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Abstract. Biscuit is a recent multivariate signature scheme based on the MPC-in-
the-Head paradigm. It has been submitted to the NIST competition for additional
signature schemes. Signatures are derived from a zero-knowledge proof of knowledge
of the solution of a structured polynomial system. This extra structure enables
efficient proofs and compact signatures. This short note demonstrates that it also
makes these polynomial systems easier to solve than random ones. As a consequence,
the original parameters of Biscuit failed to meet the required security levels and had
to be upgraded.
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1 Introduction
Biscuit is a multivariate digital signature scheme recently proposed by Bettale, Kahrobaei,
Perret and Verbel [BKPV23a, BKPV23b]. It has been submitted in July 2023 to the
competition organised by NIST in order to standardize additional “post-quantum” signature
schemes not based on lattices.

In Biscuit, the public key is a system of quadratic multivariate equations while the
secret key is a solution of this system. Biscuit builds upon a multi-party protocol in which
N parties each holding a share of a vector x determine if x is a solution of a structured
polynomial system. This protocol is converted into a Zero-Knowledge Proof-of-Knowledge
(ZKPoK) using the “Multi-Party Computation in the Head” paradigm. Finally, the Fiat-
Shamir heuristic turns this interactive proof-of-knowledge protocol into a signature scheme.
Producing a new signature is akin to proving knowledge of the solution of the polynomial
system in the public key, using fresh randomness extracted from the message to sign.

The security of Biscuit thus relies on the computational hardness of solving the un-
derlying system of multivariate quadratic equations. Indeed, finding a solution of the
polynomial system that forms the public key yields an equivalent secret key and enables an
attacker to produce valid signatures using the normal signing procedure. In general, solving
multivariate quadratic systems over finite fields (the MQ problem) is well-known to be
NP-hard [GJ79]. The practical computational hardness of the problem is well-established,
and documented by a public collection of challenges that enables everyone to monitor the
progress, or lack therefof, of available polynomial solving software [YDH+15].

Several digital signature schemes rely on the hardness of the general MQ problem such
as MQDSS [CHR+16, SCH+19] or MQOM [BFR23]. Another common choice is to rely
on the hardness of a special class of systems; this is notably the case in HFE [Pat96],
UOV [KPG99], SFLASH [CGP03], ... In this case, the actual underlying computational
problem, which is a special case of MQ, could potentially be easier. This has notably been
demonstrated in the case of HFE, where an 80-bit public key has been practically broken
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by a Gröbner basis computation [FJ03]. In contrast, solving a random, unstructured
system of 80 Boolean quadratic equations is still a formidable challenging and has not
been done in practice yet.

Biscuit belongs to the second category of multivariate cryptosystems. To reduce the
size of signatures, its designers use polynomials of a special shape. Each (quadratic) public
polynomial can be written f + g × h, where f, g and h are affine forms in n variables. The
point is that evaluating this on some input vector x requires a single multiplication by a
non-constant in the finite field. This is a very strong structure: while a generic quadratic
polynomial is described by (n + 1)(n + 2)/2 coefficients, a “Biscuit-style” polynomial is
fully described by only 3n + 1 coefficients.

The designers observed that this structure enable better attack algorithms than in
the case of the general MQ problem. In the submission document [BKPV23a], they
propose a simple combinatorial algorithm that solves Biscuit-style polynomial systems in n
variables over a finite field with q elements using Õ

(
q3n/4) operations. This is exponentially

better than exhaustive search — it would require Õ (qn) operations. No such improved
combinatorial algorithm is known in the general case, and this is a strong hint that the
additional structure makes the problem easier.

Contribution
We first describe a very simple combinatorial algorithm to solve “Biscuit-style” polynomial
systems using only exhaustive and linear algebra. It requires Õ

(
qn/2) operations. We then

combine it with the use of the F5 algorithm [Fau02] to obtain an improved “hybrid method”
that combines exhaustive search Gröbner basis computation. This improved algorithm
breaks the three parameter sets initially proposed by the designers of Biscuit, showing that
they do not reach the claimed 128, 192 and 256 bits of security. Our new algorithms also
improve the efficiency of the forgery attack proposed by Kales and Zaverucha in [KZ20],
and we study the consequences on the security of Biscuit.

The designers of Biscuit updated the specification of their scheme following preliminary
versions of our findings, and gave improved parameters in [BKPV23b], that we find to be
secure.

Lastly, we analyze the asymptotic complexity of our algorithm for solving Biscuit-style
polynomial systems and discuss additional algebraic properties of these special polynomial
systems.

2 Preliminaries
Let Fq denote a finite field and Fq[x1, . . . , xn] denote the ring of multivariate polynomials
in n variables. We usually consider a sequence of m polynomials f1, . . . , fm in n variables
with coefficients in Fq. We write vectors in boldface letters, so that x = (x1, . . . , xn and
f = (f1, . . . , fm). We write ⟨a, x⟩ the dot product of the two vectors a and x.

2.1 Succinct Description of Biscuit
We provide a very high-level description of the Biscuit signature scheme and introduce the
relevant notations. A first version of Biscuit has been submitted to the NIST competition
for additional post-quantum signatures [BKPV23a]. We refer to it as “Biscuit v1”. An
improved version appears in [BKPV23b] with different parameters and we refer to it as
“Biscuit v2”. Biscuit has two sets of parameters for each security level: the “short” one
produces the shortest possible signatures and the “fast” one yields faster signing and
verification. Tables 1 and 2 show the parameters.



