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Abstract. We present a side-channel attack on CRYSTALS-Dilithium, 
a post-quantum secure digital signature scheme, with two variants of 
post-processing. The side-channel attack exploits information leakage in 
the secret key unpacking procedure of the signing algorithm to recover 
the coefcients of the polynomials in the secret key vectors s1 and s2 

by profled deep learning-assisted power analysis. In the frst variant, 
one half of the coefcients of s1 and s2 is recovered by power analysis 
and the rest is derived by solving a system of linear equations based 
on t = As1 + s2, where A and t are parts of the public key. This case 
assumes knowledge of the least signifcant bits of the vector t, t0. The 
second variant waives this requirement. However, to succeed, it needs 
a larger portion of s1 to be recovered by power analysis. The remain-
der of s1 is obtained by lattice reduction. Once the full s1 is recovered, 
all the other information necessary for generating valid signatures can 
be trivially derived from the public key. We evaluate both variants on 
an ARM Cortex-M4 implementation of Dilithium-2. The profling stage 
(trace capture and neural network training) takes less than 10 hours. 
In the attack assuming that t0 is known, the probability of successfully 
recovering the full vector s1 from a single trace captured from a dif-
ferent from profling device is non-negligible (9%). The success rate ap-
proaches 100% if multiple traces are available for the attack. Our results 
demonstrate the necessity of protecting the secret key of CRYSTALS-
Dilithium from single-trace attacks and call for a reassessment of the role 
of compression of the public key vector t in the security of CRYSTALS-
Dilithium implementations. 

Keywords: Dilithium · post-quantum digital signature · key recovery attack · 
side-channel attack · lattice reduction 

1 Introduction 

CRYSTALS-Dilithium (referred to as Dilithium in the sequel) is a digital sig-
nature scheme which is strongly existential unforgeability under chosen message 
attack (EUF-CMA-secure) in the classical and quantum random oracle mod-
els [7]. This means that adversaries having access to a signing oracle cannot 
produce a signature of a message whose signature they have not yet seen, nor 
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produce a diferent signature of a message that they already saw signed. The 
security of Dilithium relies on the hardness of fnding short vectors in lattices. 

In July 2022, the National Institute of Standards and Technology (NIST) 
selected Dilithium as a new, post-quantum secure digital signature scheme to be 
standardized under the name of ML-DSA [47]. The National Security Agency 
(NSA) has included Dilithium in the commercial national security algorithm 
(CNSA) suite 2.0 recommended for national security systems [1]. This makes it 
important to evaluate the resistance of Dilithium to side-channel attacks on its 
implementations executed on physical devices. 

A particularly interesting implementation platform for Dilithium is ARM 
Cortex-M4, as evidenced by NIST’s focus on ARM Cortex-M4 when assessing 
post-quantum cryptography (PQC) standardization process candidate perfor-
mance [32]. The interest is motivated by an increased popularity of resource-
constrained embedded systems such as internet of things devices. However, since 
many of these devices are physical accessible to an attacker, side-channel attacks 
become a concern. To address the threat, the NIST considers the aspect of re-
sistance to side-channel attacks in the PQC standardization process. 

Side-channel attacks exploit information leakage through measurable chan-
nels, such as power consumption, electromagnetic radiation, timing, heat, etc. 
Timing attacks, in which an adversary measures the execution time of an algo-
rithm, can be mitigated by making implementations run in constant time, thus 
eliminating the relation between the time and secret information [37]. Power 
analysis attacks, in which an adversary measures the power consumption of a 
device, are more challenging to counter and usually require more expensive miti-
gation techniques than timing attacks [36]. Among the common countermeasures 
against power analysis is masking [17], which randomizes the secret data, and 
shufing [60], which randomizes the execution order of the secret data. 

