
Practical and Theoretical Cryptanalysis of VOX
Hao Guo1,2, Yi Jin3, Yuansheng Pan3,

Xiaoou He3, Boru Gong3 and Jintai Ding1,2

1 Beijing Institute of Mathematical Sciences and Applications, Beijing, China
2 Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

3 CCBFT, Shanghai, China

Abstract. VOX is a UOV-like hash-and-sign signature scheme from the Multivariate
Quadratic (MQ) family, which has been submitted to NIST Post-Quantum Cryptog-
raphy Project, in response to NIST’s Call for Additional Digital Signature Schemes
for the PQC Standardization Process. In 2023, the submitters of VOX updated the
sets of recommended parameters of VOX, due to the rectangular MinRank attack
proposed by Furue and Ikematsu.
In this work we demonstrate the insecurity of the updated VOX, from both the
practical and the theoretical aspects, and more works need be done with respect of
the security analysis of VOX.
First, we conduct a practical MinRank attack against VOX, which uses multiple
matrices from matrix deformation of public key to form a large rectangular matrix
and evaluate the rank of this new matrix. By using Kipnis–Shamir method and
Gröbner basis calculation only instead of support-minors method, our experiment
shows it could recover, within two seconds, the secret key of almost every updated
recommended instance of VOX. And the analysis about the rationale behind the
power of this practical attack is still on its way.
Moreover, we propose a theoretical analysis on VOX by expressing public/secret key
as matrices over a smaller field to find a low-rank matrix, resulting in a more precise
estimation on the concrete hardness of VOX; for instance, the newly recommended
VOX instance claimed to achieve NIST security level 3 turns out to be 69-bit-hard,
as our analysis shows.
Keywords: PQC, MPKC, VOX

1 Introduction
The UOV signature scheme has been introduced for more than 20 years.However, UOV
and its variants suffer from long public key length. Therefore the researchers has been
devoted to compressing the public key size of UOV as well as its variants. Recently NIST
announced an additional round for post-quantum signatures and received about 40 sub-
missions. Among the submissions seven of them are UOV-like schemes: MAYO [BCC+23],
PROV [GCF+23], QR-UOV [FIH+23], SNOVA [WCD+23], TUOV [DGG+23], UOV [BCD+23]
and VOX [PCF+23].

In this work we concontrate on the VOX scheme [PCF+23], which was proposed
by Patarin et al., and it combines the idea of QR-UOV [FIKT21] and plus modifica-
tion [FmRPP22]. After the publication of VOX, Furue and Ikematsu [FI23] proposed an
equivalent key recovery attack using rectangular MinRank attack. Rectangular MinRank
attack was proposed by Beullens in [Beu21a], and the idea has also been found in [TPD21].
In [FI23] the authors showed that MAYO and QR-UOV remains secure under the rectan-
gular MinRank attack. However VOX turned out to be vulnerable under their traditional
rectangular MinRank attack, due to the fact that O > t in its previously recommended
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Table 1: Experiment result of our practical attack.

λ q O V c t Running time (second) Total Memory Usage (MB)
4 5 13 6 0.170 32.09

128 251 5 6 11 6 0.510 32.09
6 7 9 6 27357.799 6147.06
5 6 15 7 0.440 32.09

192 1021 6 7 13 7 0.790 32.09
7 8 11 7 26.170 157.69
6 7 17 8 1.240 64.12

256 4093 7 8 14 8 1.870 64.12
8 9 13 8 51.530 256.00

parameters, where O and t denote the number of oil variables and that of random poly-
nomials, respectively. Consequently, the submitters of VOX updated their recommended
parameters by requiring that O ≤ t and claimed that the new design will withstand the
rectangular MinRank attack [MPC+23].

In this work we demonstrate that VOX equipped with its newly updated recommended
parameters [MPC+23] is still insecure from both the practical and theoretical aspects, and
more work should be done in respect of security analysis of VOX.

Practical attack against VOX. First, the main contribution of this work is a MinRank
attack against VOX even if t ≥ O. Its general idea is to concatenate l matrices from
matrix deformation [INT23] of public key matrices vertically and evaluate the rank of
this new matrix. By observing that columns of central map shuffle consistently thanks to
matrix deformation formula, we find that such vertical contatenation of multiple matrices
can not only be done on rectangular central map to form a matrix of rank at most lV + t,
but also be done on rectangular public key matrices and also form a matrix of the same
rank.

Compared with the attack in [FI23] which only uses one matrix from matrix defor-
mation, our attack uses multiple matrices to form the target matrix, making our attack
work as long as O ≤ t < O(O + 1)/2. Moreover, when solving this MinRank instance, we
use Kipnis–Shamir method instead of support-minors method, and we solve the equations
generated by Kipnis–Shamir method using only Gröbner basis calculation, which is in
sharp contrast with other algorithms for the MinRank problem. The power of our attack
can be fully demonstrated by the following experiment: when running on a server with a
2.40GHz CPU and 32GB memory, the first attack can quickly recover, within 1 minute,
the secret key of almost every VOX recommended instance; in particular, it takes less
than 2 seconds for six out of nine recommended instances of VOX. However, we do not
know why our first attack can break VOX in such an efficient manner, and more work
need to be done in terms of its theoretical analysis.