Charles Bouillaguet, Julia Sauvage 3

The security of Biscuit fundamentally relies on the hardness of solving structured
polynomial systems. Given a sequence of constants ci ∈ Fq and sequences of vectors
ui, vi, wi ∈ Fq

n, define the sequence of quadratic polynomials f = f1, . . . , fm in n variables
with coefficients over Fq of the following shape:

fi(x) = ci + ⟨ui, x⟩+ ⟨vi, x⟩ × ⟨wi, x⟩ (1)

In the sequel, we refer to polynomials of the shape described by (1) as “Biscuit-style
polynomials”. Evaluating fi(x) requires a single multiplication in the finite field.

Given f1, . . . , fm, the authors of Biscuit refer to the problem of finding a solution to an
arbitrary subset of {f1, . . . , fm} of size m− u as the “PowAff2u(f) problem”. The security
of Biscuit relies on the assumption that this problem is computationally hard.

It is straightforward that deciding if a system of Biscuit-style polynomials has a
solution is NP-hard. Take an arbitrary quadratic polynomial g(x) =

∑n
i=1
∑n

j=1 aijxixj +∑n
i=1 bixi + c. Introduce n2 new variables yij . Then, there exist x such that g(x) = 0 if

and only if there exist x, y such that:
0 = yij − xixj (1 ≤ i, j, n)

0 =
n∑

i=1

n∑
j=1

aijyij +
n∑

i=1
bixi + c

This is a system of Biscuit-style polynomials. Therefore, deciding if an arbitrary system of
quadratic polynomial admits a solution reduces to a (polynomially larger) instance of the
same problem on Biscuit-style polynomials. The former problem is NP-hard, and therefore
the latter has to be.

Suppose that a secret vector x ∈ Fq
n has been additively shared between a set of N

parties. Biscuit is designed around an efficient MPC protocol Π that enables the parties to
check whether f(x) = 0 (in this case, the parties “accept” x). It is shown in [BKPV23b,
Proposition 1] that if f(x) ̸= 0, the parties accept x with probability q−u if x is the solution
of a subset of size exactly m− u of the polynomials. This probability is taken over the
randomness used in the protocol: the parties need m common random elements of Fq.

This multi-party protocol is transformed into an interactive 5-pass zero-knowledge
proof of knowledge protocol for x using the “MPC-in-the-Head” paradigm:
1. [commitment] The prover P performs an additive sharing of the secret x among N

fictitious parties and commits the share of each party.
2. [challenge 1] The verifier V sends the randomness to use in the MPC protocol (m

elements of Fq).
3. [response 1] P completes the execution of the MPC protocol for the N parties

and commits their views.
4. [challenge 2] V targets a given party i (integer in 0, . . . , N − 1).
5. [response 2] P opens the shares and the views of all other parties.

Using x as the secret key, this ZKPoK protocol can be seen as a 5-pass identification
scheme by iterating it τ times in order to increase its soundness. Finally, it is turned
into a signature scheme using the Fiat-Shamir heuristic. The public key is a collection of
Biscuit-style polynomials f1, . . . , fm, the secret is a vector x ∈ Fq

n such that f(x) = 0. The
challenges sent by the verifier are instead generated deterministically from the message to
sign and the round number.

A slighlty simplified description of the signing procedure follows. To produce a signature
for a given message:

1. Choose a random salt. Derive from it τ pseudo-random additive sharing of the
secret key x among N parties. Hash all the shares of all the N parties for all the τ
rounds toghether along with the message m; call h1 the result.
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Table 1: Parameters of Biscuit v1 as given in [BKPV23a].

Security level Version N τ q n m Claimed bit security

I short 256 18

16

64 67 143fast 16 34

II short 256 30 87 90 208fast 16 54

III short 256 40 118 121 274fast 16 73

Table 2: Parameters of Biscuit v2 as given in [BKPV23b].

Security level Version N τ q n m Claimed bit security

I short 256 18

256

50 52 143fast 32 28

II short 256 25 89 92 207
fast 32 40 210

III short 256 33 127 130 272
fast 32 53 275

2. Generate the first challenge of all τ rounds: derive τm pseudo-random element of Fq

from h1.

3. Run the MPC protocol τ times. Hash together the views of all the N parties in all
the τ rounds along with h1, the message and the public key; call the result h2.

4. Generate the second challenge of all τ rounds: derive τ pseudo-random integers
i0, . . . , iτ−1 in {0, . . . , N − 1} from h2.

5. The signature is made of h1, h2 and the opened views of all parties except the ik-th
in round k.

2.2 Gröbner Bases and Semi-Regular Polynomial Systems
Some of the best methods to solve systems of polynomial use Gröbner bases. A Gröbner
basis of some polynomial ideal I is a set of generators of I that enjoy additional desirable
properties. It is beyond the scope of this paper to discuss Gröbner basis; we refer the
interested reader to a standard textbook such as [CLO91].

We will just point out that in some cases, solutions of the corresponding polynomial
system can be easily read off a Gröbner basis. This is in particular the case when the
polynomial system f1 = · · · = fm = 0 has a single solution in the algebraic closure of
the field. In this specific case, any Gröbner basis of the ideal spanned by the fi’s is
x1 − a1, . . . , xn − an, where a is the unique solution of the system. Thus obtaining any
Gröbner basis reveals the solution of the system.

The historical method to compute such bases is known as Buchberger’s algorithm [Buc65].
Nowadays, the most efficient method to compute Gröbner bases is the F5 algorithm [Fau02].
If the degree of regularity of the ideal is D, then this algorithm terminates in less than

O
(

m ·
(

n + D

D

)w)
operations over Fq (2)

where w denote the linear algebra constant. In general, finding the degree of regularity D
of a given polynomial ideal is difficult. However, when the input polynomials satisfy certain
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genericity assumptions, then the degree of regularity can be deduced from n and m. These
assumptions imply that the Hilbert series of the ideal is a function of m, n and the degrees
of the input polynomials, but that it does not depend from the actual values of their
coefficients. When all the input polynomials are quadratic, then the “generic” degree of
regularity depends only on n and m, and we denote it by dreg(n, m).

