
NIST 5TH PQC STANDARDIZATION CONFERENCE 1

Novel Schoolbook-Originated Polynomial
Multiplication Accelerators for NTRU-based PQC

Yazheng Tu1, Shi Bai2, Jinjun Xiong3, and Jiafeng Xie1
1: Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, 19085

Email: {ytu1, jiafeng.xie}@villanova.edu
2: Department of Mathematics and Statistics, Florida Atlantic University, Boca Raton, FL, 33431

Email: sbai@fau.edu
3: Department of Computer Science and Engineering, University at Buffalo, NY 14260

Email: jinjun@buffalo.edu

Abstract—NTRU (Number Theory Research Unit)-based post-
quantum cryptography (PQC) has recently drawn significant
attention from the research communities, e.g., the National Insti-
tute of Standards and Technology (NIST) PQC standardization
process selected algorithm FALCON. As the recent trend in the
field has gradually switched to the hardware implementation side,
efficient accelerator design for polynomial multiplication (one of
the critical components) within NTRU-based PQC is becoming
ever more important. Traditionally, the commonly used method
for NTRU-based PQC, e.g., FALCON, is the number theoretic
transform (NTT). In this paper, however, we have presented an
alternative method, i.e., novel SChoolbook-Originated Polynomial
multiplication accElerators (SCOPE) design framework. Overall,
we have proposed the schoolbook-based method in an innovative
format to implement the targeted polynomial multiplication,
first through a basic version and then through a Toeplitz
matrix-vector product (TMVP)-based approach. In total, we
have carried out four layers of coherent & interdependent
efforts: (i) we have proposed a novel lookup table (LUT)-based
point-wise multiplier along with a related modular reduction
technique to obtain optimal implementation; (ii) we have then
introduced a new hardware accelerator architecture for the
targeted polynomial multiplication, deploying the proposed point-
wise multiplier design; (iii) we have also extended the proposed
architecture to a TMVP-based polynomial multiplication acceler-
ator; (iv) thorough implementation and comparison have shown
the efficiency of the proposed accelerators. e.g., they have even
better area-time complexities than the existing NTT-based designs
(for n = 512). The proposed design strategy is also extended
to another NTRU-based scheme (the NIST third-round PQC
standardization candidate, NTRU) and other schoolbook- and
Toom-Cook-based polynomial multiplications used in other PQC
schemes, and the same superior performance is again obtained.
We hope the outcome of this research can impact the ongoing
NIST PQC standardization process and related full-hardware
implementation work for schemes like FALCON.

Index Terms—FALCON, FPGA, hardware implementation,
NTRU, NTRU-based PQC, SChoolbook-Originated Polynomial
multiplication accElerators (SCOPE), TMVP.

I. INTRODUCTION

THE recent rapid progress in quantum computing has
initiated many innovations related to post-quantum cryp-

tography (PQC) [1]. Currently-deployed public-key crypto-
graphic algorithms such as Rivest-Shamir-Adleman encryption
(RSA) and Elliptic Curve Cryptography (ECC) are vulnerable

to quantum attacks [2], [3]. Several computational problems
which are believed to be quantum-resistant have been pro-
posed, including the lattice-based and code-based assumptions
[4], [5]. The NTRU (Number Theory Research Unit) problem
can be phrased as an lattice-based computational problem
that admits additional algebraic structure [6]. Notably, the
NTRU assumption has been used in the recent selected al-
gorithm FALCON [7] in the National Institute of Standards
and Technology (NIST)’s PQC standardization process. The
NIST third-round candidate, NTRU [8], also falls within this
category.

Problem Background. Given the NIST-standardized algo-
rithms for PQC, there is an increasing demand for investigating
their efficient hardware implementation. In particular, efficient
acceleration of critical components like polynomial multipli-
cation has become an important research topic [9]–[17].

Related works [18], [19] on polynomial multiplication have
been done for other lattice-based PQC schemes such as Kyber
and Dilithium [20]. However, there is limited research on the
hardware implementation in the literature for NTRU-based
PQC (e.g., FALCON [7]). One plausible explanation is that
the schemes Kyber and Dilithium convert their representations
into the NTT (number theoretic transform) domain and hence
the number of forward/inverse NTT is limited. By comparison,
the polynomial multiplication in FALCON (for instance, in sig-
nature verification phase) requires the complete computation
process (both NTT and inverse NTT (INTT) are needed in the
same process) [21]. This requires a unified hardware platform
that supports the NTT/INTT computations simultaneously
which, to the best of our knowledge, is not fully investigated
and remains as an open research question. Furthermore, an
early work [22] has shown that the schoolbook-based approach
can obtain better area-time complexities than the NTT-based
designs (for general Ring-Learning-with-Errors (Ring-LWE)-
based schemes). This finding has been further confirmed in
a recent work [11] showing that the schoolbook-based poly-
nomial multiplication can achieve high-performance operation
while maintaining decent area-time complexities.

Motivation and Objective. In this paper, we follow the
above-mentioned works’ pace to explore the efficient imple-
mentation of polynomial multiplication accelerator for NTRU-
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based PQC. In particular, we use the polynomial multiplication
of FALCON as a case study example since: (i) it requires a
complete computation process even when the fast algorithm
NTT is deployed (signature verification phase); (ii) not many
works have been carried out specifically on this scheme.
Meanwhile, we also want to explore if the schoolbook-based
method is also efficient for FALCON, thus providing a better
design option for the PQC implementation community.

Challenges. With these mentioned motivations, the pro-
posed work aims to deliver a novel SChoolbook-Originated
Polynomial multiplication accElerators (SCOPE) design
framework for NTRU-based PQC. On the other hand, however,
there are many bottleneck challenges for schoolbook-based
polynomial multiplication (of FALCON). In particular, the
schoolbook-based method naturally involves a computational
complexity of O(n2), and thus it is hard to compete with NTT-
based design (complexity of O(nlogn)) unless an innovative
method is developed. Key challenges include: (a) the point-
wise multiplier is large, and new method is needed for efficient
implementation; (b) the modulus q is prime (modulo reduction
is not free) that increases the implementation complexity;
(c) new accelerator architecture is needed to obtain optimal
design; (d) additional fast algorithm based design can be
explored to achieve better performance.

Major Contributions. In this paper, we have carried out
four layers of coherent interdependent efforts to obtain the
proposed SCOPE. Major contributions include:

First, we have proposed a novel lookup table (LUT)-based
point-wise multiplier along with an efficient modular reduction
technique in which resource usage is reduced to the minimum.

Then, we introduced the proposed polynomial multiplication
hardware accelerator by innovatively incorporating the devel-
oped point-wise multiplier to obtain optimal efficiency.

Besides, we have extended the proposed design to a Toeplitz
matrix-vector product (TMVP)-based accelerator, with innova-
tions from both algorithmic and architectural aspects.

Finally, we have conducted a thorough evaluation process to
showcase the efficiency of the proposed accelerators over the
existing designs, including schoolbook- and NTT-based ones.

Note that we have also applied the same techniques on the
polynomial multiplication for NTRU [8], another NTRU-based
NIST PQC standardization third-round candidate and obtained
similar efficiency over the competing designs.

