
Single trace HQC shared key recovery with 
SASCA 

Guillaume Goy1,2, Julien Maillard1,2, Philippe Gaborit1 and Antoine 
Loiseau2 

1 XLIM, University of Limoges, Limoges 
2 Univ. Grenoble Alpes, CEA, Leti, MINATEC Campus, F-38054 Grenoble, France 

Abstract. This paper presents practicable single trace attacks against the Hamming 
Quasi-Cyclic (HQC) Key Encapsulation Mechanism. These attacks are the frst 
Soft Analytical Side-Channel Attacks (SASCA) against code-based cryptography. 
We mount SASCA based on Belief Propagation (BP) on several steps of HQC’s 
decapsulation process. Firstly, we target the Reed-Solomon (RS) decoder involved 
in the HQC publicly known code. We perform simulated attacks under Hamming 
weight leakage model, and reach excellent accuracies (superior to 0.9) up to a high 
noise level (σ = 3), thanks to a re-decoding strategy. In a real case attack scenario, 
on a STM32F407, this attack leads to a perfect success rate. Secondly, we conduct an 
analogous attack against the RS encoder used during the re-encryption step required 
by the Fujisaki-Okamoto-like transform. Both in simulation and practical instances, 
results are satisfactory and this attack represents a threat to the security of HQC. 
Finally, we analyze the strength of countermeasures based on masking and shufing 
strategies. In line with previous SASCA literature targeting Kyber, we show that 
masking HQC is a limited countermeasure against BP attacks, as well as shufing 
countermeasures adapted from Kyber. We evaluate the “full shufing” strategy which 
thwarts our attack by introducing sufcient combinatorial complexity. Eventually, we 
highlight the difculty of protecting the current RS encoder with a shufing strategy. 
A possible countermeasure would be to consider another encoding algorithm for the 
scheme to support a full shufing. Since the encoding subroutine is only a small part 
of the implementation, it would come at a small cost. 
Keywords: Soft Analytical Side-Channel Attack (SASCA) · Belief Propagation (BP) 
· Hamming Quasi-Cyclic (HQC) · Post-Quantum Cryptography (PQC) · Single 
Trace · Shared key recovery · Reed-Solomon (RS) codes 

Introduction 

Hamming Quasi-Cyclic (HQC) [AMAB+17] is a code-based Key Encapsulation Mechanism 
(KEM) involved in the American National Institute of Standards and Technology (NIST) 
process for Post-Quantum Cryptography (PQC) standardization [CCJ+16]. After three 
preliminary rounds and the standardization of lattice-based cryptography, HQC, along 
with BIKE [ABB+17] and ClassicMcEliece [BCL+], is now a candidate of the fourth and 
last round [AAC+22]. 

During this contest, the security of involved cryptosystems has been extensively studied 
by the community. HQC has been the target of several Side-Channel Attacks (SCA) since 
2019. The former version of HQC, based on BCH codes, was attacked by two resembling 
timing attacks [PT19, WTBB+20] in 2019 and by a chosen ciphertext attack [SRSWZ20] 
by Schamberger et al. in 2020. The latter attack is based on a decoding oracle that can 
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distinguish whenever the BCH decoder corrects an error. Thanks to a chosen ciphertext 
strategy along with a resolution based on linear algebra, they successfully recover the whole 
secret key. In 2022, authors adapted their approach to build an attack [SHR+22] against 
the new version of HQC based on concatenated Reed-Muller (RM) and Reed-Solomon (RS) 
codes, allowing successful recovery of the secret key with 50000 power traces. Meanwhile, 
another key recovery side-channel attack with chosen ciphertext strategy [GLG22a] was 
exhibited against HQC-RMRS. Authors targeted the Fast Hadamard Transformed (FHT), 
involved in the RM decoder, to perform an attack with less than 20000 electromagnetic 
measurements. 

Eventually, Goy et al. exposed the frst single trace attack targeting the HQC shared 
key [GLG22b]. They used the structure of the concatenated RMRS decoder and the 
Decryption Failure Rate (DFR) [AMAB+17] analysis to observe that, in practice, the RS 
decoder manipulates mostly error-free codewords. The idea behind the attack is interesting, 
but authors were unable to recover the shared key from the noisy side-channel information 
without computing at least 296 algebraic operations. This paper shows a vulnerability in 
the implementation of HQC-RMRS, but does not propose a practical attack. 

To be complete, HQC can also be the target of generic attacks [RRCB20,UXT+22] tar-
geting the Fujisaki-Okamoto (FO) transform construction, cache attacks [HSC+23] and tim-
ing attacks exploiting the randomness generator, namely the rejection sampling [GHJ+22]. 
These attacks will not be detailed in this paper. 

Soft Analytical Side-Channel Attacks (SASCA) are powerful methods to perform SCA. 
SASCA algorithms are mostly based on Belief Propagation (BP) theory, which details can 
be found in [Mac03], chapter 26. BP was frst used as SCA against cryptography by Veyrat-
Charvillon et al. [VCGS14] in 2014, targeting the AES Furious implementation. Authors 
described a practical attack and emphasize on the efciency of SASCA compared with the 
best state-of-the-art attacks at the time. SASCA was also used against the standardized 
cryptographic hash function Keccak: in 2020, Kannwischer et al. [KPP20] described a 
single trace attack on SHA-3. Authors mentioned a boolean masking countermeasure to 
thwart the attack, however, as specifed in [GS18], masking countermeasures could enable 
new attacks. 

Finally, SASCA was also applied on PQC, namely the standardized lattice-based KEM 
Kyber [BDK+18], renamed Module-Lattices KEM (ML-KEM) by the FIPS 203 [oSU23], 
was the target of four attacks [PPM17,PP19,HHP+21, HSST23] between 2017 and 2023. 
Primas et al. [PPM17] introduced the frst BP based attack against Kyber. They showed 
that SASCA could be mounted against lattice-based cryptography, targeting the Number 
Theoretic Transform (NTT), an optimization strategy for lattice-based cryptography. 
Furthermore, they target a masked implementation of the NTT, leading at always recovering 
the secret key in real case attack scenario. Authors performed the attack in simulations 
under a Hamming weight leakage model, and obtained a satisfactory success rate (superior 
to 0.9) up to a σ = 0.4 noise level. Their evaluation on a real device required to build 
around one million templates. Later, Pessl and Primas [PP19] improved the attack by only 
crafting 213 Hamming weight templates. They also use node-merging (to limit the number 
of cycles), damping and graph scheduling techniques. Simulations showed a good success 
rate up to σ = 1.5. In 2021, Hamburg et al. [HHP+21] combined SASCA with a Chosen 
Ciphertext Attack (CCA) strategy, recovering the long-term secret key up to σ = 2 with 
a success rate superior to 0.9. Ravi et al. [RPBC20] introduced fne and coarse shufing 
countermeasures to thwart BP attacks. In 2023, Hemerlink et al. [HSST23] analyzed the 
strength of these shufing countermeasures and assessed their resistance against Hamburg 
et al. attack. So far, these shufing countermeasures were not threatened by any attacks, 
but authors emphasize that this situation could lead to a “false security perception”, and 
encourage precaution. 
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Our contributions In this work, we introduce the frst practical single trace belief 
propagation attack against a PQC code-based cryptosystem, HQC, that can be executed 
within a few minutes. Specifcally we recover the shared key manipulated by the Reed-
Solomon code involved in HQC-RMRS scheme. All presented attacks exploit either one 
or two templates targeting the Galois feld multiplication. We show that the reference 
implementation of HQC can be targeted by single trace attacks, and still threatened when 
protected with some countermeasures. Our attacks are performed both in simulations and 
in a real attack scenario on a STM32F407. 