Theoretical analysis against VOX. Furthermore, we propose a theoretical analysis
against VOX, which could be traced back to the QR-structure in VOX. As shown in
Section 4, when the dimension c has a proper factor, say c1, the field extension Fq ⊂ Fqc

in the VOX has a nontrivial intermediate field Fqc1 , and the public/secret keys could
be seen as matrices over this intermediate field obviously; moreover, direct verification
shows that when the degree of extension [Fqc : Fqc1 ] is larger than t/O, we can always
construct from the secret key a matrix that is not full-rank, and then use Kipnis-Shamir
method to solve this MinRank problem over this intermediate extension field. Compared
with previous MinRank attacks, our theoretical analysis aims to find low-rank matrices
in an intermediate field by fully utilizing properties of the QR-structure, provided that c
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Table 2: Estimated complexity of our theoretical attack.

λ q O = m/c V = v/c c c1 t d Dmgd log2 C
128 251 6 7 9 3 6 2 12 112.46

251 5 6 10 5 6 1 6 49.64
192 1021 5 6 15 5 7 1 8 69.48
256 4093 7 8 14 7 8 1 5 48.04

is composite. The strength of our second attack can be gleaned from the fact that for the
the newly updated recommended parameter sets of VOX claimed to achieve NIST security
1, 3, and 5, their concrete hardness are actually 112-, 69-, and 48-bits-hard, respectively.

Organization. Our paper is organized as follows. Section 2 contains some preliminaries
including the VOX scheme, MinRank problem and rectangular MinRank attack. In Sec-
tion 3, we first introduce our padded MinRank attack, then show its practical performance
against VOX parameters, and finally give our explanation of why it works. In Section 4,
we first show the idea of intermediate field attack, explaining its construction, then give
our hypothetical complexity analysis for the parameters that this attack can be used on.
We conclude this work in Section 5.

2 Preliminaries
2.1 About the VOX scheme
Generally speaking, a UOV-like digital signature scheme makes P its public key and
(S, F , T ) the private key with P = T ◦ F ◦ S where S : Fn

q → Fn
q and T : Fm

q → Fm
q

are both invertible linear transformations, and F : Fn
q → Fm

q consists of m homogeneous
quadratic polynomials f1, . . . , fm that can be somehow efficiently invertible. For simplicity,
we would identify maps S, T , F , P with square matrices S ∈ GLn(Fq), T ∈ GLm(Fq) and
symmetric matrices F ∈ Matn(Fq), P ∈ Matm(Fq) respectively.

Fn
q

F // Fm
q

T
��

Fn
q

S

OO

P // Fm
q

To invert F efficiently, OV polynomial comes to attention. An (n, n − m)-OV polyno-
mial fk can be defined as

fk(x1, . . . , xn) =
n−m∑
i=1

n∑
j=i

a
(k)
ij xixj

with a
(k)
ij ∈ Fq. Notice that fk is linear in xn−m+1, . . . , xn when x1, . . . , xn−m are fixed.

Then we say there are v = n − m vinegar-variables x1, . . . , xv and o = m oil-variables
xv+1, . . . , xv+o.

VOX is a UOV-like scheme that constructs the secret key F by mixing t totally random
quadratic polynomials and o − t OV polynomials with quotient ring structure. Let c be
a common divisor of o and v, we denote O = o/c, V = v/c and N = n/c. Then there are
V vinegar-variables, O oil-variables and o equations over Fqc utilizing the QR-structure.
Specifically, we have private key (S, F , T ) with S : FN

qc → FN
qc and T : Fo

qc → Fo
qc are both

invertible linear transformations, and F : FN
qc → Fo

qc consists of t totally random quadratic
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Table 3: Current parameters of VOX.

λ q O = m/c V = v/c c t
4 5 13 6

128 251 5 6 11 6
6 7 9 6
5 6 15 7

192 1021 6 7 13 7
7 8 11 7
6 7 17 8

256 4093 7 8 14 8
8 9 13 8

polynomials and o − t (N, V )-OV polynomials. Notice that T has matrix representation
T ∈ GLo(Fq). And for simplicity, we can denote the public key as P = T ◦ F ◦ S : FN

qc →
Fo

qc .

FN
qc

F // Fo
qc

T
��

Tr⊕o
// Fo

q

T
��

FN
qc

S

OO

P // Fo
qc

Tr⊕o
// Fo

q

Here we list the current parameters given in [MPC+23] in Table 3.

2.2 The MinRank problem
Put it simply, the MinRank problem asks for a linear (or affine) combination of given
matrices that has a small rank. This problem is first abstracted by Courtois [Cou01],
where he generalized the problem of Syndrome Decoding from coding theory. The problem
we are interested is the search version of the MinRank problem:

Definition 1 (Homogeneous MinRank problem). Let M1, . . . , MK be some m-by-n
matrices over a finite field Fq, and let r < min(m, n). The problem asks for x1, . . . , xK ∈
Fq which are not all zero, such that

M :=
K∑

k=1

xkMk

has rank no more than r.