The rest of the paper is organized as follows. Section II gives
the preliminaries. The proposed point-wise multiplier (along
with the modular reduction technique) is presented in Section
III. The first accelerator is then introduced in Section IV. The
extended TMVP-based accelerator is presented in Section V.
The evaluation process is provided in Section VI, and the
conclusion is given in Section VII.

II. PRELIMINARIES

Notations. We use the following notations throughout the
entire paper: (i) n is the size of the polynomial; (ii) the targeted
FALCON polynomial multiplication relies on the operations
over ring Zq/(x

n + 1) where n is a power-of-two, while the
NIST PQC third-round candidate NTRU uses the operations

over ring Zq/(x
n − 1) where n is a prime; (iii) q is the

modulus; (iv) one input polynomial is denoted as G (G =∑n−1
i=0 gix

i), another input is represented as D =
∑n−1

i=0 dix
i,

and the output polynomial is W =
∑n−1

i=0 wix
i (gi, di, and wi

are coefficients). Other specific notations will be marked out
in specific sections of the paper.

NTRU-based PQC. As one important branch of lattice-
based cryptography, NTRU-based PQC can be traced back to
1996 [23]. The NTRU problem with standard parameters re-
mains essentially unbroken after several decades of cryptanal-
ysis. Although there exist other NTRU-based PQC schemes,
in this paper, we mainly focus on the NIST-selected one,
FALCON [7] (as well as the third-round PQC standardization
candidate NTRU [8]). While FALCON stands for Fast Fourier
lattice-based compact signatures over NTRU, it is a lattice-
based post-quantum signature scheme built on previous years’
efforts [7]; NTRU is a merger of previous two algorithms
NTRUEncrypt and NTRU-HRSS-KEM, and was selected as
one of the NIST PQC standardization thrid-round candidates
[8], [24].

Schoolbook-based Polynomial Multiplication. Without
loss of generality, we can use the polynomial multiplication
for FALCON (e.g., signature verification phase) to have

W = DG mod f(x), (1)

where f(x) = xn+1, and G =
∑n−1

i=0 gix
i, D =

∑n−1
i=0 dix

i,
and W =

∑n−1
i=0 wix

i (gi, di, and wi are coefficients of 14-bit
over ring since modulus q = 12, 289 for FALCON [7]).

Then, we can rewrite (1) into another form (note that W =
G
∑n−1

i=0 dix
i mod f(x))

W =

n−1∑
i=0

di(Gxi mod f(x)), (2)

where we can define G[0] = Gx0 mod f(x) = G, G[1] =
Gx1 mod f(x) = G[0]x mod f(x), . . ., and G[n−1] =
Gxn−1 mod f(x) = G[n−2]x mod f(x). And we can have

G[0] =g0 + g1x+ g2x
2 + · · ·+ gn−1x

n−1,

G[1] =− gn−1 + g0x+ · · ·+ gn−2x
n−1,

· · · · · · · · ·
G[n−1] =− g1 − g2x− g3x

2 − · · ·+ g0x
n−1,

(3)

where xn ≡ −1 is substituted (since f(x) = xn + 1 ≡ 0).
Thus, (2) can be rewritten as

W =

n−1∑
i=0

diG
[i], (4)

which can be transferred into a matrix-vector product as
w0

w1

...
wn−1

 =


g0 −gn−1 · · · −g1
g1 g0 · · · −g2
...

...
. . .

...
gn−1 gn−2 · · · g0

×


d0
d1
...

dn−1

 ,

(5)

which is equivalent to [W ] = [G]× [D], where [W ], [G], and
[D] are n× 1, n× n, and n× 1 matrices, respectively.
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Note that for the NIST PQC standardization thrid-round
candidate NTRU, all the negative signs in (5) are not needed
since its polynomial multiplication relies on the operations
over ring Zq/(x

n − 1).
TMVP Method. TMVP is a subquadratic complexity

method proposed for polynomial multiplication over GF (2m)
(binary field) [25]. First of all, let us define an n×n Teoplitz
matrix as T = [ti,j ]0≤i,j≤n−1, where ti,j = ti−1,j−1 [26].
Meanwhile, we also have V0 and V1 as n

2 × 1 column vectors
and T0, T1, and T2 as n

2 × n
2 Toeplitz matrices (V = (V0, V1)

is an n× 1 column vector). We thus have

Z =

[
Z0

Z1

]
=

[
T0 T2

T1 T0

] [
V0

V1

]
=

[
T0(V0 + V1) + (T2 + T0)V1

T0(V0 + V1) + (T1 + T0)V0

]
,

(6)

where one can see that the original computational complexity
of O(n2) is now reduced to three matrix-vector products of
O((n2 )

2). The format of (6) needs slight adjustment when
extended for polynomial multiplication over integer field (such
as the one shown in (5)).

Existing Works for Targeted NTRU-based PQC. The
prior works for polynomial multiplication of the mentioned
NTRU-based PQC are not many: (i) a hardware-implemented
signature verification (mainly the NTT-based polynomial mul-
tiplication) for FALCON was presented in [27]; (ii) hardware-
implemented polynomial multiplications for NIST third-round
PQC candidate NTRU can be seen at [28], [10], and [9],
respectively. Schoolbook- and Toom-Cook-based polynomial
multiplication designs for other PQC are reported in [11], [12].

III. PROPOSED NOVEL POINT-WISE MULTIPLIER

As discussed in Section II, polynomial multiplication for
FALCON requires a relatively complicated point-wise multi-
plier, i.e., two inputs of 14-bit and the output is then 28-
bit (which needs an appropriate modular reduction to transfer
the 28-bit output to 14-bit). Due to this setup, efficient im-
plementation of the point-wise multiplier becomes crucial to
the overall design efficiency of the polynomial multiplication
accelerator. In this section, we have developed a novel point-
wise multiplier combined with a modular reduction technique.

Consideration. Generally, large integer point-wise multi-
plier can be realized by DSP cores on the field-programmable
gate array (FPGA), which is not efficient if standing on the
point-view of equivalent Slice number [22]. In fact, since the
targeted point-wise multiplier is integer-based, one can find an
alternative method to implement it. First of all, let us consider

C = A×B, (7)

where A and B are 14-bit integers and C is a 28-bit integer.
Define B =

∑13
j=0 bj2

j , where bj is the actual value of each
bit of B. One can then have

C = A×
13∑
j=0

bj2
j =

13∑
j=0

(A× 2j)bj , (8)

where one can see that (A × 2j) simply involves shifting,
and the actual value of bj (‘0’ or ‘1’) determines the related
(A× 2j) needs to be accumulated or not.
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Fig. 1: Direct LUT-based point-wise multiplier based on (8).

LUT

M
U

X
M

U
X

b0

b1

A

0

A<<1

0

+ M
U

X

b0b1

A

3A

0

A<<1

Fig. 2: Combined into a larger-size LUT.

Proposal. The above function of (8) can be seen as an
equivalent function of adding 14 MUXes (or LUTs), as shown
in Fig. 1, where bj is used as the respective control signal. For
practical implementation, however, this type of setup is not
ideal as the overall structure involves too many MUXes and
adders. To obtain optimal implementation, one can consider
combining neighboring MUXes into a larger MUX (LUT). For
instance, as shown in Fig. 2, two LUTs can be combined into
one where one adder is saved at the cost of a larger-size LUT
(assume 3A can be pre-computed). Following this strategy,
the implementation of the point-wise multiplier becomes the
finding of an optimal point of how large the combined LUT
shall be and how many LUTs (and related types) are needed.