• We frst exploit the point of vulnerability identifed by Goy et al. [GLG22b] and 
transform it into a practical single trace side-channel attack aiming at shared 
key recovery. While this attack is based on the establishment of prior templates, 
the requirement for BP strategies is highly dependent on implementation choices. 
We describe how to build the factor graph for the RS decoder algorithm, which 
manipulates the error-free codeword containing information about the shared key. 

• We show that codeword masking [MSS13], a masking strategy applicable to HQC, 
does not provide satisfactory security against our attack. Even if simple masking 
countermeasures of Kyber’s NTT have been shown vulnerable to SASCA attacks, 
this consideration cannot be applied as-is for HQC. Indeed, codeword masking of 
the RS decoder is performed with a RS encoder for performance purposes. Hence, 
we provide a study against the RS encoder and show that no reasonable masking 
countermeasure can thwart our attack. 

• We also study the strength of known shufing strategies (fne and coarse) [RPBC20], 
along with HQC specifc strategy (window shufing) against our attack. We show 
that none of these strategies constitute a sustainable countermeasure against our 
attack in a real case attack scenario. From an idea of [ATT+18], we derive the “full 
shufing” strategy. This allows adding a high combinatorial complexity, making the 
attack impractical. 

• Eventually, we observe that the re-encryption from the FO-like transform implies an 
additional encoder call during the decapsulation process. We combine the encoder 
and decoder leakages to perform a decapsulation attack. This new attack strategy 
requires to protect both decoder and encoder to thwart the threat. We show that 
changing the RS encoder strategy allows using the full shufing and protect against 
our attack. 

Outline Section 1 recalls HQC construction, presents the targeted algorithms as well as 
the SASCA approach. Section 2 introduces the attacker model. Section 3 presents the 
single template attack, exploiting only the template leakages. Section 4 introduces the 
graph construction and SASCA attack against the RS decoder and presents our simulation 
attack results. Section 5 targets the codeword masking countermeasure for RS decoder, 
where we redo the same work as the previous section against the encoder. Section 6 presents 
practical attacks against the weak shufing countermeasures (fne, coarse and window) 
along with evaluating the full shufing. Section 7 introduces the decapsultation attack, 
combining leakages from decryption and re-encryption taking advantage of the FO-like 
structure. Eventually, we pesent practical results for our attack and draw conclusions and 
perspectives in Section 8. 
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1 Background 

1.1 HQC 

Hamming Quasi-Cyclic (HQC) is a code-based cryptosystem which security relies on 
the hardness of solving the established syndrome decoding problem. The HQC Key 
Encapsulation Mechanism (KEM) is created from HQC Public Key Encryption (PKE) 
using a Fujisaki-Okamoto-like transform called the Hofheinz-Hövelmanns-Kiltz (HHK) 
transform [HHK17]. To create the decapsulation, this transform adds two main operations 
to ensure the IND-CCA2 security of the KEM version : (i) the decrpyted message is 
re-encrypted to ensure that it comes from a fair ciphertext and after this check, (ii) hash 
functions are used to derived a share key from the decrypted message. In this paper, we 
only describe the PKE version of HQC: Since shared key derivation is a deterministic 
operation accordingly to the decrypted message, recovering the latter is enough to succeed 
in the shared key recovery of the KEM. 

HQC PKE HQC ciphertext security stands on the ability of masking a codeword with 
random error, so that no one can decode it without the knowledge of the secret key. 
Thus, the selected error correction code does not need to be hidden, and anyone can be 
selected. For HQC-RMRS, authors proposed to use concatenated Reed-Muller (RM) and 
Reed-Solomon (RS) codes. In the following algorithms (see Figure 1), elements live in an 
ambient space R = F2[X]/(Xn − 1), sometimes with a constraint on the Hamming weight: 
Rω = {z ∈ R | HW(z) = ω}, and whose parameters are given in Table 1. 

Algorithm 2 Encrypt 
Algorithm 1 Keygen 

Input: param 
Output: (pk, sk) 
$

1: h ← R 
$

2: (x, y) ← R2 
ω 

3: s = x + hy 
4: pk = (h, s) 
5: sk = (x, y) 

Input: (pk, m ∈ Fλ 
2 ) 

Output: ciphertext ct 
$

1: e ← Rωe 

$
2: (r1, r2) ← R2 

ωr 

3: u = r1 + hr2 

4: cRS = RS. Enc(m) 
5: cRM = expRM. Enc(cRS) 
6: v = cRM + sr2 + e 
7: ct = (u, v) 

Algorithm 3 Decrypt 
Input: (sk, ct) 
Output: m ′ 

′1: cRM + e = v − uy 
′′2: cRS +e = expRM. Dec(cRM +e ′) 

m ′ ′′)3: = RS. Dec(cRS + e 

Figure 1: HQC-PKE Algorithms 

At the end of the HQC-KEM protocol, we expect that m = m ′ to derive the shared key. 
In HQC KEM, the shared key derivation is a deterministic operation, hence securing the 
secret value m is as important as securing the secret key. The main difculty for HQC, is 
to prove that the Decryption Failure Rate (DFR), i.e. the decoding failure rate, is smaller 
than 2−λ where λ is the security level: 

P (m ̸= m ′) ≤ 2−λ (1) 

This work has been done for the current RMRS version of HQC [AGZ20]. This low 
DFR on the decoder of HQC implies a property about the DFR of the internal Reed-Muller 
code. Indeed, in most cases, the intermediate codeword between RM decoder and RS 
decoder is already error-free. Namely, we have: 

′′) ≤ 2−∆(λ)P (cRS ≠ cRS + e (2) 



�

� �

5 Guillaume Goy1,2, Julien Maillard1,2, Philippe Gaborit1 and Antoine Loiseau2 

The decoding error probability has been well studied in [AMAB+17] (page 30, Table 
4), and we summarized in Table 1. 