It has been demonstrated in the past that the theoretical EUF-CMA-security 
of Dilithium can be bypassed by a side-channel attack on its implementation [9, 
14,19,34,44,54], as some of these attacks enable digital signature forgery. Further 
work in this direction continues to be an important research topic considering 
that the adaptation of Dilithium is quickly moving from research to standards, 
implementation, and deployment. The 3GPP is planning to introduce quantum-
resistant cryptographic algorithms in 5G as soon as the fnal NIST and IETF 
security protocol standards have been published [45]. The above-mentioned NSA 
CNSA suite 2.0 requires that all network equipment supports Dilithium by 2026 
and all other equipment - by 2030 [1]. Therefore, it is important to continue 
searching for potential leakage points and vulnerabilities in Dilithium imple-
mentations as well as investigating new ways to exploit them. Each discovered 
implementation weakness gives the developers of Dilithium implementations an 
opportunity to strengthen the subsequently released versions, thereby contribut-
ing to the deployment of more secure products in the future. 
Our contributions: We present a new side-channel attack on Dilithium which 
exploits information leakage in the secret key unpacking procedure of the signing 
algorithm. This particular leakage point has not been explored in previous side-
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channel attacks on Dilithium. In these attacks, information leakage of the secret 
key vector s1 is usually modeled via inner products of s1 with some known 
vector. The presented attack can directly recover a large part of polynomial 
coefcients of s1 and s2 in the range [−η, η] using deep learning-assisted profled 
power analysis. To recover the rest of the coefcients, we propose two variants 
of post-processing. 

In the frst one, at least one half of the coefcients of both s1 and s2 are 
recovered by power analysis and the rest are derived by solving a system of 
linear equations based on t = As1 + s2, where A is a public polynomial matrix 
and t is the second component of (an expanded form of) the public key. This 
case assumes knowledge of the low order bits of t, t0. According to the FIPS 204 
draft [27]: “The vector t is compressed in the actual public key by dropping the d 
least signifcant bits from each coefcient, ... This compression is an optimization 
for performance, not security. The low order bits of t can be reconstructed from 
a small number of signatures and, therefore, need not be regarded as secret.” 

In the second variant, the knowledge of t0 is not necessary. We recover a 
larger portion of s1 by power analysis and derive the remainder of s1 by lattice 
reduction. Once the complete s1 is recovered, all the other information necessary 
for generating valid signatures can be trivially derived from the public key [41]. 
We evaluate the side-channel attack with both post-processing variants on an 
implementation of Dilithium in ARM Cortex-M4 presented in [2] and suggest 
countermeasures. 

In our opinion, the main contribution of this paper is highlighting the pos-
sibility of recovering the complete secret vector s1 from a single trace with a 
non-negligible probability (9% in our experiments) in the case when t0 is known. 
None of the previous attacks on Dilithium can recover the full s1 from fewer than 
100 traces. Our results demonstrate the necessity of protecting the secret key of 
Dilithium from single-trace attacks. They also prompt a reassessment of the role 
of t0 in the security of Dilithium implementations. 
Paper organization: The rest of this paper is organized as follows. Section 2 
provides the necessary background for understanding the paper. Section 3 de-
scribes previous work on side-channel analysis of Dilithium implementations. 
Section 4 describes assumptions on the adversary model. Section 5 presents the 
two variants of post processing. Section 6 explains the power analysis strategy. 
Section 7 summarizes experimental results. Section 8 suggests potential coun-
termeasures. Section 9 concludes the paper. 

2 Background 

This section describes notation used in the paper, the specifcation of Dilithium [7], 
profled side-channel attacks, and the lattice basis reduction. 

2.1 Notation 

Let Zq be the ring of integers modulo a prime q and Rq be the quotient ring 
Zq[X]/(Xn + 1). We use regular font letters for elements in Rq, bold lower-
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Table 1. Parameters of diferent versions of Dilithium. 

Version n q (k, ℓ) η d β ωγ1 γ2 

217Dilithium-2 256 8380417 (4, 4) 2 13 (q − 1)/88 78 80 

219Dilithium-3 256 8380417 (6, 5) 4 13 (q − 1)/32 196 55 

219Dilithium-5 256 8380417 (8, 7) 2 13 (q − 1)/32 120 75 

case letters for vectors with coefcients in Rq, and bold upper-case letters for 
matrices. To simplify the notation, when v ∈ Rk we use v[i] to denote ith entry q 
of a vector consisting of the coefcients of the k polynomials in v. As such, it 
corresponds to coefcient i mod n of entry ⌊i/n⌋ in v. 