It is obvious that there is a trade-off between the size of
the MUX and the calculation complexity of the summation.
For example, if only single bits of B (bj) are involved in
the multiplication, then only 2-to-1 MUXes will be used.
However, the maximum number of the MUXes, which is 14,
will be used, and the following calculation will sum up 14
numbers shifted by 0, 1, 2, ..., and 13 positions, respectively.
This summation is extremely resource-consuming. On the
other hand, if all the bits of B are used as one selection
signal together, a 214-to-1 MUX, which costs a huge area,
will be used, and the calculation of the 214 inputs of the
MUX will be resource-intensive. Thus, based on the mentioned
consideration, we propose to decompose B into four segments,
which consist of 4, 4, 3, and 3 bits1, respectively, starting
from the least significant bit. This combination allows a decent
amount of MUX input signal sharing. Meanwhile, involving 4
MUXes means that a 2-layer adder tree could implement the
summation, which avoids a long critical-path.

1We obtain this segmentation through actual experimental testing.
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Modular Reduction. Another important operation related
to point-wise multiplication is modular reduction. Traditional
multiplication executes the modular reduction at the end of
the entire calculation. This setup, however, leads to a problem
in hardware implementation, i.e., the length of the bit-shifted
signals coming out from the MUXes are different, and we
have to expand them all to 28 bits to execute the summation.
Moreover, adding several 28-bit values can easily result in a
long critical-path in the adder tree. In this case, we propose to
move the modular reduction at the beginning of the multipli-
cation, that is, right before they are fed to the MUXes. In this
way, all the values attached to the MUXes are scaled back to
14 bits, more specifically, in the range of [0, q). Then, after the
addition in the summation process, only a Simple Reduction
is needed to keep the result in the desired range. Halving the
length of the addends can significantly reduce the critical-path
and enhance the point-wise multiplier’s efficiency.

Algorithm 1: Proposed 14-bit point-wise multiplier
with modular reduction (q = 12,289)

Input : A and B are 14-bit integers;
Output: C = AB mod q; // where C is also a 14-bit

integer over Zq

Initialization step
1 Let B = 211 ·B3 + 28 ·B2 + 24 ·B1 + 20 ·B0;
2 Let P = [0, 4, 8, 11]; // the elements in the array are

the power of the coefficient in each segment of B
3 Define a s[·], sum[·];

Main step
4 for i = 0 to 3 do
5 a s[i] = 2P [i] ·A mod q;
6 end
7 for i = 0 to 1 do
8 sum[i] = a s[2i]×B2i + a s[2i+ 1]×B2i+1;
9 if sum[i] > q then

10 sum[i] = sum[i] - q;
11 end
12 end
13 C = sum[0] + sum[1];
14 if C > q then
15 C = C − q;
16 end

The proposed 14-bit point-wise multiplication algorithm is
shown in Algorithm 1. As mentioned above, we split A into
four parts, each with 4, 4, 3, and 3 bits, respectively. Then, we
calculate the values of shifting B by those different bits and
execute modular reductions. The reduced values are summed
in two groups, followed by a Simple Reduction (subtracting q
if the sum is larger than q). After summing up all the values,
a final Simple Reduction is executed to make sure the result is
scaled in the range of [0,q). Note the modular reduction used
in the proposed algorithm is called Longa Reduction [29] (K-
red, see Algorithm 2 of [29]).

Hardware Structure. Following Algorithm 1, we propose
the point-wise multiplier as shown in Fig. 3. This point-wise
multiplier consists of two 16-to-1 MUXes (4-input LUTs) and

Fig. 3: Details of the proposed point-wise multiplier.

two 8-to-1 MUXes (3-input LUTs), one 2-layer adder tree,
and three Simple Reduction units (attached to each adder
in the adder tree). Meanwhile, different groups of shifted-
and-reduced multiples (output of the Longa Reduction units),
namely {0, a s[0], ..., 15 · a s[0]}, {0, a s[1], ..., 15 · a s[1]},
{0, a s[2], ..., 7 · a s[2]}, and {0, a s[3], ..., 7 · a s[3]} are
fed to the input of the four MUXes, with the selection
being b3b2b1b0, b7b6b5b4, b10b9b8, and b13b12b11, respectively
(b13b12...b0 are the bits of B). The selection signals determine
four correct multiples from the inputs as the output of the
MUXes to be fed to the adder tree. The first layer of the adder
tree performs two additions, i.e., two 8-to-1 MUXes and two
16-to-1 MUXes, corresponding to the sum of the upper/lower
half of the inputs. A Simple Reduction unit is connected to
the adders to reduce the sum to the regular range. Unlike the
Longa Reduction, this Simple Reduction simply subtracts q
from the sums if they are larger than q, otherwise keeps the
sum unchanged (the selected multiples have been reduced to
[0, q) and the sums cannot be larger than 2q). The reduced
sums are then added again, which requires another Simple
Reduction to be scaled to the desired range.

Algorithm 2: Longa Reduction on 28-bit value using
K-red of [29] with q = 12, 289, k = 3, and m = 12.

Input : C is a 28-bit integer;
Output: k · C mod q;

1 Define sum[·]; // where sum[·] is the array of
kC0 − C + iq, i = −3,−2, ..., 2;

2 C0 = C mod 2m;
3 C1 = C // 2m;
4 Cred = kC0 − C;
5 for i = 0 to 5 do
6 sum[i] = kC0 − C − (i− 3)q;
7 end
8 k = argi sum[i] ∈ [0, q);
9 Return sum[k]

Longa Reduction Unit (K-red). The details of the Longa
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Fig. 4: The details of the Longa Reduction unit (K-red).

Reducation unit are described as follows. When executing
a point-wise multiplication, the K-red unit is fed with a
multiple of the shifted multiplicand, which is responsible for
performing the Longa Reduction to scale the multiples of bi
back to the range of [0, q), following Algorithm 2, where
k = 3 and m = 12. Note that the calculation of C0 and
C1 can be implemented by bit truncation and selection. Also,
three times of C0 (k = 3) can be realized by C0 + 2 · C0,
which can be done by one-bit shifting and one addition.
Therefore, the cost of the entire reduction operation is only
two additions if we consider the subtraction as the addition
based on two’s complement representation. The result of the
reduction operation falls into the range of (-3q, 3q), so a post-
process of the reduction result is needed. we calculate different
values of k ·C0 −C1 + j · q, where j = 3, 2, 1, 0,−1,−2 and
choose the one falling into [0, q) as the final output which will
be delivered out. Note here the reduction unit returns the value
of k ·C mod q, so the inputs are assumed to be multiplied with
the modular inverse of k prior to being input to the reduction
unit (when they are generated/sampled) to return the value of
C mod q. The overall structure can be seen in Fig. 4.

IV. SCOPE-I: THE FIRST ACCELERATOR

Based on equations (4) and (5), we can have the first
schoolbook-based polynomial multiplication algorithm, as
shown in Algorithm 3. This algorithm calculates the product
of one column of [G] and one di at one time, and accumulates
until all the products are obtained (time complexity of O(n)).

