + 1, i])≪ (4 · (i%8))

10: for i← 0 to ou32 do // Multiply each element of rows by x, x2, x3

11: rows[ou32 + i] = rows[i] · x
12: rows[2 · ou32 + i] = rows[ou32 + i] · x
13: rows[3 · ou32 + i] = rows[2 · ou32 + i] · x
14: rows[5 · ou32 + i] = rows[4 · ou32 + i] · x
15: rows[6 · ou32 + i] = rows[5 · ou32 + i] · x
16: rows[7 · ou32 + i] = rows[6 · ou32 + i] · x
17: for t← 0 to 7 do // Compute all linear combinations of rows

18: for i← 0 to (1≪ t) do
19: for j ← 0 to ou32 do
20: table[(i+ (1≪ t)) · ou32 + j] = table[i · ou32 + j]⊕ rows[t · ou32 + j]

21: for row← 0 to col do // Process pairs of element

22: for k ← 0 to m do
23: byte = P

(1)
k [row, col] +P

(1)
k [row, col+1]≪ 4

24: for j ← 0 to ou32 do
25: POk[row, j] = POk[row, j]⊕ table[ou32 · byte + j]

26: for k ← 0 to m by 2 do // Tail of stripe: pad with zero

27: byte = P
(1)
i [col+1, col+1]≪ 4

28: for j ← 0 to ou32 do
29: POk[col+1, j] = POk[col+1, j]⊕ table[ou32 · byte + j]



Fig. 3: C code with compiler intrinsics for computing P
(1)
i O in KeyGen for MAYO1 and MAYO2.

static inline

void mayo_12_P1_times_O_avx2(const __m256i *P1, __m256i *O_multabs, __m256i *acc){

const __m256i low_nibble_mask = _mm256_set1_epi8(0x0f);

for (size_t r = 0; r < V_PARAM; r++) {

// do multiplications for one row and accumulate results in temporary format

__m256i temp[O_PARAM] = {0};

for (size_t c = r; c < V_PARAM; c++) {

__m256i in_odd = _mm256_loadu_si256(P1++);

__m256i in_even = _mm256_srli_epi16(in_odd, 4) & low_nibble_mask;

in_odd &= low_nibble_mask;

for (size_t k = 0; k < O_PARAM; k+=2) {

temp[k] ^= _mm256_shuffle_epi8(O_multabs[O_PARAM/2*c + k/2], in_odd);

temp[k + 1] ^= _mm256_shuffle_epi8(O_multabs[O_PARAM/2*c + k/2], in_even);

}

}

// convert to normal format and add to accumulator

for (size_t k = 0; k < O_PARAM; k+=2) {

__m256i t = (temp[k + 1] ^ _mm256_srli_epi16(temp[k],4)) & low_nibble_mask;

acc[(r*O_PARAM) + k] ^= temp[k] ^ _mm256_slli_epi16(t,4);

acc[(r*O_PARAM) + k + 1] ^= temp[k+1] ^ t;

}

}

}

1. P
(1)
i is an upper-triangular matrix, which means we require M4R algorithm for both upper (P

(1)
i ) and

lower (P
(1)T
i ) triangular matrices. In the tail (head) of each stripe of the upper (lower) triangular matrix,

one has to pad with a zero accordingly. We do this on-the-fly.

2. P
(1)
i is stored as a column-major Macaulay matrix, which means that the elements of the rows of each

stripe of the matrix are not stored consecutively. We considered changing the order of the elements (in
the specification). There are, however, three reasons against doing so: (1) There appears to be no repre-

sentation that works well for reading from P
(1)
i and P

(1)T
i at the same time; (2) A different representation

would drastically slow down implementations using different multiplication methods (such as our AVX2
implementations); (3) Changing it to a stripe-wise representation would likely force many platforms to
use M4R with the parameterization chosen in this paper, which we deem undesirable. We, hence, decided
to stick with the more standard column-major Macaulay matrix and perform the address computations
and assembly of the row of the stripe on-the-fly.

3. The table look-ups result in rows that have to be accumulated to the resulting matrix: those elements
are not stored consecutively in the canonical representation. Converting the representation on-the-fly
results in very poor performance. We instead store the results as they are stored in the look-up table and
merge the transformation of the representation into the addition following each of the multiplications.
This results in competitive performance.