We denote the set of problems with parameter (m, n, K, r, q) as MR(m, n, K, r, q).
When the field is clear from context we also omit q. There is also the inhomogeneous
version:

Definition 2 (Inhomogeneous MinRank problem). Let M0; M1, . . . , MK be some m-by-
n matrices over a finite field Fq, and let r < min(m, n). The problem asks for x1, . . . , xK ∈
Fq, such that

M := M0 +
K∑

k=1

xkMk

has rank no more than r.

We denote the set of problems with parameter (m, n, K, r, q) as MR(m, n, K, r, q).
When the field is clear from context we also omit q.
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In homogeneous case, we require that all the Mk’s are of rank at least r + 1; In
inhomogeneous case, we require that M0 is of rank at least r + 1. This is to avoid trivial
solutions.

2.3 Combinatorial and algebraic methods for solving the MinRank
problem

Courtois mentioned in [Cou01] that the MinRank problem is NP-hard via reduction
from syndrome decoding problem of a linear error correcting code which is NP-complete.
Faugère [FLP08] on another hand gives a reduction from rank decoding problem, also
showing its hardness. Nonetheless, there have been many methods to solve the MinRank
problem. These methods fall into two categories: combinatorial method, and algebraic
method.

Kernel attack [GC00] is the first method proposed to solve the MinRank problem. It is
proposed by Goubin and Courtois. The idea is to choose vectors yk ∈ Fn

q randomly, hoping
they could fall into the kernel of M, the linear (affine) combination of given matrices, then
solve for the coefficient xk’s using the linear equations Myk = 0. This is a combinatorial
method, and the complexity of kernel attack is O(qdK/merK3).

Minors attack [FDS10] is the simple algebraic method, which takes out all (r + 1)-
minors of M, and solving the system equations where all these minors are equal to zero.
While it only involves the xk variables, the degree of each equation is r + 1. This causes
complexity of the method to rely heavily on the general method of solving system of
multivariate equations using Gröbner basis, which has complexity O(

(
K+d

d

)ω) where d
is the degree of regularity for the determinant ideal, and ω is the constant for matrix
multiplication.

Kipnis–Shamir attack [KS99] tries to solve for the right kernel of M. Since M is of
size m-by-n and has rank at most r, its right kernel has at least n − r dimensions, which
means n − r linear independent vectors yk can be chosen such that Myk = 0. Different
with kernel attack, Kipnis–Shamir attack sets new variables as coordinates of yk’s, and
gets bilinear quadratic equations. Kipnis–Shamir attack is analyzed [FLP08] to contain
equations in Minors attack. For more information about the complexity of Kipnis–Shamir
attack we refer the readers to [FLP08, FDS10, FDS13, VBC+19, WINT20, NWI23].

Support-Minors attack is the state-of-the-art method of solving homogeneous MinRank
problems. It decomposes the matrix M as product of two rank r matrices M = SC where
C is a r-by-n matrix, and sets the maximal minors of C as new variables. Equations
are obtained by augmenting C with each row of M, and letting the new maximal minors
(the size increased by one) be zero. This new attack has been analyzed [BB22, GD22] to
contain the equations in Kipnis–Shamir attack. For complexity of Support-Minors attack
we refer the readers to [BBC+20].

2.4 Previous MinRank attacks on UOV-like schemes

Among UOV-like schemes, MinRank attack was first applied to Rainbow [DS05], where
a linear combination of public key matrices has exceptionally small rank. In this attack
the matrices are chosen as the public key itself. In [Beu21a] the author introduced a new
type of MinRank attack on Rainbow, called rectangular MinRank attack. The idea can
be abstracted using Ikematsu’s matrix deformation [INT23]: Let (Q1, . . . , Qm) be a set
of n-by-n matrices over Fq, and let q(j)

k denote the j-th column vector of Qk. Then we
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O

V

t m − t

Figure 1: Shape of F̃N . The rank does not exceed V + t.

define the new set (Q̃1, . . . , Q̃n) of n-by-m matrices as

Q̃1 =
[
q(1)

1 q(1)
2 · · · q(1)

m

]
Q̃2 =

[
q(2)

1 q(2)
2 · · · q(2)

m

]
...

Q̃n =
[
q(n)

1 q(n)
2 · · · q(n)

m

]
(1)

It is stated in [INT23] that if S is an n-by-n matrix and T is an m-by-m matrix, and
(F1, . . . , Fm) is a set of n-by-n matrices, then the matrix deformation of (P1, . . . , Pm) =
(SF1St, . . . , SFmSt)T is

(P̃1, . . . , P̃n) = (SF̃1T, . . . , SF̃nT)St (2)

Therefore if some of the F̃i’s have some low rank property, then a linear combination of
P̃i should also be low rank.

[FI23] also applied rectangular MinRank attack on MAYO [Beu21b] and QR-UOV [FIKT21],
and confirmed that MAYO and QR-UOV are secure under rectangular MinRank attack.
VOX, however, is shown to be weak under this attack. In [MPC+23], the authors sum-
marized the attack given by [FI23]. The idea is to notice that if we view the UOV map
as on extension field Fqc and generate the Fi’s and Pi’s correspondingly, the matrix de-
formation F̃N have rank at most V + t, due to its special shape: the last m − t columns
of F̃N have the last O rows as zero rows, so the rank they can contribute is at most V ;
the first t columns of F̃N are random, however since O > t, the rank they can contribute
additionally is at most t.