Overview. Following Algorithm 3, we propose the hardware
structure of the first accelerator as shown in Fig. 5. The
proposed SCOPE-I contains five main components: Basic
Input Process Component (BIPC), Basic Shift and Reduction
Component (BSRC), Basic Point-wise Multiplier Component
(BPMC), Basic ACcumulation Component (BACC), and Con-
Trol Unit (CTU). Once all G coefficients are loaded into
BIPC, they are fed in parallel into BPMC, along with the
coefficients of D which are delivered serially from the input
port. BPMC calculates the point-wise products between the G
and D coefficients. These point-wise products are then sent to
BACC to be accumulated to form the final output for serial
delivering out. The entire calculation takes (n + x) cycles,
where x is the number of pipeline register layers inserted
in/between components to increase the working frequency (see
the last paragraph of this section).

Basic Input Process Component (BIPC). The BIPC uses a
serial-in parallel-out (SIPO) shift register to receive and deliver

Algorithm 3: Proposed first version of the schoolbook-
based polynomial multiplication algorithm
Input : G, D are integer polynomials with 14-bit

coefficients;
Output: W = GD mod xn + 1 with wi ∈ Zq .

Initialization step
1 Serially input gi;

Main step
2 for i = 0 to n− 1 do
3 for j = 0 to n− 1 do
4 wi = wi +G

[j]
i dj mod q; // where G

[j]
i

denotes the i-th coefficient of G[j];
5 end
6 end

Final step
7 Serially deliver the coefficients of output W ;

Fig. 5: Overview of the first accelerator (SCOPE-I).

Fig. 6: Details of the BIPC (o0, ..., on−1 are output bits).

the G coefficients. The SIPO contains n registers controlled
by en sipo. In load mode, BIPC takes one G input per cycle,
feeding it to the first register while shifting previous values. In
output mode, en sipo stops shifting by disabling the registers,
so the SIPO outputs the same values each cycle. This enables
parallel delivery of the loaded G coefficients.

Basic Shift and Reduction Component (BSRC). The
BSRC is responsible for pre-processing the input D by calcu-
lating multiples of the input and then shifting and performing
the Longa reduction to the shifted multiples (Fig. 7). Having
received an input coefficient of D (di), the BSRC firstly
calculates its multiples up to 15 times of the input (1 · di,
2 · di, ..., 15 · di), then the 15 multiples are left-shifted by 4
bits (di s4, ..., 15 · di s4) while the 1 to 8-time multiples are
shifted by 8 bits (di s8, ..., 15 ·di s8) and 11 bits (di s11, ...,
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TABLE I: Accumulation Process of The Proposed First Accelerator (SCOPE-I) with n = 4

Cycle di R0 R1 R2 R3

0 d3 g0d3 g1d3 g2d3 g3d3

1 d2 g0d2 − g3d3 g1d2 + g0d3 g2d2 + g1d3 g3d2 + g2d3

2 d1 g0d1 − g3d2 − g2d3 g1d1 + g0d2 − g3d3 g2d1 + g1d2 + g0d3 g3d1 + g2d2 + g1d3

3 d0 g0d0 − g3d1 − g2d2 − g1d3 g1d0 + g0d1 − g3d2 − g2d3 g2d0 + g1d1 + g0d2 − g3d3 g3d0 + g2d1 + g1d2 + g0d3

Fig. 7: Details of the BSRC.

Fig. 8: Details of the BPMC.

15 ·di s11), respectively. Each set, which are called Longa 0,
Longa 4, Longa 8, and Longa 11, respectively, of shifted
multiples is then fed into 7 or 15 parallel Longa Reduction
units (K-red) that they are reduced back to the range of [0, q).

Basic Point-wise Multiplication Component (BPMC).
The BPMC calculates the multiplication between the input di
and n coefficients in G in parallel and delivers the products
to the BACC. This component contains n LUT-based point-
wise multipliers. During the calculation, the BPMC takes
in the shifted-and-reduced multiples di (Longa 0, Longa 4,
Longa 8, Longa 11) from the Longa Reduction unit (K-
red) and n parallel output of G from BIPC and feeds the
coefficients into the point-wise coefficients. Each point-wise
multiplier takes one coefficient gi and the shared shifted-and-
reduced multiples of di as inputs, calculates the product of gi
and di, and delivers the products to the following BACC.

Basic ACcumulation Component (BACC). As shown in
Fig. 9, the BACC contains n registers, n adders, n Simple
Reductions, and a sign inverter (14 NOT gates and an adder,
based on the two’s complement). The adder (before each
register) adds the product of the BPMC and the output from the
previous register. The sum is fed to the Simple Reduction unit
to be reduced back into the range [0, q) and then transferred
to the next register. The structure of Fig. 9 accomplishes the

Fig. 9: Details of the BACC (R0, R1, ..., Rn−1 are registers).

accumulation of all the desired products (w0, w1, ..., wn−1)
in n cycles. Table I shows the accumulation process of a
simple example with n = 4. After the accumulation, the BACC
serially outputs the products (note D is set to 0 at this time).

ConTrol Unit (CTU). The CTU, mainly a finite state
machine (FSM), consists of five consecutive states: reset,
load, multi, output, and done. In each state, different control
signals related to the operation of the components are gener-
ated/adjusted, such as csh sipo (input/output control signal),
en sipo (enable signal), clr reg (clear signal), etc. The FSM
enters the reset state when clr signal is received and it then
enters the load state within one clock (n cycles). The multi
state takes the FSM (n + x) cycles to finish the calculation.
After that, the FSM enters the output state that the output is
serially delivered (n cycles). Finally, the FSM switches to the
done state to complete the computation.

Register Insertion for Frequency Enhancement. Multiple
layers of pipeline registers are inserted to enhance the working
frequency of the proposed architecture. Although the register
insertion slightly increases resource usage (and computation
latency), the increased frequency can greatly improve the
overall area-time complexities. Overall, we have inserted four
layers of registers (through actual experimental testing), one
layer after the MUXes in BPMC, one layer after both the first
and second layers of adders in the adder trees of BPMC, and
one layer before the Simple Reductions in BACC. Section VI
demonstrates the efficiency of the proposed register insertion.

V. TMVP-BASED SCOPE: THE SECOND ACCELERATOR

Algorithm. By dividing [G] following (6), we have[
W0

W1

]
=

[
G0 G2

G1 G0

]
×

[
D0

D1

]
, (9)

where [W0], [W1], [D0], and [D1] are n
2 × 1 vectors; [G0],

[G1], and [G2] are n
2 × n

2 matrices.
Note here [G2] = −[G1], so by substitution we can have[

W0

W1

]
=

[
G0 −G1

G1 G0

]
×
[

D0

D1

]
=

[
G0(D0 +D1) + (−G1 −G0)D1

G0(D0 +D1) + (G1 −G0)D0

]
.

(10)
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Fig. 10: Overview of the TMVP-based SCOPE-II.

Algorithm 4: Proposed TMVP-based algorithm
Input : G, D are integer polynomials with 14-bit

coefficients;
Output: W = GD mod xn + 1 with wi ∈ Zq;

Main step
1 for i = 1 to n/2 do
2 for j = 1 to n/2 do
3 wj

0 = [Gj
0]i[D

j
0 +Dj

1] + [−Gj
1 −Gj

0]i[D
j
1];

4 [W0
j ] = [W0

j ] + wj
0;

5 wj
1 = [Gj

0]i[D
j
0 +Dj

1] + [Gj
1 −Gj

0]i[D
j
0];

6 [W j
1 ] = [W j

1 ] + wj
1.