These genericity assumptions essentially mean that the polynomials are not bound by
“unexpected” algebraic relations. They are usually well-verified in practice on unstructured
systems, and are therefore standard in all the cryptographic litterature. The interested
reader is referred to [Bar04, BFS15] for more details.

If m ≤ n and the polynomials form a regular sequence, then the degree of regularity is
given by the Macaulay bound: D = 1 +

∑
i(deg fi − 1). This implies in particular that

if m = n, then the degree of regularity of a sequence of regular quadratic polynomials is
dreg(n, n) = n + 1.

When m > n, i.e. when the system is overdetermined, the polynomials cannot form
a regular sequence. The concept has been extended to semi-regular sequence in [Bar04,
BFS15]. The degree of regularity of a semi-regular sequence of polynomials can also be
easily determined from m and n. Write the series expansion of

∑
j

ajzj =
m∏

i=1

1− zdeg fi

1− z

The smallest index j such that aj < 0 is the degree of regularity of the semi-regular
sequence f1, . . . , fm. This provides an algorithm to compute dreg(n, m) effectively.

It is important to note that if n is fixed, then it is a decreasing function of m: the more
overdetermined the system, the easier it is to solve. [Bar04] gives an asymptotic equivalent
of the degree of regularity for quadratic polynomials when n→ +∞:

dreg(n, θn) =
(

θ − 1
2 −

√
θ(θ − 1)

)
n +O

(
n1/3

)
(3)

If the polynomial system can form a semi-regular sequence, the complexity of the
algorithm F5 is:

CF5(n, m) = O
(

m ·
(

n + dreg(n, m)
dreg(n, m)

)w)
(4)

2.3 The Hybrid Method
The “hybrid method” [BFP09, BFP12] is usually the best technique for solving polynomial
systems over finite fields. Its principle is simple:

1. Choose 0 ≤ k ≤ n.

2. “Guess” the value of k variables.

3. Compute a Gröbner basis of the remaining system of m equations n− k variables
using the F5 algorithm.

4. If no solution has been found, return to step 2.

The point is that the sub-systems that are actually solved in step 3 are more overdeter-
mined than the original input system, and therefore computing a Gröbner basis is faster.
With the optimal choice of k, the complexity of the resulting algorithm is:

Chyb(n, m) = min
0≤k≤n

(
qk (CF5(n− k, m))

)
(5)
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This is necessarily less than CF5(n, m). The authors also compute the asymptotic com-
plexity of this hybrid combination of exhaustive search and F5 when n→ +∞ with q and
α = m/n fixed. Define β = k/n; we have Chyb(n, αn) ∼ 2Kn with:

K = log2(q) + ω log2(1− β)

− ω

2

(
1 +

√
α

α + β − 1

)
log2 D1(α, β)

− ω

2

(
1−

√
α

α + β − 1

)
log2 D2(α, β),

D1(α, β) = α + 1− β

2 −
√

α(α + β − 1),

D2(α, β) = α− 1− β

2 −
√

α(α + β − 1).

Given values of q and α, the best choice of β is one that minimizes the value of K. It can
easily be found numerically.

For exemple, with α = 1, i.e. n = m and q = 16, we have an asymptotic complexity of
22.01n with β = 0.182. When q = 256, we have an asymptotic complexity of 22.39n with
β = 0.049.

2.4 Estimating the Concrete Hardness of Solving Polynomial Sys-
tems

While the global asymptotic complexity of solving systems of semi-regular quadratic
polynomials is relatively well-understood, estimating the concrete number of operations
that is required is more an art than a science.

Several software tools provide estimates of the number of operations required to execute
polynomial system solving algorithms. The MQEstimator [BMSV22a] that is notably
available in the CryptographicEstimators software library [EVZB23] has been used
by the designers of Biscuit to estimate the complexity of attacks that involve solving
polynomial systems.

The estimates provided by these tools are crude at best. One of the main obstacles
is that the asymptotic expression of the number of operations is only known up to some
constant factors. These factors depend on the actual implementation of the algorithm, on
the choice of data structures, etc. and also on the hardware. The MQEstimator for instance
ignores these constants and assumes that they are very small (all equal to one). This yields
meaningful lower-bounds on the hardness of running the corresponding algorithms, and this
is usually the conservative approached used by the designers of multivariate cryptographic
schemes. Note that sometimes, in addition, potentially significant lower-order terms are
ignored asymptotically, as in (3).

The MQEstimator estimates the number of arithmetic operations (call it N) in Fq. It
then estimates the total number of bit operations as N logθ

2 q, where θ = 2 by default.
The logθ

2 q term approximates the cost of multiplication in the finite field. Considering
that these finite fields are usually small, the choice of θ = 2 is reasonable and amounts to
schoolbook multiplication. However, this induces an other inaccuracy: not all arithmetic
operations are multiplications, and the constant is arbitrarily set to 1.

Another potential issue is the linear algebra constant. The best known value is
w = 2.3728596 [AW21] but it is well-known that algorithms that multiply matrices
in O (nw) operations are so impractical that they have never been implemented. The
MQEstimator uses w = 2, which is again a safe lower-bound. However, when the polynomial
system is overdetermined, and therefore likely has a single solution, simpler algorithms can
be used to solve it, such as variants of XL [CKPS00]. They enjoy the same time bound
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as F5 in this case. When these algorithms are implemented using the Block-Wiedemann
algorithm [Cop94] to solve linear systems, as in [CCNY12], it is reasonable to assume that
the linear algebra constant is w = 2.

In this paper, we will take the same approach as the designers of Biscuit and take
the crude estimates provided by these tools as an order of magnitude of the number of
operations required to solve a polynomial system.