Since SF̃N T is a linear combination of P̃1, . . . , P̃N , this creates a MinRank instance.
The authors used the support minors method to estimate the complexity of the attack,
and the results are listed in Table 4.

Table 4: Complexity of the Rectangular MinRank attack on VOX parameters

λ q O = m/c V = v/c c t log2 C
128 251 8 9 6 6 50.8
192 1021 10 11 7 7 54.8
256 4093 12 13 8 8 55.3

3 A Practical Attack Against VOX
Our first idea comes from the disadvantage that rectangular MinRank attack cannot be
applied to VOX, due to the fact that F̃i’s are all full row rank now. However, if we
concatenate F̃N−1 and F̃N vertically, the concatenated matrix will have rank at most
2V + t, due to the fact that 2O > t and m − t > 2V for the parameters in Table 3.
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O

V

O

V

t m − t

Figure 2: The shape of
[

F̃N−1

F̃N

]
. The rank does not exceed 2V + t.

Generally, for l ≤ O, if m − t > lV and lO > t, then the following matrix

M′
s =

SF̃N−l+1T
...

SF̃N T

 =

SF̃N−l+1
...

SF̃N

T = (Il ⊗ S)

F̃N−l+1
...

F̃N

T

has rank at most lV + t. Using the formula (2), since SF̃N−l+1T, . . . , SF̃N T are all linear
combinations of P̃1, . . . , P̃N , it seems that we need to find choices of x1,i, . . . , xl,i such
that

M′
s =


∑N

i=1 x1,iP̃i

...∑N
i=1 xl,iP̃i


has rank at most lV + t. However, if we naively solve this, we will get many spurious
solutions which we do not really want. For example, if we choose x1,i = · · · = xl,i for all i,
then M′

s will have rank at most N , which is not what we want. However, from (2) notice
that xj = (xj,1, . . . , xj,N ) should be the N − l+j column of (St)−1, which is a block upper
triangular matrix, therefore we have xj,i = δi,N−l+j for i > V . As such we have

Ms =


∑V

i=1 x1,iP̃i + P̃N−l+1
...∑V

i=1 xl,iP̃i + P̃N

 (3)

which is an inhomogeneous MinRank instance. If we write out each component of linear
combination, we notice that each component has the form of

F̃(j,l)
i =



0
...

F̃i

...
0

 (4)

where l is the number of matrices concatenated, hence the name “padded” rectangular
MinRank.

3.1 Nontrivial rank fall of Ms

In this subsection we show that, due to the symmetry property of public key and central
map, the rows of Ms have a structured linear combination which amounts to zero. Recall
that if the central map Fi’s are symmetric, so are the public keys Pi. Now notice that

V∑
i=1

x1,iP̃i + P̃N−l+1 =
[
P1x1

t P2x1
t · · · Pox1

t
]
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Table 5: Experiment result of our attack.

λ q O V c t Running time (second) Total Memory Usage (MB)
4 5 13 6 0.170 32.09

128 251 5 6 11 6 0.510 32.09
6 7 9 6 27357.799 6147.06
5 6 15 7 0.440 32.09

192 1021 6 7 13 7 0.790 32.09
7 8 11 7 26.170 157.69
6 7 17 8 1.240 64.12

256 4093 7 8 14 8 1.870 64.12
8 9 13 8 51.530 256.00

Similarly we have

V∑
i=1

x2,iP̃i + P̃N−l+2 =
[
P1x2

t P2x2
t · · · Pox2

t
]

Therefore

x2

(
V∑

i=1
x1,iP̃i + P̃N−l+1

)
=
[
x2P1x1

t x2P2x1
t · · · x2Pox1

t
]

=
[
x1P1x2

t x1P2x2
t · · · x1Pox2

t
]

= x1

(
V∑

i=1
x2,iP̃i + P̃N−l+2

)

which shows that a nonzero linear combination of the first 2N rows is zero. For every
pair of blocks such syzygy exists, so we expect Ms to have rank at most lN −

(
l
2
)
. To

make the MinRank attack works, the parameters should satisfy lV + t < lN −
(

l
2
)
, or

equivalently t < lO −
(

l
2
)
. Since l can be 1, 2, . . . , O, we expect that such attack works

when t < O(O + 1)/2.

3.2 Experimental results
Since we are dealing with an inhomogeneous MinRank instance, we adapt the Kipnis–
Shamir attack and solve for the left kernel of Ms. The equations come from the following
matrix equation: [

K IN−r

]
Ms = 0 (5)

where K is an (N − r)-by-N matrix whose entries form the kernel variables.
To solve for the Gröbner basis of the ideal generated by the Kipnis–Shamir attack,

we used the Gröbner basis algorithm F4 with respect to the graded reverse lexicographic
monomial order in Magma V2.28-2 [BCP97] on CPU a 2.40GHz Intel Xeon Silver 4214R
CPU. The Magma code we use can be viewed in Appendix A and on Github1. The
detailed running time of the Gröbner basis solving is listed in Table 5.