The process for P
(1)
i O for t = 2 is outlined in 7 and works analogously for other matrix multiplications.

Further matrix multiplications. There are three matrix multiplications (OT ·◦ in KeyGen,V·Li andV·P(1)
i V)

for which we cannot use M4R due to timing side-channel concerns. In these cases, we make use of the bitsliced
arithmetic and bitslice the inputs on-the-fly. This does come with some performance penalty (1.7 vs. 0.8
arithmetic instructions/field multiplication). However, the affected matrix multiplication generally involve
matrices of relatively small dimension and, hence, this slow-down is outweighed by the performance gains of
using M4R.



Verification. One could consider implementing verification using M4R as presented above. However, the trick
presented in [CKY21] vastly outperforms the former idea. Hence, our verification stays almost the same as
for the bitsliced variant. The only part that requires changes are the final multiplications and we can choose
between the methods presented before (Figure 2). For the nibble-sliced representation, a multiplication by x
requires 10 instructions (operating on 8 packed field elements), and, hence, Method 2 from Figure 2 performs
better than Method 3. Note that from counting arithmetic instructions, it seems that the bitsliced variant
performs much better than the nibble-sliced variant which suggests our proposed representation change would
result in a significant slow-down compared to the bitsliced representation. This is, however, not the case: both
variants (bitsliced representation using Method 3, nibble-sliced representation using Method 2) use around
the same number of cycles for verification. This happens due to register pressure: when working on bitsliced
field elements, one always has to work with 32 elements packed in 4 registers, while in the nibble-sliced
variant, we can simply work on 8 elements in parallel. This allows for Method 2 to not require any spills to
memory at all, which results in code competitive with the previous implementation.

6 Results

6.1 AVX2 Performance

We benchmarked the AVX2-optimized bitsliced and nibble-sliced (M4R) implementation on two Intel archi-
tectures: Skylake (Intel Xeon X3-1245 v5) and the more modern Ice Lake (Intel Xeon Gold 6338). The C
code, using AVX2 compiler intrinsics, was compiled using clang-14 on Ubuntu 22.04.3 LTS. Turbo Boost was
deactivated to achieve consistent timings. Our AES-CTR implementation is derived from libOQS [SM16]
and achieves 0.63 cpb (Skylake), which comes close to the theoretical encryption-only limit of 0.625 cpb.
On Ice Lake, the same implementation benefits from the double AES-NI throughput and achieves 0.32 cpb.
Since SHAKE256 performance has only a marginal impact in MAYO, we use a plain non-optimized C imple-
mentation derived from PQClean [KSSW22].

Matrix multiplication. The results of the matrix multiplications that dominate the MAYO runtime are sum-
marized in Table 3. The multiplication performance for the nibble-sliced implementation ranges between
45.6 - 56.5 mul/cycle (Skylake) and 65.0 - 78.8 mul/cycle (Ice Lake). The improvement on Ice Lake is due to
the increased vpshufd throughput of 0.5 cpi compared to 1 cpi on Skylake. The multiplication throughput
of MAYO3 is about one fourth less than these numbers. Setting up the multiplication tables takes 5.2 cy-
cles and 7.8 cycles per nibble on Ice Lake and Skylake, respectively. Setting up the multiplication tables in
variable-time as used in verification takes only 1.1 cycles and 1.3 cycles per nibble on Ice Lake and Sky-
lake, respectively. Our implementation reuses the multiplication tables for several matrix multiplications.
Compared to the bitsliced implementation, the nibble-sliced matrix multiplications (including calculating
multiplication tables) achieve a speedup of a factor between 3.6× and 5.9×.

Overall performance. The overall results are shown in Table 1. The nibble-sliced implementation using M4R
leads to speedups between 2.0× and 3.6× compared to the bitsliced implementation. As AES-NI and vpshufd

instructions are instrumental for the nibble-sliced performance, their increased throughput on Ice Lake leads
to further speedups compared to the older Skylake architecture of up to 75% (KeyGen), 40% (Sign) and 79%
(Verify). The fastest variant MAYO1 on a single Ice Lake core at 2.0 GHz computes 45 924 KeyGen/sec, 9 162
signatures/sec and 37 272 verifications/sec. When reusing the expanded keys, signing and verification can
even perform 12 151 signatures/sec and 64 045 verifications/sec. All reported results are the median of 10 000
iterations.