7 end
8 end

Final step
9 Serially deliver the coefficients of output W0 and W1;

The proposed computation is thus shown in Algorithm 4.
Note: [Gi

0]j denotes the element in the i-th row and the j-
th column of [G0], [W

j
0 ] denotes the j-th row of [W0], same

notations apply for [G1] and [W1] ([D0], [D1], [W0], and [W1]
have no subscript since they only have one column).

Overview. Accordingly, following the algorithmic operation
of Algorithm 4, the proposed TMVP-based SCOPE-II involves
six main components (Fig. 10): TMVP Input Process Compo-
nent (TIPC), TMVP Shift and Reduction Component (TSRC),
TMVP Point-wise Multiplier Component (TPMC), TMVP
ACcumulation Component (TACC), ConTrol Unit (CTU), and
Linear Combination Component (LCC). Having loaded all G
coefficients into TIPC, TPMC then takes processed coefficients
from G0, G1 and D0, D1 to calculate the needed point-wise
products and accumulations. When the calculation finishes, the
TACC outputs two sum-of-products (in parallel) to the LCC
to produce the final output in serial. The major computation
time is now only n/2 cycles (the register insertion can slightly
increase the latency by a few cycles).

TMVP Input Process Component (TIPC). Due to the
nature of the TMVP method, instead of outputting fixed coef-

ficients of G (g0, g1, ..., gn−1), TIPC for TVMP-based SCOPE
provides dynamic linear combinations of coefficients in G0

and G1, corresponding to G0, (−G1−G0), and (G1−G0), re-
spectively. As shown in Table II, outputs for G0, (−G1−G0),
and (G1 −G0) are different every cycle since coefficients in
G0 and G1 change by time. To realize the changing format
when outputting the coefficients during the calculation, two
special Switch Shift Registers (SSRs) are designed (Fig. 11).
The SSRs work in two operational modes, load and output,
controlled by control signals en ctrl, csh, and switch. When
loading the coefficients ([Gi

0]0, [G
i
1]0, which are the coeffi-

cients in the first column of G0 and G1) from the input port
of G0 and G1, the TIPC firstly loads [Gi

0]0 into one set of
the SSR. Meanwhile, the adders and sign inverter in TIPC
calculate −[Gi

1]0 − [Gi
0]0 and −[Gi

1]0 + [Gi
0]0, and send the

two values to the two SSRs in the other set. Having loaded all
the coefficients (linear combinations), the TIPC starts to output
the values to the TPMC during the multiplication process.
During the calculation, one of the coefficients in each SSR
is substituted with a new value at every clock cycle. For
example, at the first cycle, all the coefficients are outputted
in the order as they were loaded; at the second cycle, the last
((n/2−1)-th) coefficient in the SSR for G0 is substituted with
the last coefficient in G1, while the last coefficient in the SSR
for (−[G1]0 − [G0]0) is substituted with (−[G1]0 + [G0]0)’s
last coefficient ((−[G

n/2−1
1 ]0 + [G

n/2−1
0 ]0)), so as the SSR

for (−[G1]0 + [G0]0). The coefficients in the two sets of
SSRs will keep being substituted until all the last (n/2 − 1)
coefficients have been substituted in this manner. In TIPC,
each SSR contains n/2 registers and n/2 2-to-1 MUXes,
where the MUXes choose either the output from the previous
register or the value that is used for substitution. During
the load mode, the TIPC loads and stores all the values for
(−[G1]0−[G0]0) and (−[G1]0+[G0]0) chosen by the MUXes.
During multiplication, the TIPC keeps receiving coefficients
of [Gj

1]i and [Gj
0]i, calculating linear combinations of the

coefficients, and sending the results to the registers in parallel.
The MUXes then choose the substituting values during the
ouput mode. In the load mode, all the registers are enabled,
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TABLE II: Theoretical Derivation and Formulation of Linear Combination of TIPC Outputs for Different Cycles

Index n/2− 1 n/2− 2 ... i ... 1 0
Cycle 0

G0 gn/2−1 gn/2−2 ... gi ... g1 g0
G1 gn−1 gn−2 ... gn/2+i ... gn/2+1 gn/2

−G1 −G0 −gn−1 − gn/2−1 −gn−2 − gn/2−2 ... −gn/2+i − gi ... −gn/2+1 − g1 −gn/2 − g0
G1 −G0 gn−1 − gn/2−1 gn−2 − gn/2−2 ... gn/2+i − gi ... gn/2+1 − g1 gn/2 − g0

Cycle 1
G0 −gn−1 gn/2−2 ... gi ... g1 g0
G1 gn/2−1 gn−2 ... gn/2+i ... gn/2+1 gn/2

−G1 −G0 −gn/2−1 + gn−1 −gn−2 − gn/2−2 ... −gn/2+i − gi ... −gn/2+1 − g1 −gn/2 − g0
G1 −G0 gn/2−1 + gn−1 gn−2 − gn/2−2 ... gn/2+i − gi ... gn/2+1 − g1 gn/2 − g0

Cycle 2
G0 −gn−1 −gn−2 ... gi ... g1 g0
G1 gn/2−1 gn/2−2 ... gn/2+i ... gn/2+1 gn/2

−G1 −G0 −gn/2−1 + gn−1 −gn/2−2 + gn−2 ... −gn/2+i − gi ... −gn/2+1 − g1 −gn/2 − g0
G1 −G0 gn/2−1 + gn−1 gn/2−2 + gn−2 ... gn/2+i − gi ... gn/2+1 − g1 gn/2 − g0

Cycle i

G0 −gn−1 −gn−2 ... −gn/2+i ... g1 g0
G1 gn/2−1 gn/2−2 ... gi ... gn/2+1 gn/2

−G1 −G0 −gn/2−1 + gn−1 −gn/2−2 + gn−2 ... −gi + gn/2+i ... −gn/2+1 − g1 −gn/2 − g0
G1 −G0 gn/2−1 + gn−1 gn/2−2 + gn−2 ... −gi − gn/2+i ... gn/2+1 − g1 gn/2 − g0

...
Cycle n− 1

G0 −gn−1 −gn−2 ... −gn/2+i ... −gn/2+1 g0
G1 gn/2−1 gn/2−2 ... gi ... g1 gn/2

−G1 −G0 −gn/2−1 + gn−1 −gn/2−2 + gn−2 ... −gi + gn/2+i ... −g1 + gn/2+1 −gn/2 − g0
G1 −G0 gn/2−1 + gn−1 gn/2−2 + gn−2 ... −gi − gn/2+i ... −g1 − gn/2+1 gn/2 − g0

Fig. 11: Details of the SSRs for (−G1 −G0) and (G1 −G0) in TIPC for the second accelerator (SCOPE-II).

while only one register in each shift register is enabled to
receive the coefficient to be substituted at each cycle.

TMVP Shift and Reduction Component (TSRC). As
shown in Fig. 13, TSRC consists of three individual BSRCs,
corresponding to the process of D0, D1, and (D0 + D1),
respectively. In particular, the TSRC calculates (D0 + D1),
followed by a Simple Reduction, and then sends the value to
the third BSRC. When processing, the three BSRCs multiply,
shift, and execute Longa Reduction on the input/calculated
data simultaneously to produce the output data for the TPMC.