Table 1: HQC parameters (in bits), Reed-Muller Decryption Failure Rates (DFR) and 
HQC Reed-Solomon parameters (in bytes) from [AMAB+17] 

λ n ω ωe = ωr ∆(λ) RSk RSn RSt 

HQC128 17669 66 75 2−10.96 16 46 15 
HQC192 35851 100 114 2−14.39 24 56 16 
HQC256 57637 131 149 2−11.48 32 90 29 

1.1.1 Reed-Solomon Codes 

Reed-Solomon Codes (RS) are a sub-class of cyclic codes. These [n, k, t] codes over Fq 

are generated using a generator polynomial g(x) ∈ Fq [X] of degree n − k. The generator 
polynomial is given as parameter of HQC scheme. Any message m ∈ Fk can be seen as a 

k−1 i
q 

polynomial u(x) = i=0 mi · x ∈ Fq [X]. In the reference implementation of HQC, the 
RS encoding is performed under systematic form, following strategy in [LCM84]. 

Encoding RS Let g(x) be the generator polynomial of a RS code and u(x) the polynomial 
associated to a message m, i.e. (m1, · · · , mk) = (u0, · · · , uk−1). Its associated RS codeword 
cRS := c(x) is then: 

n−k +c(x) = u(x) × x u(x) × x n−k mod g(x) (3) 

In HQC reference implementation [AMAB+], this encoding is performed by Algorithm 4. 

Algorithm 4 HQC Reed-Solomon Encoder from [AMAB+] 
Require: parameters: k, n 
Require: generator polynomial g ∈ Fn−k 

q 

Require: a message m ∈ Fk 
q

Ensure: c := RS. Enc(m) ∈ Fn 
q 

1: Initialize c to 0n 

2: for i from 1 to k do 
3: Γ = m[k − i] ⊕ c[n − k] 
4: for j from 1 to n − k do 
5: t[j] = gf_mul (Γ, g[j]) ▷ gf_mul is the Galois feld multiplication 

6: for l from 2 to n − k − 1 do 
7: c[l] = c[l − 1] ⊕ t[l] 
8: c[1] = t[1] 
9: c[n − k : n] = m 

10: return c 

Decoding RS The RS decoder used in HQC follows the theory from [JH04]. The strategy 
is based on the existence of a unique interpolating polynomial for the received codeword. 
This polynomial allows decoding up to half the minimum distance of errors. The frst 
operation is the syndrome computation (see Algorithm 5), done with the knowledge of the 
parity check matrix H = (hi,j )1≤i≤n−k. As a reminder, the decoder of HQC, and therefore 

1≤j≤n 
the parity check matrix, are publicly known. 
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Algorithm 5 Compute Syndromes from HQC RS Decoder from [AMAB+] 
Require: parameters: k, n the dimension and length of the code 
Require: parity check matric H ∈ F( q

n−k,n) 

Require: codeword c ∈ Fn 
q 

Ensure: s := HT · c the syndrome of c 
1: Initialize s to c[1]n−k 

2: for i from 1 to n − k do 
3: for j from 2 to n do 
4: s[i] = s[i] ⊕ gf_mul (c[j], H[i, j − 1]) ▷ gf_mul: Galois feld multiplication 

5: return s 

Null syndrome From the low DFR (see Equation 2), we know that the input of the 
RS decoder in HQC is almost always an error-free codeword, which syndrome is zero. 
For the rest of the paper, we will consider that this codeword is always error-free. As a 
consequence, after the syndrome computation, the RS decoder will manipulate only zeros; 
we will not describe the following operations. 

Galois feld multiplication The main operation during the encoder and the syndrome 
computation is gf_mul, the Galois feld multiplication. This algorithm uses a fast mul-
tiplication algorithm from [BGTZ08] based on a Fast Fourier Transform (FFT) model. 
With Algorithm 6, we describe this operation used in [AMAB+], since the April 2023 refer-
ence implementation of HQC. The gf_mul implementation remains the same independently 
of the HQC selected security level. 

Algorithm 6 Galois feld multiplication from [AMAB+] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 } 

uint16_t gf_mul ( uint16_t a , uint16_t b ) { 
uint8_t c [2] = {0}; 
uint16_t h = 0, l = 0, g = 0, u [4]; 
u [0] = 0; 
u [1] = b & ((1 UL << 7) - 1 UL ); 
u [2] = u [1] << 1; 
u [3] = u [2] ^ u [1]; 
uint16_t tmp1 = a & 3; 
for ( int i =0; i < 4; i ++) { 

uint32_t tmp2 = tmp1 - i; 
g ^= ( u [i] & -(1 - (( tmp2 | -tmp2 ) >> 31) )); 

} 
l = g ; 
for ( uint8_t i = 2; i < 8; i +=2) { 

g = 0; 
uint16_t tmp1 = (a >> i) & 3; 
for ( int j = 0; j < 4; ++ j) { 

uint32_t tmp2 = tmp1 - j; 
g ^= (u[j] & -(1 - (( tmp2 | -tmp2 ) >> 31) )); 

} 
l ^= g << i; 
h ^= g >> (8 - i); 

} 
uint16_t mask = ( -(( b >> 7) & 1) ); 
l ^= (( a << 7) & mask ); 
h ^= (( a >> (1) ) & mask ); 
c [0] = l ; 
c [1] = h ; 
uint16_t tmp = ( uint16_t ) (c [0] ^ ( c [1] << 8) ); 
return gf_reduce ( tmp , 2*( PARAM_M -1) ); 

Algorithm 6 performs a Galois feld multiplication a × b. A key point to note is that the 
two inputs a and b are not handled symmetrically by the algorithm. Indeed, t[1] extracts 
the two least signifcant bits of a in lines 8 and 16. Lines 25 and 26 shift the bits of a 
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by diferent values in a for loop. This asymmetry results in a signifcant manipulation of 
one of the two operands, and we will see that this has consequences in the subsequent 
side-channel leakage. 

1.2 SASCA with Belief Propagation 

Belief Propagation (BP) is a widely used approach in the feld of probabilistic graphical 
models, particularly in Bayesian networks and Markov random felds. It is based on a 
message-passing algorithm designed to compute marginal probabilities or make inferences 
about random variables within these models. In the context of SASCA, the graph can be 
fed with leakage information (i.e., probability distributions) on some intermediate values 
during the computation of a target algorithm. 

Belief propagation is applied on a bipartite graph, called a factor graph, which is 
composed of two types of nodes: variable nodes that are used to store the probability 
distributions of the algorithm’s intermediate variables, and factor nodes that represent 
the arithmetical links between them. The process starts with an initialization step where 
each variable node in the graph receive a former “belief” marginal. This initial belief can 
come from side-channel leakage, often obtained with a template modeling. Variable nodes 
with no prior knowledge are initialized with a uniform distribution. Then, the message 
passing algorithm operates. The message µx→f sent from variable node x to factor node f 
is defned as follows [KFL01]: 

µx→f (x) = µh→x(x) (4) 
h∈n(x)\{f} 

Where n(x) returns the neighbors of x within the factor graph. Additionally, messages 
sent by a factor f depending on a variable x is computed with the sum-product formula 
depicted as follows:   

µf →x(x) = f(X) µy→f (y) (5) 
∼{x} y∈n(f)\{x} 

where X represents the set of variable nodes connected to f and ∼ {x} expresses the 
summary notation as defned in [KFL01]. 