Comparison with other schemes. A comparison of our MAYO implementation with other schemes, bench-
marked on the same system, is shown in Table 2. The first candidate for comparison is OV [BCH+23]. When
using compact keys, MAYO greatly outperforms OV by factors of 27× to 95× for KeyGen, factors of 6.5× to
15.1× for Sign, and factors of 3.1× to 4.3× for Verify. In cases that allow to store or re-use expanded keys,
OV signing is 1.6× to 2.1× faster than MAYO. However, MAYO’s Verify is 1.5× to 3.4× faster than OV at the
same security level, and MAYO’s expanded keys are much more compact than those of OV (e.g., 70 KB for
MAYO and 278 KB for OV at SL I). Our MAYO implementation is competitive with the fastest lattice-based



Bitsliced Representation

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Skylake

MAYO1 159 186 212 208 44 058 589 202 213 716
MAYO2 424 894 437 778 59 288 690 878 135 820
MAYO3 835 694 1 380 698 147 912 2 816 584 908 390
MAYO5 1 806 558 3 204 710 355 200 5 755 844 1 483 332

Ice Lake

MAYO1 110 338 162 064 22 380 459 614 148 250
MAYO2 310 166 342 212 30 256 540 018 94 876
MAYO3 511 526 629 052 74 988 1 676 162 612 806
MAYO5 1 209 482 1 995 956 180 692 3 978 970 1 158 326

Nibble Representation (M4R)

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Skylake

MAYO1 73 668 82 820 43 970 283 126 83 846
MAYO2 144 508 154 002 59 178 324 402 84 974
MAYO3 295 606 358 416 147 758 920 944 344 994
MAYO5 642 690 889 100 355 238 1 737 426 706 316

Ice Lake

MAYO1 43 550 53 710 22 432 218 300 53 660
MAYO2 86 014 98 402 30 244 239 852 47 360
MAYO3 169 258 237 450 74 992 718 586 205 938
MAYO5 369 898 517 660 180 568 1 244 038 401 310

Table 1: Performance of MAYO in CPU cycles on Intel Xeon E3-1245 v5 (Skylake) and Xeon Gold 6338 (Ice
Lake) using the bitsliced representation (round 1 specification) and the modified nibble representation.

signature schemes. It outperforms Dilithium’s KeyGen and Verify at security level 1, Sign is on par when
using compact keys, and outperforms Dilithium when using pre-expanded keys. At security levels 3 and 5,
Dilithium has a performance advantage especially in KeyGen and Sign. Overall, our MAYO implementation
has balanced performance characteristics without big trade-offs between KeyGen, Sign, and Verify. Compared
to OV, it has only moderate performance trade-offs when using compact keys.

6.2 Cortex-M4 Performance

This section presents the performance of our two implementations on an Arm Cortex-M4 microcontroller
and compares the results to implementations of other post-quantum signature schemes. We target the ST
NUCLEO-L4R5ZI development board with 640 KiB of RAM and 2 MiB of flash memory. We use the
pqm4 [KPR+] library for benchmarking. For AES, we use the t-table implementation by Stoffelen and
Schwabe [SS16] (as it is only used for expanding the public matrix). For SHAKE, we use the Armv7-M
implementation in the XKCP [DHP+] by the Keccak team. Both implementations are also included in
pqm4. We compile our code using the Arm GNU toolchain8 Version 12.3Rel1.

Our implementation requires to store the expanded secret key on the stack. For MAYO5, this alone occu-
pies 563 KB of memory leaving not enough space for other variables needed. Therefore, we focus on MAYO1,
MAYO2, and MAYO3 here as those fit the 640 KiB easily. Studying memory-optimized implementations of

MAYO is promising future work, e.g., one could generate the coefficients of P
(1)
i and P

(2)
i on the fly to avoid

the memory cost of storing them.

Matrix multiplications. We first present results for the three matrix multiplications that are dominating the
run-time of MAYO. Table 4 compares the performance of the 3 operations for each of the MAYO parameter
sets. We see that the bitsliced implementation is significantly outperformed by M4R implementations except
for one case, but in that case the gains for the first matrix multiplication outweigh the performance loss for
the second.