TMVP Point-wise Multiplication Component (TPMC).
The TMPC also involves three BMPCs as basic units, re-
sponsible for the calculation of products of [G1 − G0]i[D

i
0],

[G0]i[D
i
sum], and [−G1 −G0]i[D

i
1] respectively, as shown in

Fig. 14 (note we use Dsum to represent (D0+D1)). The three
BMPCs receive the linear combinations of G0 and G1 output
from TIPC as well as the Longa Reduction outputs from TSRC
to calculate the point-wise products in one clock cycle. The
products delivered from the BPMCs (grouped into three sets)
are then fed to the TACC in parallel for accumulation.

TMVP ACcumulation Component (TACC). As shown in
Fig. 15, the TACC consists of three sets of BACCs. Unlike the
BACC in SCOPE-I (Fig. 5), the output of the last ((n/2− 1)-
th) register will not be negated before being circularly shifted
back to the adder before the first register (no need for any sign
inverter). The three BACCs work at the same time, and the
entire accumulation lasts n/2 cycles. When the accumulation
is done, the BACCs output the accumulated sum-of-products in
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Fig. 12: Details of the SSR for G0 in TIPC for the second accelerator (SCOPE-II).

Fig. 13: Details of the TSRC (SR: Simple Reduction).

Fig. 14: Details of the TMPC (Dsum represents (D0 +D1)).

the order of (wn/2−1, w0, ..., wn/2−2), which will take another
n/2 cycles for the Linear Combination Component (LCC) to
form the final outputs.

Linear Combination Component (LCC). The LCC ex-
ecutes two additions, one between [G1 − G0]i[D

i
0] and

[G0]i[D
i
sum] while the other between [G1 − G0]i[D

i
0] and

[−G1−G0]i[D
i
1] to produce the final results of the polynomial

multiplication. The LCC works with the TACC synchronously,

Fig. 15: Details of the TACC.

i.e., it calculates the final results as the TACC outputs the
accumulated sum-of-products (two coefficients are produced
at each cycle). Two Simple Reductions are also involved at
the output end of the LCC to keep the final outputs in the
desired range (after modulo reduction).

ConTrol Unit (CTU). The CTU generates all the required
control signals for the proposed structure work properly.
Overall, it contains consecutive states, i.e., reset, load, multi,
output, and done, respectively. During the load state, the CTU
generates enable signals enabling all the registers in the SSRs.
However, when entering multi state, a signal switch is pulled
up, the enable signals becomes “10000...” (with (n/2−1) 0’s),
which means only the (n/2 − 1)-th register in the SSRs are
enabled. Since the inputs of the registers are the outputs from
the other SSR in the same set, the two (n/2− 1)-th registers
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Fig. 16: Details of the LCC.

in the same set will switch values while other registers remain
unchanged. At the next cycle, the ’1’ in the enable signal will
shift to the right by 1 bit, making the signal ”01000...”, and the
next couple of registers in the same set will switch coefficients.
This process will last for n/2 cycles until all the last (n/2−1)
registers in the SSRs have switched coefficients.

VI. COMPLEXITY AND COMPARISON

This section provides an in-depth complexity analysis and
implementation comparison to demonstrate the efficiency of
the proposed accelerators. We further confirm the proposed
strategy is well-suited for applications requiring the multipli-
cation of relatively small-sized polynomials. The complexity
and implementation results validate that our accelerators offer
superior performance with faster calculation delay and lower
area-time complexities than the existing works.

A. Complexity Analysis
For the proposed first accelerator, n registers are involved

in the BIPC, while n registers and 2-to-1 MUXes are used in
the BACC. Moreover, 3×n 8-to-1, n 16-to-1, and 3×n 2-to-
1 MUXes are required to construct the point-wise multipliers
deployed in the BPMC. The accelerator also needs (7n + 1)
adders in the BPMC and BACC, along with 200 adders in
the BSRC, to calculate and reduce the multiples of di. The
calculation latency of SCOPE-I is (n+ 4) cycles.

For the TMVP-based second accelerator, there are 3/2n
2-to-1 MUXes and registers in both the TIPC and TACC.
Besides, to calculate the negation of the coefficients, there
are also 3/2n sign-inverters in the TIPC. The number of
adders and MUXes in the TSRC is also 3/2n. Although its
theoretical resource usage is larger than the first accelerator,
the calculation latency of the second one drops to only n/2
cycles (plus the inserted pipelining register cycles of 4).

B. FPGA-based Implementation and Evaluation

To evaluate the actual performance of the proposed accel-
erators, we have implemented them on the FPGA platform
with respect to different parameter sets. In particular, we have:
(a) implemented the two accelerators based on one parameter
set of FALCON (n = 512 and q = 12, 289); (b) extended
the implementations following the parameters of the NIST
third-round PQC finalist NTRU [8] (another NTRU-based
PQC); (c) extended to other schoobook- and Toom-Cook-
based polynomial multiplication designs when n = 256.

Experimental Setup. We have set the experiment process
following FALCON parameter as: (i) The designs are coded in
VHDL, simulated and tested through ModelSim, and finally
implemented using Vivado 2022.2; (ii) we have implemented
the designs on the following FPGAs, i.e., Artix-7 (XC7a200t)
and Ultrascale+ (XCZU9EG-FFVB1156-2), following the ex-
isting work in [27], [30]; (iii) we have chosen n = 512 and
q = 12, 289 for the implementation; (iv) key implementation
results obtained from the implementation, including resource
usage, maximum frequency, delay, ADP (area-delay product),
and throughput, are listed and compared with the existing
works of [27], [30]; (v) we have followed the approach used in
[22], [31] to calculate equivalent ADP (EADP) for a balanced
area-time overall consideration (see the footnote of Table III);
(vi) note that [30] didn’t provide the performance data for
n = 512 but rather an NTT architecture of n = 1, 024,
which can be used to estimate the performance for n = 512
(a complete polynomial multiplication deployed with NTT
method includes NTT, INTT, and point-wise multiplications)2;
(vii) the power consumption is not reported since static power
constitutes a significant portion of the whole FPGA power.

For the extension to the polynomial multiplication used in
NTRU [8], we followed the parameter selection in [28], [9]
and [28] to choose n = 701, q = 213 and n = 821, q =
212. Following the experimental procedure above, the extended
work was coded, tested, and implemented on Zynq Ultrascale+
(XCZU9EG-FFVB1156-2) and Zynq-7000 (xc7z100ffg1156-
2), respectively, to obtain the performance data. The collected
results are listed in Table IV, along with the existing works.

Moreover, for the further verification of the efficiency of the
proposed designs when comparing with other schoolbook- and
Toom-Cook-based designs, we have implemented our designs
(n = 256) on Kintex-7 (xc7k480tffv1156-3), Virtex Ultra-
sclae+ (xcvu9p-flga2577-3-e), Zynq Ultrascale+ (XCZU9EG-
FFVB1156-2), Virtex-7 (xc7v2000tflg1925-2L) and Zynq-
7000 (xc7z100ffg1156-2), respectively. The obtained perfor-
mance is listed in Table V, along with [11] and [12].