The attack costs less than one second for the first two parameters of level 1 and level
3, less than two seconds for the first two parameters of level 5, and less than one minute
for the other parameters except the slowest one. In the experiment, we saw that all the
nine systems have first degree fall at degree 3, which matches the analysis above.

1https://github.com/tuovsig/analysis

https://github.com/tuovsig/analysis
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Table 6: Estimated complexity of our practical attack.

λ q O = m/c V = v/c c t d Dmgd log2 C
4 5 13 6 1 5 41.28

128 251 5 6 11 6 1 6 49.64
6 7 9 6 1 7 58.02
5 6 15 7 2 4 43.41

192 1021 6 7 13 7 1 5 45.92
7 8 11 7 1 6 54.54
6 7 17 8 1 4 45.35

256 4093 7 8 14 8 1 5 48.04
8 9 13 8 2 6 56.83

Table 7: Estimated complexity of our attack on possible VOX parameters.

λ q O = m/c V = v/c c t d Dmgd log2 C
4 7 13 6 1 8 78.10

128 251 5 9 11 6 1 11 99.80
6 11 9 6 2 13 133.96
5 9 15 7 1 8 84.95

192 1021 6 11 13 7 1 10 101.51
7 13 11 7 1 14 129.55
6 11 17 8 1 8 90.60

256 4093 7 13 14 8 1 11 113.72
8 15 13 8 1 13 130.61

3.3 Our hypothetical analysis for the result
To give a theoretical upper bound for the complexity of our attack, here we adopt the
analysis of [NWI23], and introduce the monomial graded degree Dmgd which is the smallest
total degree of monomials in ∏d

i=1(1 − t0ti)m

(1 − t0)lV (1 − t1)r . . . (1 − td)r

whose coefficient is negative. The monomial Dmgd is believed to bound from above the
solving degree, hence it gives an upper bound for the complexity estimation. d is the
number of kernel vectors we choose, and should range between 1 and lN − r. Using the
formula

(
lV +dr+Dmgd

Dmgd

)ω
to estimate the complexity C, we list the complexity estimation

in Table 6.
Using this estimation, we try to fix the parameters for VOX. It is hard to tweak t

respect to O, because small t will not exceed lO −
(

l
2
)
, while large t will make signature

harder due to Gröbner basis calculation. While making c smaller can reduce the equations
occurred in Kipnis–Shamir method, it will decrease the number of variables when viewed
over Fq, resulting in a decrease of security. Therefore we decided to only tweak V . We
found that the complexity grows as V increases, and we checked the parameters for V <
2O. We found that all of the parameters still fail the estimation, with complexity less
than 140 bits.

4 Another Attack Against VOX
Our second idea comes from a flaw in QR-structure of VOX, specifically when parameter
c is a composite number, which results in the presence of an intermediate field within the
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field extension Fq ⊂ Fqc used in the VOX. Consequently, we can consider the public key
as a polynomial over this intermediate field, and subsequently construct a matrix that is
not full rank.

Recall that in the QR-structure, every a ∈ Fqc can be expressed as a c × c matrix over
Fq [FIKT21, PCF+23]. Specifically, let g ∈ Fqc be a root of an irreducible polynomial of
degree c over Fq. The matrix expression Φ(a) is given by the following ring homomorphism:

Φ :Fqc ↪→ Matc(Fq)
a 7→ Φ(a), where (1, g, . . . , gc−1)Φ(a) = (a, ag, . . . , agc−1).

In order to realize this attack, we focus on the case where c is a composite number
and can be factored as c = c1c2, allowing us to express a ∈ Fqc as a matrix over an
intermediate field. In this case, the matrix expression is given by a ring homomorphism
Ψ : Fqc ↪→ Matc2(Fqc1 ). The design of Ψ will be detailed in the following section.

Moreover, we can induce a map on matrix ring from Ψ

MatN (Ψ) :MatN (Fqc) → MatN (Matc2(Fqc1 )) = Matc2N (Fqc1 )
(aij)N×N 7→ (Ψ(aij))N×N

It is straightforward to observe that this is also a ring homomorphism owing to the ho-
momorphic property of Ψ. For matrix P ∈ MatN (Fqc), we denote PΨ ∈ Matc2N (Fqc1 ) as
the image P under map MatN (Ψ) in the following.

Applying the ring homomorphism MatN (Ψ) to VOX public keys, we have

(PΨ
1 , . . . , PΨ

m) = (SΨFΨ
1 StΨ, . . . , SΨFΨ

mStΨ)T

The matrix deformation of (PΨ
1 , . . . , PΨ

m) (resp. (FΨ
1 , . . . , FΨ

m)) is denoted as (P̃Ψ
1 , . . . , P̃Ψ

c2N )
(resp. (F̃Ψ

1 , . . . , F̃Ψ
c2N )). As (2), we have

(P̃Ψ
1 , . . . , P̃Ψ

c2N ) = (SΨF̃Ψ
1 T, . . . , SΨF̃Ψ

c2N T)StΨ (6)

We can choose a factor c2 of c such that c2V + t < c2N , then the matrices F̃Ψ
i ,

i = c2V + 1, . . . , c2N have low rank.

c2O

c2V

t m − t

Figure 3: Shape of F̃Ψ
c2N . The rank does not exceed c2V + t.