2.5 The Kales-Zaverucha Forgery Attacks Against Signature Schemes
Constructed From Five-Pass Identification Schemes

Kales and Zaverucha proposed in [KZ20] a forgery attack on signature schemes derived
from 5-pass Fiat-Shamir identification schemes, provided that these meet certain mild
conditions. This attack can be adapted to Biscuit, and it was taken into account in the
choice of parameters. We summarize it in this section. The main idea of the attack is that
a cheating prover can convince a honest verifier into accepting x in the ZKPoK protocol
by either guessing the first or the second challenge correctly.

Suppose that the adversary knows a vector x that solves a subset of size m− u of the
polynomial equations in the public-key. Obtaining such an x gets easier when u increases.
This x is accepted by the N parties in the MPC protocol with probability q−u. To run
the attack, the adversary chooses an integer partition τ = τ1 + τ2 and proceeds as follows:

1. Choose a random salt. Run the signature algorithm until the first response.

2. Set R← {0 ≤ i < τ | the N parties accept x in the i-th iterations of the MPC protocol}.

3. If |R| < τ1, return to step 1.

4. Guess the second challenge (i.e. the identity of the single party whose view remains
concealed) for all rounds not in R.

5. Produce a forgery by running the protocol normally in all rounds in R and exploiting
knowledge of the second challenge in the other rounds.

6. If this is not successful, return to step 4.

The cardinality of R follows a binomial distribution of parameters (τ, q−u). The
probability that |R| ≥ τ1 is therefore

∑τ
i=τ1

(
τ
i

)
q−ui (1− q−u)τ−i. The probability of

guessing correctly the τ2 second challenges is simply 1/Nτ2 . It follows that the expected
time complexity of this attack is of order

KZτ1,τ2 = 1∑τ
i=τ1

(
τ
i

)
q−ui (1− q−u)τ−i

+ Nτ2 (6)

To each value of u corresponds an optimal choice of (τ1, τ2). The concrete cost of the
attack can be estimated by trying all possible 1 ≤ u ≤ m and all 0 ≤ τ1 ≤ τ .

3 Simple Combinatorial Algorithms for Biscuit-Style
Polynomial Systems

In this section, we present simple algorithms to solve systems of Biscuit-style polynomials,
i.e., polynomials of the shape described by equation (1).
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3.1 Main Idea
The usual hybrid method to solve such polynomial systems consists in “guessing” k
variables, which brings a system of m polynomials in n− k variables. Suppose that

ci + ⟨ui, x⟩+ ⟨vi, x⟩ × ⟨wi, x⟩ = 0.

We observe that if we “guess” the value of ⟨vi, x⟩, which is an element of Fq (let us call it
ai), then we end up with two linear equations:{

ci + ⟨ui, x⟩+ ai × ⟨wi, x⟩ = 0
⟨vi, x⟩ = ai.

(7)

From this two linear equations we can eliminate two of the n variables. The resulting
system has m− 1 polynomials in n− 2 variables. Losing a polynomial is regrettable, but it
is more than compensated for by the elimination of two variables, as the resulting system
is even more overdetermined.

A direct application of this idea would be to “guess” ai for 1 ≤ i ≤ n/2. This yields a
system of n linear equations, plus m− n/2 extra quadratic equations. Solving the linear
system takes time O

(
n3); if it does not have any solution, then the initial guess was

wrong. If it has a single solution, then it is sufficient to test this solution against the
original polynomial system. Otherwise, the set of its solution is expected to have a small
dimension d, so that the remaining quadratic part can be reduced to only d variables
and can most likely be solved by linearization. The process has to be repeated until a
solution of the original system is found. The expected complexity of this simple algorithm
is O

(
n3qn/2).

This improves upon a more complex algorithm of complexity Õ
(
q3n/4) given by the

designers of Biscuit in [BKPV23a].

3.2 Application to Underdetermined Systems
If there are more variables than polynomial equations (n ≤ m), then the same idea can
be used even more efficiently. In this case, the expected number of solutions is qn−m and
therefore with high probability a solution will remain even if we impose n−m extra linear
constraints.

Denote by e = n −m the excess, namely the number of extra variables. To find a
solution, set h← min(e, m) and choose a1, . . . , ah at random. Impose that ⟨vi, x⟩ = ai for
1 ≤ i ≤ h. This yields 2h linear equations using (7) and this enable us to eliminate 2h
variables. This yields a smaller system of m− h polynomials in n− 2h variables, that has
a solution with high probability. Note that as soon as n ≥ 2m, there is nothing more to
do since no equation remains. In that case, a random solution of the system can be found
in time O

(
n3).

If n < 2m, any technique can be used to solve the resulting subsystem, including the
one discussed in section 3.1. This yields an algorithm of expected complexity O

(
n3qm−n/2)

that produces a random solution of the system.

3.3 Application to the “PowAff2u” Problem
Given a sequence of Biscuit-style polynomial equations f1 = · · · = fm = 0, we consider the
problem of finding a vector that satisfies at least m− u equations. This is relevant in the
context of the Kales-Zaverucha attack described in section 2.5.

If m−u ≤ n, then we are in the domain of underdetermined systems and the technique
of section 3.2 can be applied. It follows from the discussion in the previous section that the
problem can be solved in polynomial time as soon as u ≥ m− n/2. Therefore we assume
in the sequel that u < m− n/2, and in particular that n < 2m.



Charles Bouillaguet, Julia Sauvage 9

In [BKPV23a], the designers of Biscuit exploit the following idea. Suppose that x
is known to satisfy the first m − ℓ polynomial equations; it heuristically satisfies each
of the ℓ remaining equation with probability 1/q. Therefore x can be assumed to solve
approximately ℓ/q extra equations out of chance, in addition to the m− ℓ that it is already
known to satisfy.