Performance Discussion. As shown in Table. III, the re-
source usage (LUT, FF, Slice) increases as the proposed design
is switched from SCOPE-I to SCOPE-II. This is because of
the three parallel processing matrix-vector products, as seen in
Algorithm 4. Meanwhile, though the inserted pipelined register
layers bring an extra four cycles to the latency time, both
accelerators’ working frequencies are very high, indicating
this technique’s efficiency (similar situations happen with the
extension on other PQC schemes, see Table V).

When implementing the designs based on NTRU parameters
[8], the resource usage, especially the number of LUTs, drops
significantly even though the used n is larger than 512. This is
because NTRU implementations don’t contain any K-red units
or Simple Reductions (q is a power of two). The absence of
modulo reductions also produces a higher working frequency
for both accelerators as the critical-path is shortened.

2Due to the design format (butterfly-based) of an NTT-based polynomial
multiplication, the resource usage of an NTT architecture (n = 512) is similar
to the one of n = 1, 024. We also use the time of an NTT of n = 1, 024 for
the whole polynomial multiplication of n = 512 (complexity of O(nlogn)).
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TABLE III: Comparison With The Existing Works (FALCON)

Design n Method LUT FF Slice DSP BRAM Fmax1 Latency2 Delay3 ELUT4 EADP5 EADPR6

Zynq Ultrascale+
[27] 512 NTT 14,327 7,314 NA 4 2 314 2,100 6.7 16,895 112,992 NA

SCOPE-I 512 SB 88,267 35,159 14,598 0 0 525 516 1.0 88,231 86,718 30.30%
SCOPE-II 512 TMVP 157,686 84,226 26,937 0 0 529 260 0.5 157,686 77,502 31.41%

Artix-7
[27] 512 NTT 14,500 7,287 NA 4 2 142 2,100 14.8 16,371 242,103 NA

SCOPE-I 512 SB 97,322 35,159 15,163 0 0 254 516 2.0 97,322 197,709 18.34%
Kintex Ultrascale+

[30]* 512 NTT 22,648 15,030 NA 16 24 200 782 3.9 34,456 134,723 NA
SCOPE-I 512 SB 88,185 35,237 14,734 0 0 507 516 1.0 88,185 89,750 33.38%
SCOPE-II 512 TMVP 154,688 87,439 24,503 0 0 410 260 0.6 154,688 98,095 27.19%

Note: Due to the relatively large resource usage of the proposed second accelerator (TMVP-based), we don’t implement it on the Artix-7 device.
SB: schoolbook.
*: The performance listed is an estimation since no specific data for n = 512 is provided in this work.
1: Fmax: Maximum frequency. Unit: MHz
2: Latency: Calculation latency (number of cycles). We roughly estimated the NTT-based polynomial multiplication in [27] as 2,100 for n = 512.
3: Delay = Latency/Fmax. unit: µs.
4: ELUT: Equivalent LUT, following [22]. 1 DSP = 102.4 Slices (7 series)/51.2 Slices (UltraScale+); one 18K BRAM = 116.2 Slices (7 series)/58.1 Slices
(UltraScale+). UltraScale+ has 8 LUTs in one Slice/CLB while 7 series contains 4 LUTs in one Slice/CLB.
5: EADP: Equivalent ADP. EADP = #ELUT×delay (since the Slice number is not available for all designs, we use LUT as the main resource usage metric).
6: EADPR: EADP reduction (based on the same FPGA device with the same n).

TABLE IV: Comparison With The Existing Works on NTRU (NIST PQC Third-Round Finalist)

Design n q Method LUT FF Slice DSP BRAM Fmax1 Latency2 Delay3 ELUT4 EADP5 EADPR6

Zynq Ultrascale+
[10] 701 213 SB 71,028 18,994 11,661 0 0 223 701 3.14 71,028 223,276 NA

SCOPE-I 701 213 SB 87,190 41,843 15,069 0 0 577 705 1.22 87,190 106,532 52.29%
SCOPE-II 701 213 TMVP 150,266 59,677 26,920 0 0 549 354 0.64 150,266 96,893 56.60%

[10] 821 212 SB 72,430 21,172 11,300 0 0 236 821 3.48 72,430 251,970 NA
SCOPE-I 821 212 SB 74,760 44,360 12,268 0 0 556 825 1.48 74,760 110,930 55.98%
SCOPE-II 821 212 TMVP 122,677 64,132 22,863 0 0 513 414 0.81 122,677 99,002 60.71%

Zynq-7000+
[9] 701 213 SB 1,463 NA NA 0 86 76 247,104 3,251.37 21,449 69739901.81 NA
[10] 701 213 SB 71,321 19,554 20,270 0 0 201 701 3.49 71,321 248,736 NA

SCOPE-I 701 213 SB 87,191 41,845 25,339 0 0 452 705 1.56 87,191 135,995 45.33%
SCOPE-II 701 213 TMVP 153,170 58,980 45,710 0 0 416 354 0.85 153,170 130,342 47.60%

[9] 821 212 SB 1,463 NA NA 0 86 76 338,664 4,456.11 21,449 95580784.23 NA
[10] 821 212 SB 71,990 21,202 11,647 0 0 210 821 3.91 71,990 281,447 NA
[28] 821 212 SB 56,218 21,406 NA 0 0 70 821 11.73 56,218 659,357 NA

SCOPE-I 821 212 SB 74,773 44,360 22,272 0 0 438 825 1.88 74,773 140,840 49.96%
SCOPE-II 821 212 TMVP 126,409 63,325 36,336 0 0 436 414 0.95 126,409 120,031 57.35%

SB: Schoolbook.
1: Fmax: Maximum working frequency. Unit: MHz.
2: Latency: Calculation latency (number of cycles).
3: Delay = Latency/Fmax. unit: µs.
4: ELUT: Equivalent LUT, following [22]. 1 DSP = 102.4 Slices (7 series)/51.2 Slices (UltraScale+); one 18K BRAM = 116.2 Slices (7 series)/58.1 Slices
(UltraScale+). UltraScale+ has 8 LUTs in one Slice/CLB while 7 series contains 4 LUTs in one Slice/CLB.
5: EADP: Equivalent ADP. EADP = #ELUT×delay (Slice number is not available for all designs).
6: EADPR: EADP reduction (based on the same FPGA device with the same n).

Note we have used the cycle-count-based method combined
with FSMs to implement the control units. A major advantage
of such a setup is that no external resource is needed to manage
data loading/storing operations. This design consideration can
be regarded as shifting the workload from memory interaction
into the structure, although it might affect the overall timing
performance (and area usage). Nevertheless, this setup makes
the accelerators more practical for real-world applications.