Generally, for a factor c2 of c, if m − t > c2V and c2O > t, then the matrix Ms =
SΨF̃Ψ

c2N T has rank at most c2V +t. Using the formula (6), since Ms is linear combinations
of P̃Ψ

1 , . . . , P̃Ψ
c2N , it seems that we need to find choices of x1, . . . , xc2N such that Ms =∑c2N

i=1 xiP̃i has rank at most c2V + t. From (6) notice that x = (x1, . . . , xc2N ) should be
the last column of (StΨ)−1, which is a block upper triangular matrix, therefore we have
xi = δi,c2N for i > V .



Hao Guo, Yi Jin, Yuansheng Pan, Xiaoou He, Boru Gong and Jintai Ding 11

4.1 Matrix expression over intermediate field
In this section, we show the design of ring homomorphism Ψ : Fqc ↪→ Matc2(Fqc1 ) which
brings the matrix expression over intermediate field Fqc1 of element in Fqc .

In general, Fqc is a linear space over intermediate field Fqc1 of dimension c2. Fix a
basis of Fqc , denoted as (α0, α1, . . . , αc2−1), then we have a nature ring homomorphism

Ψ′ :Fqc ↪→ Matc2(Fqc1 )
a 7→ Ψ(a), where (α0, α1, . . . , αc2−1)Ψ(a) = (aα0, aα1, . . . , aαc2−1)

Specifically, let g ∈ Fqc be a root of an irreducible polynomial of degree c over Fq

and h ∈ Fqc be a root of an irreducible polynomial of degree c1 over Fq, then we get
the intermediate field Fq[h] and field extension Fq[h][g] = Fq[g] = Fqc . Note that Fq[g]
is a linear space over Fq[h] with basis (1, g, . . . , gc2−1), then we can construct the ring
homomorphism

Ψ :Fqc ↪→ Matc2(Fq[h])
a 7→ Ψ(a), where (1, g, . . . , gc2−1)Ψ(a) = (a, ag, . . . , agc2−1)

Every column of matrix Ψ(a) is the coordinates of agi under the basis (1, g, · · · , gc2−1). For
every a =

∑c−1
i=0 xig

i ∈ Fq[g], we can compute the coordinates easily. Since (1, g, . . . , gc−1)
and

(1, h, . . . , hc1−1, g, gh, . . . , ghc1−1, . . . , gc2−1, gc2−1h, . . . , gc2−1hc1−1)

form two Fq-bases of Fqc . We set G as the transition matrix between the two bases. We can
also written a as

∑
i,j yc1i+jgihj , where yk ∈ Fq, and if we set x = (x0, x1, . . . , xc−1)t, y =

(y0, y1, . . . , yc−1)t, we have y = Gx. Then we get the coordinate of a under (1, g, . . . , gc−1).

a =
(
1, g, · · · , gc−1)x

=
(
1, h, . . . , hc1−1, g, gh, . . . , ghc1−1, . . . , gc2−1, gc2−1h, . . . , gc2−1hc1−1)Gx

=
(
1, g, · · · , gc2−1)


∑c1−1

i=0 yih
i∑c1−1

i=0 yi+c1hi

...∑c1−1
i=0 yi+c1(c2−1)h

i


4.2 Our hypothetical analysis for the result
We adapt the Kipnis-Shamir method for solving MinRank problem. We can estimate the
complexity of our attack following the complexity analysis detailed in Section 3.3. The
estimated complexity is listed in Table 8.

Table 8: Estimated complexity of MinRank attack over the intermediate field Fqc1 on
VOX parameters.

λ q O = m/c V = v/c c c1 t d Dmgd log2 C
128 251 6 7 9 3 6 2 12 112.46

251 5 6 10 5 6 1 6 49.64
192 1021 5 6 15 5 7 1 8 69.48
256 4093 7 8 14 7 8 1 5 48.04

To investigate whether the estimated complexity accurately reflects the actual com-
plexity, we experimented for VOX with such a smaller parameter. We used the Gröbner
basis algorithm F4 with respect to the graded reverse lexicographic monomial order in
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Magma V2.28-2 [BCP97] on CPU a 2.40GHz Intel Xeon Silver 4214R CPU. The Magma
code we use can be viewed in Appendix B and on Github2. The detailed running time of
the Gröbner basis solving is listed in Table 9.