We combine this observation with the algorithm of section 3.2 to obtain another simple
algorithm for the PowAff2u problem:

1. Let h← ⌊n/2⌋

2. Pick a random h-subset {i1, . . . , ih} of {1, . . . , m}.

3. Find a random solution x of fi1 = · · · = fih
= 0 using the technique of section 3.2.

4. If x also satisfies m− h− u additional equations among fh+1 = · · · = fm = 0, then
return x. Otherwise, return to step 2.

Solving the subsystem in step 3 takes time O
(
n3). We heuristically assume that x,

being a random solution of the first h equations, is sufficiently random to satisfy each of
the remaining ones with probability 1/q. The problem thus appears to be very easy if
u ≥ (m− n/2)(1− 1/q).

Denote by Y the random variable that gives number of equations satisfied by x among
the m − h last ones. By hypothesis, Y follows a binomial distribution of parameters
(m− h, 1/q). The probability of success of each iteration is therefore

Pr(Y ≥ m− h− u) =
m−h∑

i=m−h−u

(
m− h

i

)
q−i(1− 1/q)m−h−i

and the expected number of iterations is 1/ Pr(Y ≥ u).
The special case where m = n and u = γn with α < 1

2

(
1− 1

q

)
is both relevant,

non-trivial and more amenable to analysis.
First, we note that directly using the technique of section to solve the underdetermined

system of (1−α)n polynomials in n variables formed by f1, . . . , fm−u yields an asymptotic
time complexity of n3q( 1

2 −γ)n. In the technique presented above, the lower-bound on the
tail of the binomial distribution given in [Ash90, Lemma 4.7.2] tells us that:

Pr
[
Y ≥

(
1
2 − γ

)
n

]
≥ 1√

8 (1− 2γ) γn
exp

(
−n

2 D

(
1− 2γ,

1
q

))
where

D(a, p) = a ln a

p
+ (1− a) ln 1− a

1− p

denotes the Kullback-Leibler divergence between an a-coin and a p-coin. This yields an
exponential algorithm of asymptotic complexity

√
n exp

(
n
2 D

(
1− 2γ, 1

q

))
. With q = 16

and α = 1/3 for instance, this is e0.1654n = q0.05964n, and this improves significantly over
the direct use of the technique of the previous section that yields qn/6.

4 Hybrid Combination With the F5 Algorithm
In this section, we extend the mostly combinatorial algorithms of section 3 beyond simple
linear algebra by hybridizing them with the F5 algorithm. Instead of guessing values until
a full linear system has been obtained, we will use the F5 algorithm after a judicious
number of guesses. These algorithms take extra parameters (k, ℓ, . . . ) that describe how
many values should be “guessed”.
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1: function BiscuitZero(f1, . . . , fm, k)
2: for all (a1, . . . , ak) ∈ Fq

k do
3: Eliminate 2k variables using (7)
4: Assemble the resulting subsystem S of m− k polynomials in n− 2k variables
5: Solve S using the F5 algorithm
6: for each solution x of S do
7: if x satisfies the original equations then
8: return x
9: return ⊥ (no solution found)

Figure 1: Hybrid algorithm for Biscuit-style polynomial systems with m ≥ n.

1: function BiscuitSolve(f1, . . . , fm, k)
2: if n ≤ m then
3: return BiscuitZero(f1, . . . , fm, k)
4: loop
5: Pick (a1, . . . , an−m) at random in Fq

n−m

6: Eliminate 2(n−m) variables using (7)
7: Assemble the resulting subsystem S of 2m− n polynomials in 2m− n variables
8: Solve S using BiscuitZero
9: if a solution has been found then

10: return it

Figure 2: Hybrid algorithm for arbitrary Biscuit-style polynomial systems.

4.1 Zero-Dimensional Biscuit-Style Polynomial Systems

Assume that f1, . . . , fm is a semi-regular sequence of biscuit-style polynomials, with m ≥ n.
Therefore they span an ideal of dimension zero. Figure 1 shows our fundamental procedure
to solve such systems. It takes an additional parameter k, which is the number of values
to “guess”.

We assume that adding extra linear equations still yields a semi-regular sequence.
An equivalent hypothesis is made in the analysis of the hybrid method in [BFP12] or
in [BFSS13] where it is called “strong semi-regularity”. Under this assumption, the
complexity of using the F5 algorithm in step 5 can be assumed to be CF 5(n− 2k, m− k).
The complexity of BiscuitZero is therefore qk · CF 5(n− 2k, m− k).

The problem is to find the optimal value of k. Given a concrete input system of n
variables and m polynomial, finding the best k is not difficult: just try all possible values,
estimate the running time of the F5 algorithm (for instance using the MQEstimator) and
pick the best solution.

4.2 General Biscuit-Style Polynomial Systems

The algorithm BiscuitSolve(f shown in Figure 2 is capable of dealing with underdeter-
mined polynomial systems that do not span ideals of dimension zero. The algorithm is
again parametrized by the number k of values to “guess”.

The number of iterations of the loop is heuristically expected to be small, for reasons
exposed in section 3.2. If n ≥ m, then its running time is qk ·CF 5(2m−n−2k, 2m−n−k),
and again, there is an optimal value of k. If n < m, then its running time is the same as
that of BiscuitZero.
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1: function BiscuitPowAff2(f1, . . . , fm, u, ℓ, k)
2: loop
3: x← BiscuitSolve(f1, . . . , fm−ℓ, k)
4: if x satisfies at least ℓ− u extra equations among fm−ℓ+1, . . . , fm then
5: return x

Figure 3: Hybrid algorithm for the PowAff2u problem.

4.3 PowAff2u Problem
The strategy is the same as in section 3.3: choose a parameter ℓ ≥ u, sample a random
solutions to a random subset of m− ℓ polynomials equations and check them against the
remaining ℓ ones, hoping that some of them will stochastically be satisfied. Repeat the
process until at least m− u equations are satisfied in total.