Messages are passed iteratively between nodes in the graph. The algorithm is stopped 
when the maximum number of iterations is reached or when convergence is reached. The 
latter allows being more fexible regarding the setup of the maximum number of iterations, 
at the cost of fnding a strategy for detecting convergence. In this paper, we consider that 
a threshold on the maximal statistical change of all variables’ distributions is a satisfying 
method to detect convergence. In other words, the algorithm stops if distributions of 
all nodes remains almost constant between two (or more) updates. Eventually, marginal 
distributions of all variables are extracted as follows: 

1 
P (x) = µf →x(x) (6)

Z 
f ∈n(x) 

with Z being a normalization factor. 
The belief propagation algorithm has been proved to be exact on tree-like graphs. In 

practice, cryptography related graphs often contain cycles, but BP (or loopy-BP in these 
cases) provides good empirical results. Eventually, several techniques such as message 
damping and scheduling can be applied when the graph contains cycles: these techniques 
are not used in this work. 
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2 Attacker Model 

In this paper, we consider an attacker able to perform profled attacks on HQC decapsulation 
for shared key recovery. This implies that the adversary has access on a fully controlled 
clone of the real target device for the profling phase. For simplifcation purposes, we 
run both profling and attack procedures on the same physical device: the complexity of 
template portability does not fall under the scope of this paper. Throughout this work, we 
suppose the attacker to be able to craft templates from the gf_mul operation only. Hence, 
we suppose that the attacker has the ability to isolate an ordered sequence of gf_mul 
computations within a wider routine, such as the RS decoder or encoder. We believe that 
this task can be conducted thanks to pattern matching techniques, and is then eluded from 
our study. Eventually, as all attacks presented in this paper target the HQC shared key, 
the attacker does not have the ability to increase the Signal-to-Noise Ratio (SNR) with 
techniques requiring side-channel measurement of several HQC decapsulation instances 
(such as trace averaging). 

3 Single Template Attack 

In this section, we implement an attack aiming at recovering all the codeword bytes of the 
error-free codeword by using only one template. In a second phase, this codeword can be 
decoded to deduce the shared key computed at the end of the key exchange. Finally, we 
describe how the decoder structure allows coping with eventual template mispredictions 
and obtain high attack success rates. 

3.1 Experimental Setup 

We acquired traces with a “Langer Near Field” electromagnetic probe using a RT02024 
Rhode-Schwarz oscilloscope with a sample rate of 1 GHz. The Galois feld multiplication 
gf_mul has been extracted from the April 2023 reference implementation of HQC [AMAB+] 
following Algorithm 6. We selected the STM32F407 as our target board. We compiled the 
code with −O3 optimization, surrounded by a GPIO based trigger. This set-up leads to a 
computation time of 1.3µs and traces of 1300 points, see Figure 2 for the average acquired 
trace. These small-sized traces allowed us to perform our attack on the full length of the 
traces, without selecting points or areas of interest. In total, we acquired an amount of 
500000 traces for randomly sampled inputs. 

0 200 400 600 800 1000 1200
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Figure 2: Mean trace of gf_mul function execution. 
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3.2 Templates on Galois Field Multiplication 

Before prior templating phase, we conduct a leakage assessment on the three 8-bit variables 
involved in gf_mul: the two multiplication operands as well as the output. We make the 
assumption of a linear leakage model and rely on a Linear Regression Analysis (LRA). 
Namely, for a side-channel measurement xi and an 8-bit variable yi, we express the leakage 
as: 

8 

xi = β0 + βj · yi,j + ϵ (7) 
j=1 

Given a set of n training samples (xi)1≤i≤n (i.e., n traces) and under Gaussian noise ϵ, 
there exists a unique solution to this system β̃ = β̃0, · · · , β̃8 , i.e., an estimation of the 
parameters β = (β0, · · · , β8), which minimizes the residual sum of squares defned as: 

n 

RSS = (xi − x̃i)2 

i=1   2 (8)
n 8 

= xi − β̃0 + β̃  
j · yi,j  

i=1 j=1 

The accuracy of the model can be measured through the coefcient of determination, 
denoted R2, which is computed as follows: 

n 
xi)2 

2 i=1 (xi − ˜ 
R = 1 − (9)n 

i=1 (xi − E(x))2 

Note that this metric needs to be computed in a univariate way (i.e., for each time sample). 
Coefcients of determination corresponding to the three targeted variables are displayed 
in Figure 3. 

0 200 400 600 800 1000 1200
Sample

0.0

0.1

0.2

R
2

Operand 0
Operand 1
Output

Figure 3: Coefcients of determination computed for both inputs and the output of the 
Galois feld multiplication. 

By observing the LRA output in Figure 3 we can observe that (i) the leakage of the 
frst operand is both important and spread along the computation of gf_mul: this can 
be explained by the several logical operations perform that act on this operand, (ii) the 
leakage corresponding to the second operand is less important and (iii) the output of 
gf_mul computation is leaking at the end of the function, probably when it is stored in 
main memory. 

Then, we mount 6 diferent template attacks : (i) 3 templates are targeting the 
Hamming weight of inputs and output of the Galois feld multiplication. (ii) The 3 last 
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templates aim at recovering the exact value of inputs and output involved in the Galois 
feld multiplication. To build the templates, we use Fisher’s Linear Discriminant Analysis 
(LDA) as our classifer. The validation accuracy of each model is evaluated on datasets of 
diferent sizes segmented into 90% training and 10% validation traces. We analyzed the 
accuracy depending on the selected number of training traces and conclude that the best 
compromise was reached for 300000 training traces. Templates accuracies are summarized 
in Table 2. 

Table 2: Hamming weight and value templates accuracies on gf_mul and success rates 
of attacks on STM32F407. Each attack has been performed 400 times. Templates were 
trained with 300000 training traces with 10%/90% validation/training segmentation. 

Value template accuracy Hamming weight template accuracy 
Operand 0 0.9389 0.5929 
Operand 1 0.0211 0.3035 
Output 0.0221 0.5178 

Several observations can be made: (i) the value of the frst operand can be predicted 
with a 93.89% accuracy, (ii) the value template attacks on second operand and output value 
do not provide predictions signifcantly better than random guesses and (iii) the Hamming 
weights of the output and second operand give satisfactory results, more informative than 
a random guess. 

We can conclude that the high number of logical operations that act on the frst 
gf_mul operand (see Algorithm 6) is benefcial from a template attacker’s perspective. 
Indeed, the various shifts allow to isolate the leakage of diferent partitions of the bit-level 
decomposition of the frst operand. This increases the separability between the diferent 
value classes. Consequently, this is easier for the LDA to discriminate values than Hamming 
weight classes for this particular operand. As a reminder, during the computation of 
the RS syndromes (see Algorithm 5), the message, which is the sensitive data of this 
computation, is used as the frst operand of the multiplication which is the one that leaks 
the most. Moreover, the storing of gf_mul’s output in main memory allows an attacker to 
reach exploitable template accuracies. 