Table 9: Experiment results of MinRank attack over the intermediate field Fqc1 on smaller
VOX parameters.

q O = m/c V = v/c c c1 t d Dmgd log2 C Running time(s) Memory Usage(MB)
251 4 5 14 7 5 1 4 34.54 6.219 32.09
251 4 5 16 8 5 1 4 34.54 5.750 32.09
251 4 5 14 7 6 1 4 41.14 120.969 86.56
251 5 6 14 7 6 1 5 43.5 769.649 310.62
251 5 6 14 7 6 2 4 42.88 942.580 448.16
251 5 6 16 8 6 1 4 36.83 11.980 32.09
1021 5 6 16 8 7 1 4 37.25 49.789 64.12
1021 5 6 16 8 7 2 4 43.41 1374.059 499.12

From the experimental results, we observe that there is a nearly direct proportional
relationship between the logarithm base 2 of running time and the logarithm base 2 of
the estimated complexity, which we denote as log2C. By applying linear regression, the
fitting equation is y = 1.15x + 31.86 which has a slope near 1. This suggests that the
estimated complexity provides a good prediction of the actual complexity. The fitted line
is depicted in Figure 4.

Figure 4: Experiment running time and estimated complexity as well as the related fitted
line of MinRank attack over the intermediate field Fqc1 on smaller VOX parameters.

5 Conclusion
This paper presents two MinRank-based attacks against new parameters of VOX scheme,
which has been submitted to NIST Post-Quantum Cryptography Project. The first at-
tack pads public matrices vertically, and it can recover most of VOX oil spaces in seconds.
While practically powerful, the padding attack lacks theoretic analysis. Hence we in-
troduce another attack that can drastically decrease VOX security level in theory. It
constructs intermediate field when "c" is co-prime and experiments on small parameters
substantiate the hypothetical analysis.

2https://github.com/tuovsig/analysis

https://github.com/tuovsig/analysis
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With these two attacks breaking VOX in different approaches, we suspect that there
might be some unspecified vulnerabilities in the scheme construction that could induce
more fundamental security problems. Moreover, we presume that, in the practical attack,
the gap between the passable hypothetical analysis and marvelous experiment results
comes from the sparseness in matrices. It would be interesting to reason the discrepancy.
Last but not the least, we expect that our attacks could be further applied to other
UOV-like schemes.
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A Magma code for our practical attack
Here we list the Magma code we used in Section 3.

// parameters for VOX
q := 251;
O := 6;
V := 7;
c := 9;
t := 6;
o := O*c;
v := V*c;
N := O+V;
n := N*c;
m := o;
l := 2;
r := l*V+t;
field<z> := GF(q^c);

// Generation of central map
F0 := [RandomMatrix(field, N, N): i in [1..t]];
F1 := [RandomMatrix(field, V, V): i in [1..m-t]];
F2 := [RandomMatrix(field, V, O): i in [1..m-t]];
F3 := [RandomMatrix(field, O, V): i in [1..m-t]];
FF := F0 cat [VerticalJoin(

HorizontalJoin(F1[i], F2[i]),
HorizontalJoin(F3[i], ZeroMatrix(field, O, O))

): i in [1..m-t]];

// Generation of linear map
S2 := RandomMatrix(field, V, O);
S := VerticalJoin(

HorizontalJoin(
ScalarMatrix(V, One(field)), S2

),
HorizontalJoin(

ZeroMatrix(field, O, V), ScalarMatrix(O, One(field))
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)
);
T2 := RandomMatrix(BaseField(field), t, m-t);
T := VerticalJoin(

HorizontalJoin(
ScalarMatrix(t, One(BaseField(field))), T2

),
HorizontalJoin(

ZeroMatrix(BaseField(field), m-t, t),
ScalarMatrix(m-t, One(BaseField(field)))

)
);

// Generation of public key
P := [Transpose(S)*FF[i]*S: i in [1..m]];
PP := [

&+[T[i][j]*P[j]: j in [1..m]]
: i in [1..m]

];
PTP := [(Transpose(PP[i]) + PP[i]): i in [1..m]];
PMD := [(Matrix(

[PTP[j][i]: j in [1..m]]
)): i in [1..N]];

Z := ZeroMatrix(field, m, N*l);
RM := [

[InsertBlock(Z, PMD[i], 1, N*j+1): i in [1..N]]: j in [0..l-1]
];

// The answer matrix for check
Ans := &+[

&+[
-S2[j][O-l+i] * RM[i][j]: j in [1..V]

]: i in [1..l]
]
+
&+[

RM[i][i+N-l]: i in [1..l]
];

// Polynomial Ring, linear variables and kernel variables
PP<[w]> := PolynomialRing(field, l*V+r*(l*N-r), "glex");
X := [Eltseq(w)[(i-1)*V+1..i*V]: i in [1..l]];
Y := [Eltseq(w)[l*V+(i-1)*r+1..l*V+i*r]: i in [1..l*N-r]];

// Matrix M_s and Kernel matrix
MatX := &+[

&+[
X[i][j] * RMatrixSpace(PP, m, N*l)!RM[i][j]: j in [1..V]

]: i in [1..l]
]
+
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&+[
RMatrixSpace(PP, m, N*l)!RM[i][i+N-l]: i in [1..l]

];
MatY := Matrix([

Y[i][1..r] cat [0: j in [r+1..l*N]]: i in [1..l*N-r]
]);
for i in [1..l*N-r] do

MatY[i][r+i] := 1;
end for;
MatY := Transpose(MatY);

// Generation of equations
KS := MatX * MatY;
Poly := &cat[&cat[[KS[i][j]: j in [1..l*N-r]]: i in [1..m]]];
I := ideal<PP | Poly>;