The term x ← S stands for sampling x from a set S uniformly. The concate-
nation for two bit/byte strings a and b is denoted by a || b. The blank symbol ⊥ 
is used to indicate failure or lack of an output from the algorithm. The infnity 
norm is denoted by ∥·∥∞. The operation inside the double square brackets J·K is 
evaluated as a Boolean. Norms for elements in Rq are given as if the coefcients 
were entries in (−q/2, q/2] of an n dimensional vector, and this is naturally ex-
tended to vectors over Rq. As in the Dilithium specifcation, we let Sη be the 
set of elements w ∈ Rq with ∥w∥∞ ≤ η. 

2.2 Dilithium specifcation 

The security of Dilithium [7] is based on the assumed hardness of the module 
learning with error (M-LWE) problem over Rq and a version of the module 
short integer solution (M-SIS) problem. It adopts the Fiat-Shamir with aborts 
technique [40] to transform a lattice-based identifcation scheme to a signature 
scheme. The signature rejection is applied to avoid the leakage of any secret 
information from the signature. 

There are three main algorithms in Dilithium: key pair generation, KeyGen, 
message signing, Sign, and signature verifcation, Verify, see Fig. 1. The inputs 
and outputs of all these algorithms are byte arrays. Special functions, Encode 
and Decode, perform the conversion between the byte arrays and the polynomial 
coefcients. 

Dilithium utilizes four diferent sampling functions. ExpandA(ρ) is used for 
generating the public matrix A from a seed ρ ∈ {0, 1}256 . The secret key vectors 
s1 and s2 are generated by ExpandS(ρ ′ ), where ρ ′ ∈ {0, 1}512 . ExpandMask(ρ ′ , κ), 
κ ≥ 0, is employed for generating the randomness of the signature scheme. The 
sparse polynomial is obtained from SampleInBall(c̃), where c̃  ∈ {0, 1}256 . 

Dilithium applies compression algorithms to optimize the key size. The d 
low-order bits of each coefcient of the polynomials in the vector t = As1 + 
s2 are dropped from the public key using the Power2Round(t, d) function. To 
reconstruct information necessary to verify the signature using the compressed 
public key, hints h are created by MakeHint during signing and then used by 
UseHint during verifcation. During signing, the coefcients of the polynomials 
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KeyGen() 
1: ζ ← {0, 1}256 

2: (ρ, ρ ′ ,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 = H(ζ) 
3: A ∈ Rq

k×ℓ = ExpandA(ρ) 
4: (s1, s2) ∈ Sη

ℓ × Sη
k = ExpandS(ρ ′) 

5: t = As1 + s2 

6: (t1, t0) = Power2Round(t, d) 
tr ∈ {0, 1}2567: = H(ρ || t1) 

8: pk = pkEncode(ρ, t1) 
9: sk = skEncode(ρ, K, tr, s1, s2, t0) 

10: return (pk, sk) 

Sign(sk, M) 

1: (ρ, K, tr, s1, s2, t0) = skDecode(sk) 
2: A ∈ Rq

k×ℓ = ExpandA(ρ) 
3: µ ∈ {0, 1}512 = H(tr || M) 
4: κ = 0, (z, h) =⊥ 

← {0, 1}5125: ρ ′ 

6: while (z, h) =⊥ do 
7: y = ExpandMask(ρ ′ , κ) 
8: w = Ay 
9: w1 = HighBits(w, 2γ2) 

c ∈ {0, 1}25610: ˜ = H(µ || w1) 
11: c = SampleInBall(c̃) 
12: z = y + cs1 

13: r0 = LowBits(w − cs2, 2γ2) 
14: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then (z, h) =⊥ 
15: else 
16: h = MakeHint(−ct0, w − cs2 + ct0, 2γ2) 
17: if ||ct0||∞ ≥ γ2 or # of 1’s in h is > ω then (z, h) =⊥ 

18: κ = κ + ℓ 
19: return σ = (c̃, z, h) 

Verify(pk, M, σ = (c̃, z, h)) 