3.3 Building Prediction Matrices 

In this subsection, we describe a data structure called “prediction matrix”, which aims at 
providing repeatable real-case like simulations by storing multiple template predictions. 
Designing a simulation that matches the predictions of a template attack on a real target 
is a hard task. Indeed, the outputs of the templates depend on several factors. For 
instance, the hardware components involved in the attack, such as the target board and 
the measurement chain, and the experimental setup conditions (e.g., EM probe positioning, 
temperature etc.) have an impact on the template accuracy. The choice of a classifer, as 
well as its exploitation of multivariate leakage, also have a considerable impact on the 
template’s properties. 

For these reasons, our real-case scenario attacks are performed thanks to prediction 
matrices. The latter contain a set on 100000 independent probability distributions predicted 
by the models displayed in Subsection 3.2, along with the corresponding true labels. The 
advantages of such prediction matrices are twofold. Firstly, randomly sampled elements 
from a prediction matrix can be seen as a real template prediction: this can be used in 
a simulation context to test the robustness of the attacks, that can easily be ran a high 
number on times. Secondly, as all attacks presented in this paper exploit the leakages of 
the gf_mul operation, the use of prediction matrices allows deriving attacks on several 
functions and countermeasure scenarios. 
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In our particular case, we stress that claiming that the use of prediction matrices is 
comparable to a real case scenario attack highly depends on the ability for the attacker to 
detect the gf_mul routines in wider side-channel traces. We believe that this assumption 
is reasonable within the attacker model we consider in this paper. 

3.4 Combine and Conquer 
From Algorithm 5, we notice that each codeword byte c[j] is independently manipulated 
n − k times within the for loop, in lines 2 and 4. In the current reference implementation of 
HQC [AMAB+], gf_mul always manipulates the codeword bytes under the frst operand. 
This choice allows an attack, leveraging the high accuracy of the frst operand template 
denoted as p. The attacker may combine template outputs with a strategy, such as majority 
voting, which provides a lower bound for the success rate of the attack. 

The probability for the good hypothesis to be ranked frst by the classifer can be 
seen as the result of a Bernoulli distribution with parameter p. Given that trials are 
independent, they can be combined into a binomial distribution with parameters n − k 
and p. Let’s denote by X the random variable following this distribution for a codeword 
byte. One can observe that C1, the frst codeword byte, is not manipulated with gf_mul, 
and hence cannot be recovered with our template attack. For any other codeword byte, 
the majority voting is a success if and only if X > ⌊ n 

2 ⌋. Furthermore, all codeword bytes 
are independent, which results into the following success probability: 

n n−1 
P success\C1 

= P X > , X ⇝ B(n − k, p) (10)2 

3.5 Re-Decoding Strategy 

In this paper, we apply the strategy from [GLG22b] that consists in re-decoding the 
recovered codeword which provides several advantages: (i) re-decoding allows correcting 
templates mistakes or inaccuracies, (ii) this allows at recovering the value of C1 which 
cannot be found by a template results and (iii) the attacker gains additional fexibility 
regarding the accuracy of the template. The literature exposes two more efcient strategies 
to decode RS codes, namely list decoders. These decoders are not used in HQC for 
performance purposes, however we can take advantage of their increased error correction 
capability to improve the attack. 

Decoding RS list decoders RS list decoders work by modifying the interpolating poly-
nomial by adding some constraints [JH04]. This strategy allows decoding more error than 
the classical decoder, but outputs a list of possible decoded messages instead of a single 
one. It was discovered by Sudan (S) [Sud00] in 1997 and improved in 1999 by Guruswami 
and Sudan (GS) [VG99]. While the code can only correct up to t errors (see Table 1, 
with list decoding, if the number of errors is below a given threshold τ , depending on the 
code parameters and the size of the list, the true message belongs to the list. With HQC 
parameters, GS RS list decoder is able to correct up to respectively τ = 19, 19 or 36 errors, 
instead of t = 15, 16 or 29 for HQC 128, 192 or 256. Note that one error slot is already 
taken by C1. Indeed, C1 is not manipulated with a gf_mul operation, so our attacker 
model does not allow to perform a template attack on this variable. The probability of 
success of the attack becomes: 

τ −1 
n n−i−1 n i 

P (success) = P X > · P X ≤ , X ⇝ B(n − k, p) (11)2 2 
i=0 
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3.6 Practical Attack 

Targeting all security levels This template attack can also be conducted for HQC higher 
security levels. In fact, the gf_mul function is exactly the same, independently of the 
selected security level, allowing us to re-use templates (see Subsection 3.2). Parameters 
from Table 1 show that n, the number of codeword bytes to be recovered, increases with 
the security level. But, at the same time, n − k, the number of independent trials, also 
increases, giving more independent information about each codeword byte. 

Results We observe an accuracy of p = 0.9389 on the frst operand with 300000 training 
traces and a single attack trace (see Table 2). Considering this probability in equations 
10 and 11, we obtain success rates greater than 0.9999 with or without the re-decoding 
strategy for all HQC security levels. 

Discussion From Equation 11, we compute the minimum value of p such that the success 
of the attack stays beyond 0.9. It follows that a template accuracy of pmin = 0.7262 is 
enough to succeed in the attack for HQC128. HQC192 and HQC256 require minimal 
template accuracy being respectively pmin = 0.7250 and pmin = 0.6834. Since the minimal 
required accuracy is lower for each security level than what we obtained in practice, we 
could consider attacking targets with higher noise level. 

This frst attack is based on an unfortunate choice of operand order for the multiplication 
in the reference implementation of HQC [AMAB+]. We can reasonably assume that, from 
the results presented herein, a informed developer will make the choice to swap frst and 
second operands. This allows manipulating sensitive data under the operand that leaks 
the least. Given that this multiplication operation is commutative, swapping operands 
does not imply computational overhead. 

4 SASCA on Reed-Solomon Decoder 
After the swap of operands, we are not able to perform the attack from Section 3 against 
the sensitive data, which is now “hidden” behind the second operand. Moreover, the frst 
operand, which value can be templated with high accuracy, now holds the content of the 
parity check matrix which is already publicly known. Nevertheless, results from Table 2 
show that the Hamming weight of gf_mul’s second input and output can be templated 
with high accuracy. This information is gathered into a factor graph. 

4.1 Reed-Solomon Decoder Graph 

We construct a factor graph to represent the RS syndrome computation depicted in Algo-
rithm 5 (see Figure 4). Each of the n − 1 windows corresponds to an iteration of the second 
for loop (line 3). Within each window, m = n − k Galois feld multiplications (line 4) are 
performed, between a codeword byte and an element from the parity check matrix H, 
resulting in an intermediate syndrome value (line 2). The computation of each syndrome 
byte involves the XOR operation of each intermediate syndrome at the corresponding 
position in every window. Finally, we depict the initialization step (line 1) through a XOR 
operation with C1 on each syndrome byte. 