Denote again by Y the random variable that gives number of equations satisfied by x
among the ℓ ones that are not known to be deterministically satisfied. The same reasoning
as in section 3.3 shows that the probability of success of each iteration is

Pr(Y ≥ ℓ− u) =
ℓ∑

i=ℓ−u

(
ℓ

i

)
q−i(1− 1/q)ℓ−i

and the expected number of iterations is 1/ Pr(Y ≥ ℓ− u). The complexity is dominated
by the calls to BiscuitSolve, and their cost depends on whether m − ℓ is greater or
smaller than n. Let us assume that m− ℓ ≤ n, so that solving the subsystems uses the
strategy of section 3.2. Then the total complexity is

1
Pr(Y ≥ ℓ− u)qk · CF 5(2m− 2ℓ− n− 2k, 2m− 2ℓ− n− k) (8)

Given n, m and u, there are optimal values of ℓ and k that minimize this complexity.

4.4 Asymptotic Complexity Analysis of BiscuitZero
We now provide an asymptotic equivalent when n→ +∞ of the complexity of BiscuitZero
that we will denote C ′

hyb, as shown in Figure 1, and show that it is better than applying
the classic hybrid method. Our analysis follows the lines of [BFP12]. We define α and β
such that m = αn and that we guess k = βn variables, with 0 ≤ β ≤ 1

2 . With the result of
section4.1, we get:

C ′
hyb(α, n) = min

0≤β≤1/2

(
qβn (CF5 ((1− 2β)n, (α− β)n))

)
(9)

First we need an asymptotic equivalent of the degree of regularity for the reduced
Biscuit system. Applying (3), we have:

dreg((1− 2β)n, (α− β)n) =
(

α− β − 1− 2β

2 −
√

(α− β)(α + β − 1)
)

n + o(n)

We define γ = α− β − 1−2β
2 −

√
(α− β)(α + β − 1).

We have our asymptotic equivalent for the degree of regularity. We now need a
asymptotic equivalent for CF5 . With equation (4) and the Stirling’s formula, i.e. n! ∼√

2πn
(

n
e

)n, we get that:

C ′
F5

(n, m) = 1√
2π

(
(n + dreg(n, m))n+dreg(n,m)+ 1

2

dreg(n, m)dreg(n,m)+ 1
2 · nn+ 1

2

)
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With the formula (9), we have:

C ′
hyb(α, n) = qβn

(
1√
2π

(
(1− 2β + γ) n(1−2β)n+γn+ 1

2

((1− 2β)n)(1−2β)n+ 1
2 (γn)γn+ 1

2

)ω)
Taking logarithms give:

log2 C ′
hyb(α, n) =βn log2(q)

+ ωn

(
1− 2β + γ + 1

2n

)
(log2(n) + log2(1− 2β + γ))

− ωn

(
γ + 1

2n

)
(log2(n) + log2(γ))

− ωn

(
1− 2β + 1

2n

)
(log2(n) + log2(1− 2β))

Most of the log2(n) terms cancel each other. We get:

log2 C ′
hyb(α, n) =βn log2(q)− 1

2ω log2(n)

+ ωn

(
1− 2β + γ + 1

2n

)
log2(1− 2β + γ)

− ωn

(
γ + 1

2n

)
log2(γ)

− ωn

(
1− 2β + 1

2n

)
log2(1− 2β)

When n→∞, the 1
n terms vanish, and we get:

log2 C ′
hyb(α, n) =βn log2(q) + ωn (1− 2β + γ) log2 (1− 2β + γ)

− ωnγ log2(γ)− ωn(1− 2β) log2 (1− 2β)

The asymptotic complexity of this new hybrid approach is 2Kn, with:

K = (β log2(q) + ω (1− 2β + γ) log2 (1− 2β + γ))− ω · γ log2 (γ)− ω(1− 2β) log2 (1− 2β)

We have a formula for the asymptotic complexity of our new hybrid approach when
q and α are given. We considered that ω = 2. K(β) appears to be convex on ]0, 1

2 [ . To
find the β where K(β) is minimal, we can use the golden section method. In practice,
we used scipy.optimize.minimize_scalar [VGO+20] that use this method with some
optimizations. We have some example of complexity in Table 3. This examples match
with the parameters used in the Biscuit signature scheme.

We can see that the structure of Biscuit systems have a great impact on its asymptotic
security, especially when q is small.

4.5 Discussion
The fact that structured polynomial systems, such as those used in Biscuit, can be solved
more efficiently than generic, random systems, does not come as a surprise to anyone
familiar with the literature about algebraic cryptanalysis.
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Table 3: Comparaison of the asymptotic of the “classic” hybrid method with BiscuitZero
on Biscuit-style polynomial system with m = n

Classical BiscuitZero
q β K β K

16 0.182 2.01 0.269 1.59
256 0.049 2.39 0.086 2.24

There are both (heuristic) theoretical arguments and empirical evidence that suggest
that sequence of random Biscuit-style polynomials form regular or semi-regular sequence.
Empirical evidence is given in [ACF+15] and [BKPV23a]. In particular, under this
assumption, their degree of regularity is the same as that of a completely random (semi-
regular) polynomial system. As such systems of Biscuit-style polynomials should not be
much easier to solve than unstructured ones by directly a Gröbner basis computation.
This was one of the main arguments of the designers of Biscuit to use them.

Despite this fact, the algorithms presented in this paper exploit the specific structure
of Biscuit-style polynomial systems in a different way, and obtain an exponential speedup
compared to the state-of-the-art for fully random systems.

Reasoning about the degree of regularity of a polynomial system, and claiming that it
is high, shows that a direct Gröbner basis computation will be hard. But this does not
rule out the possibility that different algorithms can be more efficient, as it is the case
here. The designers of Biscuit made this observation themselves in [BKPV23a] when they
presented their Õ

(
q3n/4) algorithm for Biscuit-style polynomial systems.