8 https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads


Type Sec. Lvl. Key Gen. Sign Verify

MAYO [BCC+23] (default/pre-expanded)

MAYO1 1 44k/44k 218k/165k 54k/31k
MAYO2 1 86k/86k 240k/142k 47k/17k
MAYO3 3 169k/169k 719k/481k 206k/131k
MAYO5 5 370k/370k 1 244k/726k 401k/221k

Oil and Vinegar [BCH+23] (pkc+skc/classic)

ovIp 1 2 316k/2 341k 1 548k/79k 168k/58k
ovIs 1 3 715k/3 734k 2 063k/83k 203k/46k
ovIII 3 13 168k/12 832k 8 293k/243k 679k/197k
ovV 5 34 989k/35 792k 18 802k/462k 1 514k/364k

TUOV [DGG+] (pkc+skc/classic)

tuov-Ip 1 3 262k/5 916k 3 639k/134k 241k/56k
tuov-Is 1 11 797k/29 323k 19 607k/130k 273k/43k
tuov-III 3 16 237k/29 815k 18 020k/354k 1 107k/191k
tuov-V 5 38 122k/68 089k 40 046k/637k 2 947k/359k

Dilithium [LDK+20]

dilithium2 2 81k 219k 79k
dilithium3 3 137k 355k 129k
dilithium5 5 212k 420k 204k

Falcon [PFH+20]

falcon-512 1 20 672k 705k 135k
falcon-1024 5 59 019k 1 427k 262k

SPHINCS+ [HBD+20]

sha256-128f-simple 1 618k 14 716k 1 269k
sha256-128s-simple 1 39 554k 298 746k 517k
sha256-192f-simple 3 924k 25 329k 2 129k
sha256-192s-simple 3 58 492k 563 717k 983k
sha256-256f-simple 5 2 412k 50 912k 2 240k
sha256-256s-simple 5 38 076k 507 125k 1 295k

Table 2:MAYO performance in CPU cycles using AVX2 optimizations in comparison with other post-quantum
signature schemes running on Intel Ice Lake (Xeon Gold 6330). Dilithium, Falcon and SPHINCS+ bench-
marks use libOQS v0.9.0-rc1 with AVX2 optimized code.

MAYO performance. Table 5 contains the results for all algorithms MAYO signature scheme on the Cortex-
M4. The change of representation and use of M4R result in speed-ups for KeyGen, ExpandSK, and Sign. For
verification, the performance is almost the same for both representations as described in section 5.2.

Comparison to other PQC signatures. Table 6 compares the performance of our MAYO implementation
on the Arm Cortex-M4 with the MAYO implementation9 from [GMSS23], an FPGA implementation from
[HSMR23], and implementations of other PQC schemes. Compared to the existing MAYO implementation
from [GMSS23] (with very similar, but not identical parameters), our implementation outperforms signing by
12.9× and verification by 4.3×. There is an important difference between the two implementations: [GMSS23]
does not correctly implement the linear equation solving. They instead use the approach described in [CKY21]
trying to achieve an upper triangular matrix with ones on the diagonal. However, in MAYO there are more
variables than equations, and hence, we have to select one solution at random as described in section 3. The
approach of [GMSS23] has two problems: (1) It does not select a solution uniformly at random. Instead, it
selects solutions that have a higher-than-average number of zeros. This breaks the security proof of MAYO
and can potentially lead to an attack; (2) While their approach is easier to implement and results in slightly
better performance for a single iteration, it has a much higher failure probability of 1/15.

9 We report the numbers obtained on the Arm Cortex-M4 as reported in https://github.com/mayo-pqm4/

mayo-pqm4. These cycle counts are higher than those reported in the paper for the Cortex-M7.

https://github.com/mayo-pqm4/mayo-pqm4
https://github.com/mayo-pqm4/mayo-pqm4


−OT(P
(1)
i O−P

(2)
i ) V ·P(1)

i ·V
T

S

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
ST

V · Li

KeyGen Sign Verify

Skylake

MAYO1 bitsliced 107 107 162 638 158 138
M4R 22 494 (4.76 ×) 32 800 (4.96 ×) 31 478 (5.02 ×)

MAYO2 bitsliced 352 497 84 338 64 556
M4R 75 072 (4.70 ×) 22 524 (3.74 ×) 17 928 (3.60 ×)

MAYO3 bitsliced 684 302 957 721 735 788
M4R 133 855 (5.11 ×) 188 289 (5.09 ×) 181 499 (4.05 ×)