The factor graph presented in Figure 4 models the relations between each intermediate 
value used during the computation. In a normal use of a decoder, the output syndrome 
gives information about the random error added to the codeword. But here, we consider 
the RS syndrome as zero (see Subsection 1.1) allowing removing the lower part of the 
graph. This construction ends up with n − 1 windows, each representing an independent 
tree-like graph and beneft from the BP convergence proof in such graph topology. We 
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recall that re-decoding strategy is available for the attacker, allowing them to recover C1, 
the frst codeword byte which is outside all windows. 

Window n − 1 

Cn 

hn,1 

sn,1 

× C3 

h3,1 

s3,1 

× C2 

h2,1 h2,2 h2,3 h2,m 

s2,1 s2,2 s2,3 s2,m 

× × × × 

⊕ ⊕ ⊕ ⊕ 

C1 

S1 S2 S3 Sm 

Window 1 

Window 2 

Figure 4: Reed-Solomon decoder (syndrome computation) factor graph (with m = n − k). 

Building gf_mul sub-graph The main sub-operation performed during the RS syndrome 
computation is gf_mul, the multiplication in the Galois feld F28 . This operation can 
be performed using a fast multiplication based on the Fast Fourier Transform (see Algo-
rithm 6) [BGTZ08], which is the choice of the HQC authors since April 2023 in the reference 
implementation. However, this calculation can be done diferently, using the logarithm 

v := a × b = αlog(a) × αlog(b) = α(log(a)+log(b))%nrepresentation of each element. , where α 
is a primitive element of the Galois Field. After this transformation, if the log and exp 
transformation (stored with precomputed tables in practice) are known, the multiplication 
can be computed by simple addition and modular reduction. This approach allows us 
to optimize the computations of factor messages (see Figure 5). Namely, lookup tables 
are used to compute logarithm, exponentiation and modular reduction factor operations. 
The addition factor is implemented with a convolution, which can beneft from a FFT 
depending on the size of the variables’ domain. 

4.2 Simulating Hamming Weight Leakages 

As a frst step, we perform simulations on the decoder graph. We initiated the marginal 
probability of the second operand with the high accuracy value template results from 
prediction matrices (see Subsection 3.3). This operand gives information about the parity 

a b 

v 

× ←→ 

log 

log 

a 

b 

alog 

blog 

+ vlog exp v 

Figure 5: Galois feld multiplication sub-graph. Factors are denoted with a square and 
variables with a circle. 
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check matrix elements. We also initiated the marginal probabilities of the outputs of all 
gf_mul computation from a Hamming weight leakage model with a Gaussian noise. Hence, 
for a side channel trace x resulting from the manipulation of a gf_mul output v, we have: 

x = α · HW(v) + N (β, σ2) (12) 

With this leakage model, we can simulate the output of a perfect template classifer 
with the following equations: 

P (guess = v | label = l) = P(X = v), X ⇝ N (l, σ2) (13) 

Simulation results Figure 6 shows the success rate of the attack when increasing the 
standard deviation value σ step by step, and performing the attack 400 times for each of 
them. Up to a standard deviation of 2, we have a success rate of 1 for security levels 128 
and 192. For the highest security level of HQC, we can almost reach a noise level of σ = 3 
without loss of accuracy. 
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Figure 6: Simulated success rate of SASCA on the decoder, with re-decoding strategy, 
depending on the selected security level of HQC. 

Discussion We observe that the success rate for HQC192 is lower than the one for 
HQC128. Indeed, the number of bytes to recover is larger (56 instead of 46), the number 
of independent trials remains almost the same (32 instead of 30) and the error correction 
capability is the same (i.e, 19). This makes the attacks more difcult to conduct considering 
Equation 11. 

We expected the attack on HQC256 to have a success rate greater than for HQC128. 
Indeed, the number of codeword bytes to recover is way larger for this security level (n = 90 
instead of 46 or 56), but the number of independent trials is also bigger (n − k = 58 instead 
of 30 or 32), and the error correction capability increases (36 instead of 19). The attack 
needs to fnd twice as many codeword bytes, but has twice as many independent leaks on 
each of them, and is ultimately helped by a strong correction capability. 

5 Codeword Masking Countermeasure 

A state-of-the-art masking countermeasure strategy is codeword masking [MSS13]. This 
masking strategy allows creating a mask for the decoder using an encoder. Instead of 

′decoding c + e into m, we start by randomly sampling a message mask m . This message 
′mask is encoded into c , the codeword mask. Then the decoder algorithm is applied on 

′ ′ c + c + e, masking the sensitive data c, returning m + m due to the linearity of the 
′involved code. The true result m is recovered by subtracting the message mask m . Since 
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the encoder is a fast operation in front of the decoder, codeword masking allows reducing 
the overhead of the countermeasure. 

Given that the countermeasure is not the repetition of the same operation, codeword 
masking requires a further study about the encoding algorithm. Consequently, an attack 
targeting a masked implementation of HQC can be performed in two steps: (i) attacking 

′the decoder to recover c + c , the masked shared key and (ii) attacking the encoder to 
′ recover the mask c . In this scenario, the success rate is the product of both success rates 

of these two points. The frst point is addressed in Section 4. In this section, we describe 
a SASCA approach against the RS encoder, addressing the second point. 

5.1 Reed-Solomon Encoder Graph 

Figure 7 gives a graphical representation of Algorithm 4. In order to depict all intermediate 
values of the algorithm, the for loop (line 2) is unfolded. Each line of the graph corresponds 
to one iteration of this loop. The gate values Γ (line 3) are represented on the left side of 
the graph. From the second line of the graph, they depend on the rightmost element of 
the array, the addition of which is indicated by a numbered arrow on the graph. Each 
element in the blue rectangle represents the Galois feld multiplication’s output of the 
corresponding gate value on the same line and the corresponding generator polynomial 
element in the same column (line 5). Finally, these elements are diagonally added (XOR) 
to produce the redundancy bytes (lines 6-7) at the bottom of the graph. These bytes are 
then concatenated with the initial message to form the output codeword (line 9). 

As well as the decoder, the main operation performed by the encoder is gf_mul, the 
Galois feld multiplication. Moreover, this encoder algorithm requires the knowledge of g, 
a generator polynomial, publicly known as a parameter of HQC. This prior knowledge can 
be implemented into the factor graph. Finally, the attack also aims at recovering the RS 
codeword bytes, allowing applying the re-decoding strategy (see Subsection 3.5). 

We re-used the same template results from Subsection 3.3 to perform practical attacks. 
Simulations follow theory from Hamming weight leakage model from Subsection 4.2 which 
results are in Figure 8. 

Results Simulation results displayed in Figure 8 show the attack on the encoder is more 
sensitive to noise than the decoder’s (see Figure 6). We claim that, in practice, the masked 
decoder is not secure since we are still able to recover the mask with a probability of 
0.7625, 0.6575 and 0.8075 for HQC128, HQC192 and HQC256 respectively. 