// Calculate Groebner basis
SetVerbose("Groebner", 1);
time Groebner(I);
print("");
I;

B Magma code for our theoretical attack
Here we list the Magma code we used in Section 4.

q := 251;
O := 4;
V := 5;
c := 14;
t := 5;
// set d for ks model
d := 1;

o := O*c;
v := V*c;
N := O+V;
n := N*c;
m := o;

c1 := 1;
c2 := c;

for i in [2 .. c] do
if c mod i eq 0 then

c1 := Round(c/i);
c2 := i;

break;
end if;

end for;
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r := c2*V+t;
colstokeep := Minimum(d, c2*N-r);

Fq := GF(q);
R<x> := PolynomialRing(Fq);
f := IrreduciblePolynomial(Fq, c);
fi := IrreduciblePolynomial(Fq, c1);
field<g> := ext< Fq | f >;
interfield<h> := ext< Fq | fi>;
roots := Roots(fi, field);
mu := roots[1][1];
//print(mu);

function EletoMat(a)
return Transpose(

Matrix([ElementToSequence(a*g^i): i in [0..c-1]])
);

end function;

function MattoEle(A)
return &+ [A[i][1]*h^(i-1) : i in [1..Nrows(A)]];

end function;

function EletoIntermat(a)
PHIa := EletoMat(a);
M := Transpose(Matrix(

&cat [
[

ElementToSequence(g^i*mu^j): j in [0..c1-1]
]: i in [0..c2-1]

]
));
PSIa := M^-1*PHIa*M;
return Matrix(

[[MattoEle(
Submatrix(PSIa,[c1*(i-1)+1..c1*i],[c1*(j-1)+1..c1*j])

) : j in [1..c2]] : i in [1..c2]]
);

end function;

function MatInter(A)
return VerticalJoin(

[HorizontalJoin(
[ EletoIntermat(A[i][j]) : j in [1..Ncols(A)] ]

) : i in [1..Nrows(A)]]
);

end function;

F0 := [RandomMatrix(field, N, N): i in [1..t]];
F1 := [RandomMatrix(field, V, V): i in [1..m-t]];
F2 := [RandomMatrix(field, V, O): i in [1..m-t]];
F3 := [RandomMatrix(field, O, V): i in [1..m-t]];
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FF := F0 cat [VerticalJoin(
HorizontalJoin(F1[i], F2[i]),
HorizontalJoin(F3[i], ZeroMatrix(field, O, O))

): i in [1..m-t]];

S2 := RandomMatrix(field, V, O);
S := VerticalJoin(

HorizontalJoin(
ScalarMatrix(V, One(field)), S2

),
HorizontalJoin(

ZeroMatrix(field, O, V), ScalarMatrix(O, One(field))
)

);

T2 := RandomMatrix(BaseField(field), t, m-t);
T := VerticalJoin(

HorizontalJoin(
ScalarMatrix(t, One(BaseField(field))), T2

),
HorizontalJoin(

ZeroMatrix(
BaseField(field), m-t, t),
ScalarMatrix(m-t, One(BaseField(field))

)
)

);

P := [Transpose(S)*FF[i]*S: i in [1..m]];
PP := [

&+[T[i][j]*P[j]: j in [1..m]]
: i in [1..m]

];

PTP := [(Transpose(PP[i]) + PP[i]): i in [1..m]];

PTPInter := [MatInter(PTP[i]): i in [1..m]];

PMD := [(Matrix(
[PTPInter[j][i]: j in [1..m]]

)): i in [1..c2*N]];

result := MatInter(Transpose(S^-1))[c2*V+1];

PR<[w]> := PolynomialRing(interfield, c2*V+r*colstokeep, "glex");
X := Eltseq(w)[1..c2*V];
Y := [Eltseq(w)[c2*V+(i-1)*r+1..c2*V+i*r]: i in [1..colstokeep]];
//print(Y);

MatX := &+[X[i]*ChangeRing(PMD[i], PR): i in [1..c2*V]] + PMD[c2*V+1];
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MatY := Matrix([
Y[i][1..r] cat [0: j in [r+1..c2*N]]: i in [1..colstokeep]

]);
for i in [1..colstokeep] do

MatY[i][r+i] := 1;
end for;
MatY := Transpose(MatY);

KS := MatX * MatY;
//print(KS);

Poly := &cat[&cat[[KS[i][j]: j in [1..colstokeep]]: i in [1..m]]];
//print(Poly);

I := ideal<PR | Poly>;
//print(result);
SetVerbose("Groebner", 1);
time Groebner(I);
print("");
I;


	Introduction
	Preliminaries
	About the VOX scheme
	The MinRank problem
	Combinatorial and algebraic methods for solving the MinRank problem
	Previous MinRank attacks on UOV-like schemes

	A Practical Attack Against VOX
	Nontrivial rank fall of Ms
	Experimental results
	Our hypothetical analysis for the result

	Another Attack Against VOX
	Matrix expression over intermediate field
	Our hypothetical analysis for the result

	Conclusion
	Magma code for our practical attack
	Magma code for our theoretical attack