MAYO5 bitsliced 1 412 844 1 657 854 1 095 647
M4R 278 519 (5.07 ×) 333 199 (4.98 ×) 331 529 (3.30 ×)

Ice Lake

MAYO1 bitsliced 83 336 122 832 122 849
M4R 17 237 (4.83 ×) 25 265 (4.86 ×) 23 117 (5.31 ×)

MAYO2 bitsliced 268 767 65 373 60 830
M4R 47 943 (5.61 ×) 12 265 (5.33 ×) 12 100 (5.03 ×)

MAYO3 bitsliced 426 969 615 090 511 093
M4R 86 050 (4.96 ×) 119 493 (5.15 ×) 118 403 (4.32 ×)

MAYO5 bitsliced 1 022 887 1 200 700 904 729
M4R 177 396 (5.77 ×) 205 161 (5.85 ×) 203 966 (4.44 ×)

Table 3: AVX2 performance in CPU cycles of core arithmetic involving the public key that can benefit
from the method of the four Russians (M4R). Multiplication tables are reused among the group of matrix
multiplications.

(P
(1)
i +P

(1)T
i )O P

(1)
i VT P

(1)
i O

Sign Sign KeyGen

MAYO1 bitsliced 2 165 337 1 323 797 1 177 752

M4R 1 244 009 (1.74 ×) 1 119 136 (1.18 ×) 714 332 (1.65 ×)
MAYO2 bitsliced 5 199 607 629 400 2 830 681

M4R 2 906 460 (1.79 ×) 681 081 (0.92 ×) 1 683 616 (1.68 ×)
MAYO3 bitsliced 9 535 835 5 635 495 5 126 000

M4R 6 576 258 (1.45 ×) 3 452 417 (1.63 ×) 3 525 668 (1.45 ×)
Table 4: Cortex-M4 Performance of core arithmetic involving the public key that can benefit from the method
of the four Russians (M4R).



Bitsliced Representation

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

MAYO1 5 245 602 5 293 828 3 098 810 9 181 163 4 887 097

MAYO2 11 925 123 9 418 744 4 149 233 12 042 353 5 103 785

MAYO3 18 306 278 20 052 487 10 458 654 32 008 516 15 587 746

Nibble Representation (M4R)

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

MAYO1 4 410 207 4 381 417 3 098 817 8 269 909 4 807 561

MAYO2 8 846 960 7 154 898 4 149 239 9 915 805 5 101 410

MAYO3 15 971 829 17 196 207 10 471 338 27 400 909 15 573 359

Table 5: Performance of MAYO on the Arm Cortex-M4 using the bitsliced representation (round 1 specifi-
cation) and the modified nibble representation. Cycles presented are the average of 1000 executions.

Type Sec. Level Plat. Key Gen. Sign Open

MAYO [BCC+23]

MAYO1 1 M4 4 410k 8 270k 4 808k

MAYO1-pre 1 M4 4 410k 3 888k 1 709k

MAYO2 1 M4 8 847k 9 916k 5 102k

MAYO2-pre 1 M4 8 847k 2 761k 952k

MAYO3 3 M4 15 972k 27 401k 15 573k

MAYO3-pre 3 M4 15 972k 10 204k 5 102k

MAYO1 (*) [GMSS23] 1 M4 — 50 183k 7 371k

MAYO1 [HSMR23] 1 KC705 12 182 49 926 12 722

MAYO3 [HSMR23] 3 KC705 38 325 137 358 39 740

Oil and Vinegar [BCH+23]

ovIp (classic) 1 M4 138 833k 2 482k 995k

ovIp (pkc+skc) 1 M4 175 021k 88 757k 11 551k

ovIs (classic) 1 M4 195 744k 2 374k 616k

ovIs (pkc+skc) 1 M4 296 161k 113 446k 16 045k

Dilithium [AHKS22]

dilithium2 2 M4 1 598k 4 093k 1 572k

dilithium3 3 M4 2 827k 6 623k 2 692k

Falcon [Por19]

falcon-512 1 M4 163 994k 39 014k 473k

SPHINCS+ [KPR+]

sha256-128f-simple 1 M4 15 388k 382 534k 21 151k

sha256-128s-simple 1 M4 985 367k 7 495 604k 7 166k

sha256-192f-simple 3 M4 22 646k 639 322k 32 940k

sha256-192s-simple 3 M4 1 450 073k 13 764 197k 11 764k

Table 6:MAYO performance on Cortex-M4 in comparison to other post-quantum signature schemes optimized
for different platforms. MAYO pre variants refer to pre-expanded public and secret keys in a similar fashion
as classic OV. The implementation from [GMSS23] uses slightly different parameters (n = 66,m = 64, o =
7, k = 10) than MAYO1– we call it MAYO1 (*) in the table. The results presented from [HSMR23] are based
on an FPGA implementation on a Xilinx Kintex-7 KC705 board clocked at 100 MHz.