Discussion The sensitivity of this attack to noise can potentially be explained by the 
sparse relations between intermediate values in the encoder graph, as well as cycles within 
the latter. Future work can focus on optimization techniques such as damping or message 
scheduling. Still, higher success rates for HQC256 are reported, both in simulations and 
real case scenario. 

High-order masking strategy By generating N random masks and adding them together, 
one can generate high-order masking. Each one of the N masks must be independently 

Nrecovered to succeed in the attack, which occurs with probability pN = p , with p the 
probability of recovering a single mask. It follows that reducing the probability of success 
under 0.01 requires to compute 17, 11 or 22 independent masks for HQC128, HQC192 and 
HQC256 respectively. This approach doesn’t seem to be efective due to the additional 
overhead it incurs. 

Alternative masking strategy In this section, we only considered codeword masking, 
which is a very specifc form of masking at a high level. As further work, it would be 
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Figure 7: RS Encoder seen as a Graph (with m = n − k). 
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Figure 8: Success rates of SASCA against the Reed-Solomon encoder, with re-decoding 
strategy, depending on the selected security level of HQC. 
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interesting to consider the efect of masking in a lower level, for example directly masking the 
Galois feld multiplication itself. Similarly as what have been done for Dilithium [ABC+22], 
this approach could be an efective way to protect HQC against our attack. 

6 Shufing Countermeasures 

The NTT from Kyber [BDK+18] was already targeted by SASCA like strategies in [PPM17, 
PP19, HHP+21]. Two shufing countermeasures, coarse-full-shufing and fne shufing 
[RPBC20] were identifed to protect the NTT against SASCA. The fne shufing aims at 
shufing the order of NTT inputs and outputs, randomly selecting one of the 4 combinations 
for each call. This strategy prevents an attacker from labeling the observed leakages. The 
coarse shufing consists in shufing the elements of the inner loop, independently within 
each layer. These shufing strategies can be adapted to protect HQC. Indeed, the layer of 
the NTT behaves like the windows of the RS decoder. The coarse shufing can be used to 
shufe elements order within a window (see Figure 4). The fne shufing can be used to 
shufe the inputs of gf_mul, since the output is unique, the number of combinations is 
just 2. 

We can also deduct novel shufing methods for HQC. A possibility is to compute each 
window in a random order. This strategy is useless for the NTT since all layers perform the 
exact same operation. However, for the RS decoder, the windows are perfectly independent 
and can then be performed in a random order. We call this countermeasure window 
shufing. Finally, all gf_mul operations being independent during the computation, they 
can be performed in a fully random order, following ideas from [ATT+18]. 

In this section, we describe and analyze the security of these shufing countermeasures. 
For the study of shufing countermeasures from a side-channel perspective, we emphasize 
the importance for the attacker to possess a fully controlled device for the profling phase. 
Indeed, either the knowledge of the shufing or the possibility to isolate a single known 
gf_mul operations is mandatory to craft templates. 

6.1 Fine Shufing 

Under a fne shufing strategy, the sensitive data (i.e., the codeword byte) is manipulated 
under the frst operand one out of two times in average. We re-use a majority voting 
strategy from Subsection 3.4 to exploit the high frst operand leakage. We consider that 
the output of the classifer is a random value when the sensitive data is hidden behind the 
second operand. This hypothesis is a worse scenario than what we do observe in practice 
(see Table 2). Indeed, the leakage on the values from the parity check matrix could help 
for a more refned analysis. However, if the probability that the good hypothesis is ranked 
frst by the classifer is high enough, the majority voting will succeed. 

Discussion Using the fne shufing strategy goes against the desire to hide the sensitive 
data under the operand that leaks the least, as discussed in Section 3. 

6.2 Coarse Shufing 

The coarse shufing strategy aims at shufing the operations’ order performed in each 
window. The selected shufing can be changed for each window, ensuring a better security 
level. The sequence of operations does not impact the graph construction or the path to 
convergence for the target codeword. This assertion is true since the n − 1 windows are 
independent sub-graphs (see Section 4). We recall that the value of C1 is recovered with 
the fnal re-decoding strategy (see Subsection 3.5). Consequently, this case matches our 
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prior setup of belief propagation, giving the same results as the previous decoder attack 
(see Section 4). 

6.3 Window Shufing 

Shufing windows allows interchanging the order of codeword bytes computations. In such 
a case, even if we are able to converge with a BP attack, recovered codeword bytes are 
shufed and the attack does not succeed unless the permutation is reversed. Here, we 
apply the same attack strategy, independently of the considered swap order. Indeed, the 
frst step is to run the belief propagation as presented in Section 4. This step produces 
marginal probabilities on each intermediate value. Previous results show that the values of 
the codeword bytes are successfully recovered, independently of the presence of a shufing. 
Consequently the difculty of attacking this shufe remains in inverting the permutation. 

Inverting codeword bytes permutation The parity check matrix H = (hi,j ) 1≤i≤k can 
1≤j≤n−k 

be transformed into a Dirac probability distribution under matrix T of size k × n × 256 : 

1 if hi,j = l 
T [i, j, l] = (14)0 otherwise 

We know that the lines of the parity check matrix has been shufed by the window 
shufing, but in each line, elements kept their original arrangement. After the frst BP 
phase, we obtain a shufed estimation of T , denoted T̃ , that holds the marginals of each 
variable representing H. More formally, if L represents a side-channel measurement: 

T̃ [i, j, l] = P (hi,j = l | L) (15) 

The idea is to reassign the lines T̃  in order to minimize a distance with T . To do so, 
we compute the matrix D such that: 

256 

D[i, i ′] = d(T̃ [i, j], T [i ′ , j]) (16) 
j=1 

where d is an arbitrary distance function. Inverting the window shufing is equivalent 
to select k elements from the matrix D. Exactly one element per row and one element per 
column such that the sum of these elements is minimal. The location of these selected 
elements gives the assignment between T̃  and T lines. This problem is an instance of the 
assignment problem, for which an optimal solver is known. 

Assignment problem The assignment problem is a classic optimization problem in the 
feld of operations research and linear programming. It involves fnding the optimal 
assignment of a set of tasks to a set of agents (or workers) in such a way that the total 
cost or time required to complete the tasks is minimized, or conversely, the total proft or 
utility is maximized. Each task must be assigned to exactly one agent, and each agent can 
only be assigned to one task. 

Hungarian algorithm The Hungarian algorithm is an efcient method for solving the 
assignment problem, especially when the problem involves equal numbers of tasks and 
agents. It was developed by Harold Kuhn [Kuh55] in the 1950s and later refned by James 
Munkres [Mun57]. We applied it considering T̃  resulting from simulated leakage to study 
the behavior of the algorithm with noise. Several distance metrics have been evaluated 
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for Equation 16: the L1 distance1 presented the best results. After the Hungarian method, 
we know the value of the second operand with precision. Now (i) either the marginals on 
the codeword are already satisfactory to foresee a successful re-decode or (ii) the attacker 
can inject the newly learned information into the graph to converge towards more accurate 
results. 