1: (ρ, t1) = pkDecode(pk) 
2: A ∈ Rq

k×ℓ = ExpandA(ρ) 
3: µ ∈ {0, 1}512 = H(H(ρ || t1) || M) 
4: c = SampleInBall(c̃) 
5: w1 

′ = UseHint(h, Az − ct1 · 2d , 2γ2) 
6: return J||z||∞ < γ1 − βK and J c̃ = H(µ || w1 

′ )K and J# of 1’s in h is ≤ ωK 

Fig. 1. The pseudocode of Dilithium main algorithms [7]. 

in the vector w = Ay, where y = ExpandMask(ρ ′ , κ), are decomposed as r = 
r1 · 2γ2 + r0, where r1 is the output of HighBits function and r0 is the output of 
LowBits function. 
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Dilithium uses the number-theoretic transform (NTT) to perform multipli-
cations in Rq efciently. The NTT details are omitted from Fig. 1 to simplify 
the pseudocode. 

There are three versions of Dilithium representing diferent security levels: 
Dilithium-2, Dilithium-3 and Dilithium-5, Table 1 gives a summary of their 
parameters. We refer the reader to the Dilithium specifcation [7] for further 
details. In this paper, we focus on Dilithium-2. 

2.3 Profled side-channel attacks 

Side-channel attacks can be classifed into two types: profled and non-profled. 
Profled attacks frst model information leakage of the target implementation 

using one or more devices similar to the device under attack, called profling 
devices. This can be done either by creating templates [4, 16, 30], or by training 
a neural network model [13,15,35,42]. The resulting templates/model is used to 
recover the secret variable, e.g. the secret key, from the implementation of the 
cryptographic algorithm executed on the device under attack [42]. 

Non-profled attacks are applied directly, without a beforehand modeling of 
the leakage of the target implementation [59]. Non-profled attacks may involve 
statistical methods such as correlation power analysis [11], or unsupervised ma-
chine learning algorithms such as k-means [58]. 

2.4 Lattice basis reduction 

Lattice-based cryptography relies on the assumed hardness of problems which 
can be interpreted as lattice problems. For instance, the security of Dilithium 
relies on the hardness of the module-LWE problem, which can be interpreted 
as version of the closest vector problem (CVP) in a structured q-ary lattice. 
Furthermore, by the Kannan embedding, this CVP instance can be solved by 
fnding an unusually short vector in a related lattice [23], which is a version of 
the shortest vector problem (SVP). 

A lattice in Zn can be defned via the set of all linear combinations of m lin-
early independent basis vectors B = {b1, . . . , bm}, bi ∈ Zn, for all i ∈ {1, . . . , n}
and m ≤ n. The integers m and n are called the rank and the dimension of the 
lattice, respectively. Lattice basis reduction algorithms aim to fnd a new basis 
for the same lattice but with shorter, more orthogonal basis vectors. 

One of the most well-known lattice basis reduction algorithms is the Lenstra– 
Lenstra–Lovász (LLL) algorithm [38]. It has a polynomial time complexity in 
the lattice dimension n but is only able to fnd lattice vectors that are exponen-
tially longer than the shortest possible lattice vectors. In order to fnd shorter 
vectors in lattices, variants of the block Korkin-Zolotarev (BKZ) lattice reduc-
tion algorithm [56] are typically used. These algorithms are parameterized by 
a blocksize β, which impacts both the runtime and the length of vectors found 
by the algorithm. These algorithms work by fnding very short vectors in pro-
jected sublattices of the original lattice, with β being the maximal dimension 
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of these sublattices. Larger blocksizes allow for shorter vectors to be found, but 
this comes at the cost of time complexity that is exponential in β. 

A rough estimate for the cost of solving a problem with BKZ is given by 
the Core-SVP hardness. For blocksize β, this is an estimate of the cost to fnd 
very short vectors in a single β-dimensional lattice. A common estimate, used 
for example in the Dilithium submission [7], is that this can be solved in time 
essentially 20.292β , based on the asymptotic performance of the algorithm in [8]. 