MAYO (as Oil-and-Vinegar) can benefit from pre-expanded public and secret keys. We report such variants
in Table 6 (denoted by pre) to allow a fair comparison with the classic variant of Oil-and-Vinegar. We see
that MAYO outperforms OV when using compressed public and secret keys, and comes very close to its
performance when using pre-expanded keys. Due to the large cost of key expansion due to the high cost of
AES, the performance of MAYO on the Cortex-M4 is not competitive with lattice-based signatures. When
using pre-expanded keys, this difference vanishes. AES hardware acceleration or round-reduced AES (as
proposed in [BCH+23]) would have a similar effect.

Acknowledgments

Matthias J. Kannwischer was supported by the Taiwan Ministry of Science and Technology through grant
109-2221-E-001-009-MY3, Academia Sinica Investigator Award AS-IA-109- M01, and the Executive Yuan
Data Safety and Talent Cultivation Project (AS-KPQ-109- DSTCP).

References

ADKF70. Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and Igor Aleksandrovich Faradzhev. On
economical construction of the transitive closure of an oriented graph. In Doklady Akademii Nauk, volume
194, pages 487–488. Russian Academy of Sciences, 1970.

AH74. Alfred V Aho and John E Hopcroft. The design and analysis of computer algorithms. Pearson Education,
1974.

AHKS22. Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber Sprenkels. Faster kyber and
dilithium on the cortex-M4. In Giuseppe Ateniese and Daniele Venturi, editors, ACNS 22, volume 13269
of LNCS, pages 853–871. Springer, Heidelberg, June 2022.

arm. Cortex-M4 Technical Reference Manual r0p0. Available at https://developer.arm.com/documentation/
ddi0439/b/CHDDIGAC. Accessed Jan, 2024.

BCC+23. Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias Kannwischer. Mayo. MAYO specifi-
cation, 2023. https://pqmayo.org/assets/specs/mayo.pdf.

BCH+23. Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer, Bo-Yuan Peng, Cheng-Jhih
Shih, and Bo-Yin Yang. Oil and vinegar: Modern parameters and implementations. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2023(3):321–365, Jun. 2023.

Beu22. Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar maps. In Riham AlTawy
and Andreas Hülsing, editors, SAC 2021, volume 13203 of LNCS, pages 355–376. Springer, Heidelberg,
September / October 2022.

CCC+09. Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng, Jintai Ding, Eric Li-Hsiang
Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE implementation of multivariate PKCs on modern x86
CPUs. In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 33–48.
Springer, Heidelberg, September 2009.

CKY21. Tung Chou, Matthias J. Kannwischer, and Bo-Yin Yang. Rainbow on cortex-M4. IACR TCHES,
2021(4):650–675, 2021. https://tches.iacr.org/index.php/TCHES/article/view/9078.

DCK+21. Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin, Albrecht Petzoldt, Dieter
Schmidt, and Bo-Yin Yang. Rainbow. NIST PQC Standardization Process, 2021. https://csrc.

nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/

round-3-submissions.
DCP+20. Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin Yang, Matthias J. Kan-

nwischer, and Jacques Patarin. Rainbow. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
DGG+. Jintai Ding, Boru Gong, Hao Guo, Xiaoou He, Yi Jin, Yuansheng Pan, Dieter Schmidt, Chengdong Tao,

Danli Xie, Bo-Yin Yang, and Ziyu Zhao. TUOV. Technical report, National Institute of Standards and
Technology, 2022. https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

DHP+. Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. eXtended Keccak
Code Package. https://github.com/XKCP/XKCP.