Comparison With The Existing Works on FALCON. Not
many specific works have been released on polynomial mul-
tiplication for FALCON. To have a fair comparison, we have:
(i) roughly estimated the polynomial multiplication latency
(from the whole signature verification phase) as 2,100 for

n = 512; (ii) estimated the resource usage of the polynomial
multiplication of n = 512 from the provided NTT architecture
performance data of n = 1, 024 (from [30]); (iii) transferred
all the implementation results into the EADP format for a bal-
anced consideration. As seen from Table III, the proposed ac-
celerators have significantly better area-time complexities than
[27] and [30]. More precisely, on the Zynq Ultrascale+ device,
the first and second accelerators have 30.30% and 31.41%
lower EADP than [27], respectively. On the Artix-7 device, the
first accelerator still holds an 18.34% lower EADP than [27].
While comparing with another design of [30], the proposed
designs are 33.8% and 27.19% more efficient in EADP. The
overall efficiency of the proposed accelerators comes from
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TABLE V: Comparison With Existing Works on Other Lattice-based PQC (Schoolbook- and Toom-Cook-based Designs)

Design n q Method LUT FF Slice DSP BRAM Fmax1 Latency2 Delay3 ELUT4 EADP5 EADPR6

Kintex-7
[11] 256 7,681 SB 20,000 18,000 8,000 128 0 260 258 1.0 72,429 71,872 NA

SCOPE-I 256 12,289 SB 57,339 20,736 16,523 0 0 449 260 0.6 57,339 33,203 48.93%
SCOPE-II 256 12,289 TMVP 115,108 52,016 33683 0 0 345 132 0.4 115,108 44,041 38.72%

Virtex Ultrascale+
[11] 256 7,681 SB 19,000 18,000 3,300 128 0 298 258 0.9 71,429 61,841 NA

SCOPE-I 256 12,289 SB 54,085 20,748 9,330 0 0 571 260 0.5 54,085 24,627 60.18%
SCOPE-II 256 12,289 TMVP 100,725 52,271 16,564 0 0 528 132 0.3 100,725 25,181 59.28%

Zynq Ultrascale+
[12] 256 213 TM4 4,550 NA NA 44 10 588 726 1.2 27,220 33,609 NA

SCOPE-I 256 213 SB 30,814 14,873 5,438 0 0 607 260 0.4 30,814 13,199 60.73%
SCOPE-II 256 213 TMVP 53,698 21418 8,766 0 0 540 132 0.2 53,698 13,126 60.94%

Virtex-7
[12] 256 213 TM4 4,330 NA NA 44 10 476 726 1.5 27,000 41,181 NA

SCOPE-I 256 213 SB 30,577 14,883 9,266 0 0 435 260 0.6 30,577 18,276 55.62%
SCOPE-II 256 213 TMVP 53,867 21,509 15,918 0 0 418 132 0.3 53,867 17,011 58.69%

Zynq-7000
[12] 256 213 TM4 4,550 NA NA 44 10 400 726 1.8 27,220 49,405 NA

SCOPE-I 256 213 SB 30,582 14,874 9,162 0 0 476 269 0.6 30,582 17,283 65.02%
SCOPE-II 256 213 TMVP 53,877 21,544 15,343 0 0 409 132 0.3 53,877 17,388 64.80%

SB: Schoolbook. TM4: Toom-Cook-4.
1: Fmax: Maximum working frequency. Unit: MHz
2: Latency: Calculation latency (number of cycles).
3: Delay = Latency/Fmax. Unit: µs.
4: ELUT: Equivalent LUT, following [22]. 1 DSP = 102.4 Slices (7 series)/51.2 Slices (UltraScale+); one 18K BRAM = 116.2 Slices (7 series)/58.1 Slices
(UltraScale+). UltraScale+ has 8 LUTs in one Slice/CLB while 7 series contains 4 LUTs in one Slice/CLB.
5: EADP: Equivalent ADP. EADP = #ELUT×delay (since Slice is not reported for every design).
6: EADPR: EADP reduction (based on the same FPGA device with the same n).

two major efforts. (i) Though the schoolbook/TMVP-based
designs’ theoretical complexities are not as good as the NTT-
based ones, the proposed point-wise multipliers and architec-
tures have significantly offset this drawback. For instance, the
first accelerator has only 6.16x more area usage (LUTs) than
[27] while its latency cycles are almost 4.15x faster, which
indicates the two designs’ implementation complexities are
quite close. (ii) The simple architectural setup (NTT-based
structure generally has a more sophisticated control setup than
schoolbook-based ones) and pipelined register insertion have
enhanced the timing performance of the proposed designs.
Following the above-mentioned example, the first accelerator
has 1.67x higher frequency than [27], which eventually leads
to a 30.30% reduction in EADP when comparing with [27].

Comparison With Other Designs on NTRU. Having
extended the proposed designs on NTRU with n = 701,
q = 213 and n = 821, q = 212 (the same as [10], [28] and [9]),
we re-obtained all the performance data including resource
usage such as LUT, FF, Slice, (etc.) and timing performance
criteria like latency and delay, and listed them in Table IV, as
well as those of the existing designs. Again, we can see that
the proposed designs obtained significant reductions in EADP
over the existing ones. Particularly, on the Zynq Ultrascale+
device, the first accelerator involves 52.29% and 55.98% less
EADP than [10] for n = 701 and n = 821, respectively, while
the second accelerator has respective 56.6% and 60.71% less
EADP for the two selections of n. On the Zynq-7000 device,
for n = 701, the first and second accelerator obtains at least
45.33% and 60.71% less EADP than the existing designs.
For n = 821, compared with the three existing designs, the

proposed accelerators have at least 49.96% and 57.35% EADP
than the existing ones, respectively.

Comparison with Other PQC Schemes. To better show-
case the superior performance of the proposed designs, we
have also listed the implementation complexities on other
PQC schemes for comparison in Table V. Particularly, we
have chosen with n = 256, q = 12, 289 and n = 256,
q = 213, for comparing the designs in [11] and [12]. Table
V shows that the first and second accelerators have 38.72%
and 59.28% less EADP on Kintex-7 and Virtex Ultrascale+
devices, respectively. For the schemes with a modulo that is
a power of 2 (i.e., 213), the proposed designs implemented
on the Zynq Ultrascale+ and Zynq-7000 devices have 60.73%
and 64.80% less EADP than the existing design of [12].

Both designs have superior performance to the existing
designs, indicating the proposed SCOPE design strategy is
effective and efficient. Benefiting from the proposed point-
wise multiplier and architectural arrangement, the proposed
accelerators have controllable area usage but with very small
latency cycles. Meanwhile, simple control setup and register
insertion have also uplifted the working frequencies of the
designs. These efforts, in total, have contributed significantly
to the overall efficiency of the proposed accelerators.

Discussion and Future Work. The proposed SCOPE can
be seen as an alternative solution to the NTT-based poly-
nomial multiplication for the NTRU-based (or other lattice-
based) PQC when n is relatively small. For large n (such as
n = 1, 024), however, the implementation will be very large
(limited by the complexity of O(n2) or O(3n2/4)) and hence
unsuitable for practical applications. Thus, new solutions are
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needed to deploy the proposed strategy, which will be our
future effort. Future work can also be deploying the proposed
SCOPE in the actual cryptoprocessor building and developing
new polynomial multiplication implementation strategies.

VII. CONCLUSION

This paper presents a novel schoolbook-based method for
efficiently implementing polynomial multiplication in NTRU-
based PQC. We have proposed a novel LUT-based point-
wise multiplier (combined with modulo reduction techniques)
for efficient implementation. Then, a novel architecture is
presented, deploying the proposed point-wise multiplier to
minimize related hardware usage. After that, we have also
extended the proposed design to a TMVP-based accelerator to
obtain lower-latency implementation. The final evaluation con-
firms the efficiency of the proposed design strategy. Overall,
the proposed methodology provides an important advancement
for hardware acceleration of schemes like FALCON. We hope
this research can impact the ongoing PQC standardization and
initiate a new framework for PQC hardware implementation.
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