To estimate the size of short vectors which BKZ with blocksize β can actually 
fnd, a good frst estimate is given by the formula from [18], giving that, based 
on some heuristic assumptions, BKZ will asymptotically fnd vectors of length 
δn det(L)1/n in an n dimensional lattice L whereβ 

1 
2(β−1) 

� � 
β 

δβ = · (πβ) β 
1 

. 
2πe 

For solving concrete instances of variants of the LWE problem, a better estimate 
can be given by an LWE-estimator, such as the ones developed in the works [3, 
24]. 

3 Previous Work 

Several side-channel attacks on Dilithium implementations have been presented 
in the past. The attacks primarily focus on the recovery of the secret key vector 
s1, as all the other information required for generating valid signatures can be 
derived from the public key [41]. 

In the pioneering work of Ravi et al. [54], a simulated leakage of the poly-
nomial multiplication operation c · s1 in the signing procedure of Dilithium is 
used to recover s1 by power analysis. The attack considers an early Dilithium 
implementation using the schoolbook polynomial multiplication and optimised 
polynomial multiplication algorithms, rather than point-wise multiplication in 
the NTT domain used in the later implementations of Dilithium. 

In the follow up work, Fournaris et al. [28] demonstrates a correlation power 
analysis (CPA)-based attack on an ARM Cortex-M4 implementation of Dilithium 
using the leakage of the polynomial multiplication operation in the signing pro-
cedure. The attack is applicable to various multiplication algorithms, including 
in the NTT domain. 

Chen et al. [19] presents several improved CPA-based attacks on Dilithium 
which also exploit the leakage of the polynomial multiplication. For Dilithium-2, 
one of the attacks of [19] can recover a coefcient of s1 with a 99.99% probability 
using 157 power traces and a key coefcient guessing table of size 222 . This attack 
requires 110 min to recover a single coefcient. Thus, it would take 2.5 months 
to recover all 1024 coefcients of s1 with a success probability of 0.99991024 = 
0.9027. The most efcient attack presented in [19] can recover a coefcient of 
s1 with a 96.1% probability from 10,000 power traces in 846 min. Therefore, it 
would take 10 days to recover the full s1 with a nearly-zero success probability 
of 0.9611024 = 2.04 × 10−18 . 
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In the work of Miglore et al. [46], side-channel resistance of an unprotected 
ARM Cortex M3 implementation of Dilithium is evaluated with focus on three 
functions: LowBits, HighBits, and rejection operation. It is concluded that these 
functions are highly leaky. In addition, a masking countermeasure is proposed 
and verifed. In the masked implementation, each of the secret key vectors s1 and 
s2 is split into two shares during the key generation. The three above-mentioned 
functions no longer leak in the masked implementation. 

Kim et al. [34] presents a machine learning-assisted profled attack exploiting 
a leakage of load, save and Montgomery reduction operations in the signing 
procedure to recover s1. The attack is demonstrated in a simulated setting on 
an unprotected and masked versions of Dilithium-2. 

Karabulut et al. [33] proposes an attack on small polynomial sampling, with 
the idea being that, when the challenge c is generated, the valid values are in the 
small range of {−1, 0, 1}. The attack aims to determine the sign of the non-zero 
coefcients through side-channel analysis. 

Marzougai et al. [44] demonstrates a machine learning-assisted profled side-
channel attack targeting the nonce y. The attack exploits a leakage in the func-
tion ExpandMask which is used for sampling y pseudo-randomly from a seed and 
a counter. Given a power trace captured during an execution of the signing algo-
rithm, a machine learning classifer is used to decide whether a given coefcient 
y[i] of y is zero or not. If y[i] = 0, then y[i] = 0 + (cs1)[i]. Since the response 
vector z and verifer’s challenge c are known once the signature is computed, the 
full s1 can be recovered from multiple signatures (about 0.6M) by using linear 
algebra. 