6.4 Full Shufing 

A stronger shufing is introduced by combining ideas from window shufing and coarse 
shufing. These two shufing method can be applied independently as in [GLG22b], but this 
may lead to de-shufing attacks. Therefore, they can be cross-used, by totally randomizing 
the order of gf_mul computations. This strategy follows an idea from [ATT+18] and aims 
at increasing the combinatorial complexity for the attacker. This strategy that we call 
“full shufing” has an overhead which is the cost of shufing a list of size n × (n − k). 

Complexity of full shufing inversion Let’s suppose that we are able to recover, with a 
BP attack or other, the exact value of the second operand, coming from the parity check 
matrix. Given this information, we want to invert the shufing of these elements. However, 
the size of the matrix is much larger than the size of the Galois feld, leading to a large 
redundancy. Consequently, it is impossible to un-shufe without testing all possibilities 
for the redundant elements. Given the parity check matrix, one is able to compute this 
number of permutations for all the security levels of HQC. Note that this number increases 
with the size of the matrix, therefore with the security level, since the Galois feld remains 
the same. This number of permutations is respectively 2504, 2614 and 21030 for the three 
security levels of HQC. This number being larger than the security level, we conclude that 
inverting the shufing is not achievable with the strategy presented in Section 6. This 
leads us to believe that full shufing is an efective countermeasure against our attack. 

7 Decapsulation attack 

The HHK transform used for HQC, generally the Fujisaki-Okamoto (FO) transform, 
involved a re-encryption part during the decapsulation. Thus, a decoded shared key is also 
re-encoded during the re-encryption. This additional step allows exploiting side-channel 
leakages from both a decoder and an encoder during the same decapsulation process. 

Combining RS decoder and encoder graphs We are able to build a double graph, 
creating a connection between encoder and decoder graphs. Indeed, these two graphs 
share the same codeword bytes variable nodes, which hence can be merged. We follow 
simulation strategy from Subsection 4.2 and display the results in Figure 9. We show that 
we are able to reach higher noise levels than any previous attacks in this paper, this for all 
HQC security levels. 

Countermeasure This combined attack, exploiting leakage redundancy from the re-
encryption, is a threat to the security of HQC. Then, fnding a countermeasure both for the 
encoder and decoder is required. The current RS encoder algorithm (see Algorithm 4) is 
implemented with a polynomial division. Protecting this encoder with a shufing strategy 
is a hard task, since the carry propagation implies that several gf_mul operations depend 
on the result of previous ones. Considering the current encoder implementation, the full 
shufing strategy cannot be applied straightforwardly. Our idea to protect the encoder 

1The L1 distance (also called taxicab or Manhattan distance) between two vectors x = (x1, · · · , xn) 
nand y = (y1, · · · , yn) of same length is given by dL1 (x, y) = 
i=1 

|xi − yi|. 



20 Single trace HQC shared key recovery with SASCA 

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Su

cc
es

s r
at

e
HQC128
HQC192
HQC256

Figure 9: Success rate of SASCA on the decapsulation (decoder + encoder combined), 
with re-decoding strategy, depending on the selected security level of HQC. 

is to change its algorithm for a classical matrix-vector multiplication encoding. The full 
shufing strategy can then be applied, which provides a sufcient combinatorial complexity 
to prevent our attack from succeeding. Changing the encoder algorithm allows to protect 
both the encoder and decoder with the same shufing countermeasure. 

8 Conclusion and Further Work 

In this paper, we present new shared key recovery attacks on the code-based PQC NIST 
contest candidate HQC. Depending on HQC implementation choices, our attacks can either 
be a classical template attack or rely on Soft Analytical Side-Channel Attack (SASCA) 
based on Belief Propagation (BP) theory. 

For all our practical attacks, we used the setup presented in Subsection 3.1. These 
attacks are performed within a few minutes on a STM32F407 target running the reference 
implementation of HQC [AMAB+], for each security level, each attack have been repeated 
400 times. We reach a perfect accuracy for each attack, expect the encoder attack which 
present sucess rates greates than 65%. We stress that our attacks are a threat for HQC 
and efcient countermeasures must be applied. This work takes advantage of the inner 
structure and properties of code-based cryptography to mount practical shared key recovery 
attacks. 

• We demonstrate practical attacks against the Reed-Solomon (RS) decoder of HQC. 
Precisely, we exploit physical leakages during Galois feld multiplication, a cornerstone 
operation of the RS logic, and model intermediate variables’ dependencies within a 
factor graph. We simulated this attack with Hamming weight leakage model and 
showed that the success rate stays high (superior to 0.9) up to σ = 2 and even σ = 3 
for the highest HQC security level (see Figure 6). In practice, this attack has a 
success rate of 100%. 

• We perform the same analysis against a version of HQC protected with codeword 
masking. Specifcally, the robustness of the RS encoder against SASCA is studied. It 
emerges that the encoder attack is more sensitive to noise, which can potentially be 
explained by the sparse relations between intermediate values, as well as cycles in the 
encoder graph. Simulation results are depicted in Figure 8 with good accuracies up 
to σ = 1. In practice, our attack reaches success rates of 76.25%, 65.75% or 80.75% 
depending on the selected security level. We emphasize that these success rates are 
enough to threaten the security of the scheme; codeword masking is not an efcient 
countermeasure to protect HQC against SASCA on a STM32F407. 

• We analyze the security of several RS decoder shufing countermeasures against our 
attacks. We demonstrate insufcient protection brought by shufing countermeasures 
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adapted from the Kyber-related literature. Namely, we reach perfect accuracy on 
a real case attack scenario. We present the full shufing strategy which provides 
satisfactory additional combinatorial complexity to the attacks proposed in this paper. 
We believe that RS decoder full shufing strategy is an interesting countermeasure 
that could possibly thwart other attacks. 

• Finally, by exploiting the Fujisaki-Okamoto (FO) transform, an attacker can combine 
encoder and decoder leakages by merging both factor graphs, for successful shared 
key recovery on devices with higher noise levels (see Figure 9). Once again, in a 
practical scenario, our attack has a success rate of 100%. The combined attack 
exploiting the redundancy leakage from the re-encryption is a potential threat for 
any FO-like scheme. We show that changing the HQC encoding strategy allows 
protecting both encoder and decoder with full shufing. 

The analysis of HQC’s internal Reed-Solomon through the lens of a side-channel attacker 
leads to several intuitions about further work. Firstly, as all our attacks exploit the Galois 
feld multiplication, we believe that protecting the latter operation is a promising path 
towards efcient countermeasures. An option could be to implement a gadget [BBE+18] 
for gf_mul, ensuring security for RS operations under a given attacker model. Secondly, 
the full shufing algorithm must be carefully selected, especially the random generator, to 
prevent permutation recovery attacks. Finally, the resilience of other PQC schemes built 
with the FO transform needs to be evaluated against SASCA approaches analogous to 
the decapsulation attack presented in this paper. Attacks combining the redundancy of 
leakages created by the re-encryption could be a threat for FO schemes. 
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