What is even more remarkable is the fact that can solve Biscuit-style polynomial systems
more efficiently than by directly computing a Gröbner basis with the F5 algorithm, while
we only apply the F5 algorithm on semi-regular systems in a block-box way.

5 Application to the Security of Biscuit
We now use the algorithms of section 4 to study the security of Biscuit. We rely on
estimates provided by the MQEstimator, just like the designers.

5.1 Key-Recovery Attack
Solving the Biscuit-style polynomial system exposed by a Biscuit public-key reveals the
secret key. These systems are slightly overdetermined, so that using BiscuitZero is
sufficient for direct key-recovery attack on Biscuit. To choose the number of variables to
guess (the k parameter of BiscuitZero), we simply did an exhaustive search.

We see in Table 4 that, as a consequence of the algorithms presented in this article,
Biscuit v1 (as in [BKPV23a]) loses 36 to 62 bits of security, depending of the version. This
initial set of parameters does not provide the expected security level.

As a consequence of preliminary versions of our results, the designers of Biscuit
proposed a new set of parameters in [BKPV23b]. These new parameters are more secure
and essentially resist a direct key-recovery attack using BiscuitZero. Increasing the size
of the finite field has the effect of diminishing the efficiency of hybrid methods: guessing
values gets more costly, and the advantage this provides compared to a direct Gröbner
basis computation is reduced.

In some cases, our estimates of the cost of our attacks are slightly below the security
claims of Biscuit. Recall, however, that these are crude estimates, as discussed in section 2.4,
and we believe that the difference falls within the error margin.

The optimal k we obtained are consistent with the theoretic β we obtained with our
asymptotic complexity analysis. (When q = 16, k/n = 17/64 = 0.266, 26/87 = 0.299 and
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Table 4: Key-recovery attacks on Biscuit. v1 denotes the version of Biscuit in [BKPV23a]
and v2 is in [BKPV23b]. The “Hybrid method” columns is the algorithm of [BFP12].
Column T shows the log in base 2 of the required number of bit operation, computed using
the estimator for the MQ problem available in the CryptographicEstimators software
library [EVZB23]. Column k shows the number of “guessed” values. Bit complexities have
been rounded to the closest integer.

Version Parameters Hybrid method BiscuitZero
Level q n m Bit-security T k T k

v1
I

16
64 67 160 151 11 124 17

II 87 90 210 201 13 163 26
III 118 121 276 266 21 215 31

v2
I

256
50 52 143 140 0 133 3

II 89 92 207 232 3 222 5
III 127 130 272 326 4 312 9

31/118 = 0.263 for β = 0.269. When q = 256, k/n = 17/64 = 0.266, and X for β = X).
We observe that BiscuitZero guesses more values than the classic hybrid method.

5.2 Universal Forgery Attack
We discuss the consequence of the Kales-Zaverucha forgery attack described in section 2.5
combined with the BiscuitPowAff2 algorithm of Figure 3. The attack has two phases,
and depends on four parameters (u, k, ℓ and τ1):

Offline Get x← BiscuitPowAff2(f1, . . . , fm, u, k, ℓ).

Online Given m and x, run the Kales-Zaverucha attack of section 2.5 with τ = τ1 + τ2.

We estimate the cost of the attack as the maximum of the running times of these two
phases. The cost of the offline phase is given by (8) and that of the online phase is given
by (6). Only u enables a trade-off between the two phases; choosing the best k and ℓ
speeds up the offline phase, while choosing the best τ1 speeds up the online phase. Given
concrete parameters m, n, q, we find the values of all parameters of the attack by trying all
possible values of u; for each value of u, we find the best possible (k, ℓ) on the one hand,
and the best possible τ1 on the other hand.

Table 5 shows the results. This forgery attack cost almost as much as recovering the
secret key. Here are a few comments. When u = ℓ = 0 then the forgery attack degenerates
into the key-recovery attack. When ℓ ≈ n/2 and k ≈ 0 (as in the first two rows), then the
algorithm of section 4.1 degenerates into its simpler version of section 3.3, that does not
use the F5 algorithm.

6 Other Properties of Biscuit-Style Polynomial Systems
We mention in this section other interesting properties of Biscuit-Style polynomial systems.
Both hint at the fact that the structure they contain is so strong that it can potentially be
exploited. The two properties we demonstrate below rely on well-chosen linear changes of
variables.

6.1 Free Gröbner Basis in the Underdetermined Case
If n ≥ 2m (underdetermined system), we observed in section 3.2 that it is possible to sample
random solutions in polynomial time. But in fact, there is more: with high probability,
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Table 5: Forgery attacks on Biscuit. V1 denotes the version of Biscuit in [BKPV23a]
and V2 is in [BKPV23b]. The “sec.” column shows the level of bit-security claimed
in [BKPV23a] and [BKPV23b]. Column T shows the log in base 2 of the required number
of bit operation, as provided by the MQEstimator software [BMSV22b]. Bit complexities
have been rounded to the closest integer.