Berzati et al. [9] shows that, by exploiting a leakage in the Decompose function 
which partitions a given vector into high and low order bits, the low bits of the 
commitment vector w, w0, can be recovered by a template attack. Templates 
are used to decide whether a given coefcient in one coordinate of w0 is zero 
or not. Since the commitment w is related to the nonce y through a public 
matrix, w = Ay, and the high order bits of w, w1, can be derived from the 
signature (z, c), s1 can be recovered from multiple signatures (about 0.7M) in 
the same way as in the attack of Marzougai et al. [44]. Other attacks based on 
conceptually similar ideas are presented in [39, 52] 

In the interesting recent work by Qiao et al. [53], a CPA-based attack on 
an unprotected and a masked implementations of Dilithium in ARM Cortex-M4 
combined with a small integer solution (SIS)-based post-processing is presented. 
The attack targets leakage of point-wise multiplication in the NTT domain, more 
specifcally the output from the Montgomery reduction operation. For unpro-
tected Dilithium-2 implementation, the combined attack can recover a subset of 
256 secret key coefcients from 2000 power traces in 0.5 min. For the frst-order 
masked implementation, in which the secret key is divided into two shares during 
the key generation, the shares are frst recovered independently. Then, the coef-
fcients recovered at the same position are added, and, fnally, a post-processing 
step based on SIS is applied to derive the remaining 256 coefcients. 
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While searching for other side-channel attacks on Dilithium that exploit in-
formation leakage in the secret key unpacking procedure of the signing algorithm, 
we came across an attack on NTRU key encapsulation mechanism (KEM) by 
Askeland et al. [5] that uses the secret key unpacking procedure of the decapsu-
lation algorithm as an attack point. Their method extracts about 400 secret key 
coefcients (about 78% of the total 509) by side-channel analysis and then ap-
plies BKZ lattice reduction to derive the rest of the key. The attack presented in 
this paper signifcantly difers from [5] in side-channel analysis technique. Note 
that the Dilithium case in more difcult than NTRU because Dilithium’s secret 
key is twice the size of NTRU’s secret key. 

In summary, none of the previous attacks on Dilithium exploit leakage in 
the secret key unpacking procedure of the signing algorithm to directly recover 
polynomials coefcients of s1 in the range [−η, η]. Instead, they recover inner 
products of s1 with some known vector. Furthermore, none of the previous at-
tacks on Dilithium can recover the full secret key vector s1 from fewer than 100 
traces. The attacks such as [9, 44] require over half a million traces. 

4 Adversary model 

This section defnes the three main components of an adversary model [25]: 
adversary goals, assumptions and capabilities. 
Assumptions: We assume that an adversary has a physical access to the de-
vice under attack which runs the Dilithium digital signature algorithm. We also 
assume that the adversary possesses fully controllable profling devices that are 
similar to the device under attack. 
Capabilities: The adversary is a clever outsider who has equipment and tools 
for power analysis, as well as expertise in side-channel attacks, Dilithium, and 
deep learning. The adversary is capable to capture power traces from the device 
under attack during the execution of the signing algorithm. 
Goals: The goal of the adversary is to perform a digital signature forgery, i.e. 
to create a pair consisting of a message, M and a signature σ, that is valid for 
M , but has not been created in the past by the legitimate signer. To achieve 
this goal, the adversary frst attempts to extract partial information about the 
secret key vector s1 from the implementation of Dilithium running on the device 
under attack through side-channels. Then, the attacker applies post-processing 
methods to deduce the rest of s1. Recovery of the full s1 is sufcient to generate 
valid signatures [41]. 

5 Two Variants of Post-Processing 

As we mentioned in the introduction, the Dilithium public key does not contain 
the full public key vector t. Instead, it only includes a compressed representa-
tion of t, t1, that does not depend on d least signifcant bits of t, t0. However, 
this compression is an optimization for performance, not security and, the FIPS 
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2024 draft states that the full t can be recovered from a small number of signa-
tures [27]. Therefore, as the frst post-processing variant, we assume knowledge 
of not only t1, but also t0, i.e. knowledge of the full t vector. 

Note, however, that, in some applications of a signature scheme, gathering 
a sufcient number of signatures for the complete reconstruction of the t vec-
tor may not be possible. Thus, we also consider an alternative post-processing 
variant that does not require knowledge of the full t vector. 

5.1 With knowledge of t0 

If t0 is known, we can use knowledge of some of the coefcients of vectors s1 and 
s2 to recover the remaining coefcients by solving a system of linear equations 
based on t = As1 + s2. 