FG18. Ahmed Ferozpuri and Kris Gaj. High-speed FPGA implementation of the NIST round 1 rainbow signa-
ture scheme. In David Andrews, René Cumplido, Claudia Feregrino, and Dirk Stroobandt, editors, 2018
International Conference on ReConFigurable Computing and FPGAs, ReConFig 2018, Cancun, Mexico,
December 3-5, 2018, pages 1–8. IEEE, 2018.

https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://pqmayo.org/assets/specs/mayo.pdf
https://tches.iacr.org/index.php/TCHES/article/view/9078
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://github.com/XKCP/XKCP


GMSS23. Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini, and Ruggero Susella. Mayo: Optimized im-
plementation with revised parameters for armv7-m. Cryptology ePrint Archive, Paper 2023/540, 2023.
https://eprint.iacr.org/2023/540.

HBD+. Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumas-
son, Bas Westerbaan, and Ward Beullens. Sphincs+. Technical report, National Institute of
Standards and Technology, 2019. https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
HBD+20. Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-

Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson,
Bas Westerbaan, and Ward Beullens. SPHINCS+. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
HSMR23. Florian Hirner, Michael Streibl, Ahmet Can Mert, and Sujoy Sinha Roy. A hardware implementation of

MAYO signature scheme. IACR Cryptol. ePrint Arch., page 1267, 2023.
int. Intel Instruction Set Architecture. Available at https://www.intel.com/content/www/us/en/developer/

tools/isa-extensions/overview.html. Accessed Jan, 2024.
KKS+21. Hyeokdong Kwon, Hyunjun Kim, Minjoo Sim, Wai-Kong Lee, and Hwajeong Seo. Look-up the rainbow:

Efficient table-based parallel implementation of rainbow signature on 64-bit armv8 processors. IACR
Cryptol. ePrint Arch., page 1015, 2021.

KPG99. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signature schemes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 206–222. Springer, Heidelberg, May
1999.

KPR+. Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4: Post-
quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4.

KSSW22. Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. Improving software qual-
ity in cryptography standardization projects. In IEEE European Symposium on Security and Privacy,
EuroS&P 2022 - Workshops, Genoa, Italy, June 6-10, 2022, pages 19–30, Los Alamitos, CA, USA, 2022.
IEEE Computer Society.

Lan10. Adam Langley. ctgrind, 2010. Available at https://github.com/agl/ctgrind. Accessed Jan, 2024.
LDK+. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Peter Schwabe, Gregor Seiler,

Damien Stehlé, and Shi Bai. Crystals-dilithium. Technical report, National Institute of
Standards and Technology, 2019. https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
LDK+20. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien

Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
NIS22. NIST Computer Security Division. Post-Quantum Cryptography: Digital Signature Schemes, 2022. https:

//csrc.nist.gov/projects/pqc-dig-sig.
oST. National Institute of Standards and Technology. Post-quantum cryptography. NIST PQC Standardization

Process. https://csrc.nist.gov/projects/post-quantum-cryptography.
oST22. National Institute of Standards and Technology. Selected algorithms 2022. NIST PQC

Standardization Process, 2022. https://csrc.nist.gov/projects/post-quantum-cryptography/

selected-algorithms-2022.
Pat95. Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of eurocrypt’88. In Don

Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 248–261. Springer, Heidelberg, August
1995.

Pat97. Jacques Patarin. The Oil and Vinegar signature scheme. Dagstuhl Workshop on Cryptography, 1997.
Pet13. Albrecht Petzoldt. Hybrid approach for the fast verification for improved versions of the UOV and rainbow

signature schemes. IACR Cryptol. ePrint Arch., page 315, 2013.
PFH+. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas

Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon. Technical
report, National Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/

post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.
PFH+20. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas

Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical report,

https://eprint.iacr.org/2023/540
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
https://github.com/mupq/pqm4
https://github.com/agl/ctgrind
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions


National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.
Por19. Thomas Pornin. New efficient, constant-time implementations of Falcon. Cryptology ePrint Archive,

Report 2019/893, 2019. https://eprint.iacr.org/2019/893.
SM16. Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and the open quantum

safe project. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages
14–37. Springer, Heidelberg, August 2016.

SMA+23. Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, and Jean-Pierre Seifert. Hamayo:
A reconfigurable hardware implementation of the post-quantum signature scheme MAYO. IACR Cryptol.
ePrint Arch., page 1135, 2023.

SS16. Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4. In Roberto Avanzi and
Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 180–194. Springer, Heidelberg, August
2016.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2019/893

	Nibbling : Optimized Implementations for AVX2 and Cortex-M4