Version Parameters KZ attack
N τ q n m sec. T u ℓ k τ1

v1

I short 256 18

16

64 67 143 116 4 33 1 6
fast 16 34 120 4 33 1 8

II short 256 30 87 90 208 162 3 12 21 13
fast 16 54 163 1 1 26 33

III short 256 40 118 121 274 215 3 7 32 18
fast 16 73 215 0 0 31 73

v2

I short 256 18

256

50 52 143 131 4 4 5 4
fast 32 28 133 0 0 3 28

II short 256 25 89 92 207 199 10 11 7 2
fast 32 40 210 205 9 9 8 2

III short 256 33 127 130 272 265 16 18 9 2
fast 32 53 275 271 14 15 8 2

a well-chosen linear change of variables directly yields a Gröbner basis. Indeed, suppose
that the 2m vectors v1, . . . , vm, w1, . . . , wm are linearly independent (this happens with
high probability if they are randomly chosen). Then consider the linear change of variable
that sends ⟨vi, x⟩ to a new variable yi as well as ⟨wj , x⟩ to zj . Write y = (y1, . . . , ym) and
z = (z1, . . . , zn−m). This change of variable turns the k-th polynomial of the system into

f ′
k := ykzk + ⟨u′

k, y⟩+ ⟨v′
k, z⟩+ ck. (10)

where u′
k and v′

k are vectors with coordinates in Fq.

Lemma 1. Let G denote the collection of polynomials f ′
1, . . . , f ′

m described by (10). G is
a Gröbner basis for the lexicographic order (and any graded order).

Proof. In the lexicographic order (or any graded order), the leading monomials of f ′
k is

automatically ykzk. It follows that the leading monomials of all polynomials in G only
contain distinct variables, and therefore the S-polynomial of any two polynomials f ′

i and
f ′

j is simply

S(f ′
i , f ′

j) = yizif
′
j − yjzjf ′

i = yizi

(
f ′

j − yjzj

)
− yjzj (f ′

i − yizi)

Let us compute the multivariate division of g := yizi

(
f ′

j − yjzj

)
by the order sequence

of polynomials G. g contains monomials of the shape yiykzi and yizizk. These can only
be reduced by f ′

i — they are divisible by the leading monomial of f ′
i and not divisible by

the leading monomial of any other polynomial in G. It follows that the result of running
the division algorithm is:

g = f ′
i

(
f ′

j − yjzj

)
+ (yizi − f ′

i)
(
f ′

j − yjzj

)
(the remainder is the second summand). The division algorithm is linear [CLO91, exercise
2.3.12], and this implies that the multivariate division of the S-polynomial by G yields:

S(f ′
i , f ′

j) = f ′
i

(
f ′

j − yjzj

)
− f ′

j (f ′
i − yizi)

And the remainder is zero. By Buchberger’s criterion [CLO91, Thm. 2.6.6], G is then a
Gröbner basis.
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6.2 Free Elimination of One Third the Variables
For simplicity, assume that n is a multiple of 3, set ℓ := n/3 and m ≥ n/3 (not too
underdetermined). Suppose that the n vectors u1, . . . uℓ, v1, . . . , vℓ, w1, . . . , wℓ are linearly
independent. Then consider the linear change of variable that sends ⟨ui, x⟩ to a new
variables wi, ⟨vi, x⟩ to yi as well as ⟨wi, x⟩ to zu. Write w = (w1, . . . , wℓ), y = (y1, . . . , yℓ)
and z = (z1, . . . , zℓ). This change of variable turns the first ℓ polynomials of the system
into

qk := ykzk + wk + ck. (11)
In a solution of the polynomial system, we therefore have wk = −ykzk−ck for 1 ≤ k ≤ ℓ.

Therefore, in the remaining m−ℓ polynomials, we replace all occurences of wk by −ykzk−ck.
This eliminates n/3 variables and yields a new polynomial system m− n/3 polynomials
of degree up to 4 in 2n/3 variables (the yi’s and the zi’s). Call S the resulting system.
Note that no known technique is capable of obtaining this result starting from an arbitrary
system of quadratic polynomials in polynomial time.

Unfortunately, we could not find any way to solve S faster than the original problem.
Naively trying to attack S directly does not yield any improvement. It can be solved

in q2n/3 operations by exhaustive search, but this is worse than the simple technique
discussed in section 3.2. It is also not easier to solve than the original one using algebraic
techniques, as the increase in degree offsets the reduction in the number of variables.
S is nevertheless quite structured. Consider the following kind of polynomials:

rk :=
n∑

i=1
eiyizi + fiyi + gizi (12)

We say that rk is a polynomial in “shortbread form”. This is quite reminiscent of the
canonical form of quadratic polynomials over fields of characteristic two. Note that this is
different from the “Biscuit form” of (1) — the stucture is even stronger. Polynomials in S
can be written as fk = uk + vk ×wk where uk, vk and wk are in shortbread form (the yizi

terms come from the replacement of wi by yizi).
Our attemps at exploiting this structure also proved unsuccessful. Guessing all the

yi’s turns S back into a collection of Biscuit-style polynomials in n/3 variables — but we
could have obtained the exact same result by applying the technique of section 3.

Consider the following variant. Guess n/3 scalars αk such that hk−αk = 0. This yields
2n/3 polynomial equations in shortbread form in 2n/3 variables (y1, . . . , yn/3, z1, . . . , zn/3).
Because of the shortbread structure, only n/3 distinct quadratic monomials occur in these
2n/3 polynomials. Performing linear combinations of the polynomials to eliminate the
quadratic terms yield n/3 linear equations — for instance this allows to express the zi as
linear functions of the yi. But this again yield a collection of n/3 Biscuit-style polynomials
in n/3 variables.

7 Conclusion and Future Work
As a conclusion, we proposed an improved hybrid approach for solving Biscuit-style
polynomial system. As a direct application, we have shown that the first set of parameters
proposed by the Biscuit design team signature scheme does not offer the security level
expected by NIST. The designers of Biscuit updated the specification of their scheme
following preliminary versions of our findings. Biscuit is still a competitive signature
scheme, but parameters have to be enlarged and the new version is slightly less efficient.

Biscuit-style polynomial systems are similar to the those one obtain by applying the
Arora-Ge algebraic attack [AG11] to LWE with binary error. One possible future work
could be to design a specific hybrid method to run algebraic attacks on LWE with binary
error, with the aim of improving the results presented in [ACF+15].
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