This equation can be rewritten with the polynomials in t, s1 and s2 repre-
sented by column vectors of coefcients t, s1 and s2 with each coefcient repre-
sented by an element in Zq. Furthermore, the matrix of polynomials A can be 
represented by a nk × nℓ dimensional matrix A over Zq such that t = As1 + s2. 

Each known coefcient of the polynomials in s1 allows for removing the de-
pendence of this coefcient in the vector s1 and constructing an equivalent equa-
tion of type 

∗ ∗ ∗ t = A s1 + s2 (1) 
∗∗ ∗where all elements of t and A are known and the dimension of s is nℓ − x,1 

where x is the number of known coefcients of s1. 
Meanwhile, each known coefcient of the polynomials in s2 gives us one 

′known element of the vector s2. With y known elements of s2 in s2, a subset of 
the rows of (1) corresponds to the equation 

′′ ′ ∗ b = t − s = A s (2)2 1 

′ 
with a known b and a known matrix A of dimension y × (nℓ − x). 

If y ≥ nℓ−x, i.e. at least nℓ coefcients in total are recovered by side-channel 
analysis, we can, with a high probability, recover the remaining coefcients of s1. 
One way to accomplish this is to fnd an invertible (nℓ−x)×(nℓ−x) dimensional 

′ 
submatrix of A , from which we can easily recover the remaining coefcients of 
s1 by multiplying the relevant portion of b by the inverse of this submatrix. For 
Dilithium-2, it is sufcient to recover a subset of 1024 coefcients as n = 256 and 
ℓ = 4. As k also equals 4 for these parameters, there is a total of 2048 coefcients 
in s1 and s2 combined, and it is thus sufcient to recover half of these coefcients 
for this attack. 

5.2 Without knowledge of t0 

In the case where t0 is not known, but we are able to recover a large percentage 
of the coefcients of s1 by side-channel analysis, the remainder of s1 can be 
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recovered by lattice reduction using the public information A and t1 and the 
fact that t1 · 2d = As1 + s2 − t0. 

The matrix of polynomials A can be represented by a nk × nℓ dimensional 
matrix A over Zq, while 2d·t1 and s1 can be represented as nk and nℓ dimensional 
vectors b and s respectively. Furthermore, we let s2 − t0 be represented by 
another nk dimensional vector e. Then the equation b = As1 + e can be solved 
by considering the lattice spanned by the columns of of the matrix   

qInk A b  0 Inℓ 0 
0 0 1 

which contains the unusually short secret vector (−e, s, 1). 
In addition, each known element of s allows for decreasing the rank of this 

lattice by one, making the problem of fnding the secret vector easier. Finding the 
unusually short secret vector allows deriving the remaining elements of s and the 
recovery of the full s1 vector. With sufciently many coefcients of s1 recovered 
by side-channel analysis, obtaining the full secret vector s1 using variants of BKZ 
is practically feasible as our experimental results show. 

For the attack, we actually consider a slight modifcation of this lattice where 
we make use of the fact that the elements in the e vector, corresponding to s2−t0, 
are signifcantly larger than the elements in the secret vector s. To this end, parts 
of the lattice are scaled to ensure that it contain an unusually short vector where 
all coordinates of this vector have essentially the same size, and which is directly 
related to the secret vector we want to fnd. This signifcantly decrease the cost 
of fnding the unknown secret vector. The actual cost of fnding the unknown 
secret vector is estimated through the use of the LWE-estimator developed as a 
part of [3]. 

6 Side-Channel Attack on Dilithium 

This section describes the target implementation on Dilithium and outlines the 
process of selecting points of interest, collecting and pre-processing traces, train-
ing neural networks at the profling stage, and using them for inference at the 
attack stage. 

6.1 Target implementation 

In the experiments, we use the ARM Cortex-M4 implementation of Dilithium 
by Abdulrahman et al. [2]. This implementation does not contain any counter-
measures against side-channel attacks. 

We use the highest optimization level -O3 (recommended default) to compile 
the C code of Dilithium-2 implementation to a binary using arm-none-eabi-gcc 
command. Higher optimization levels are typically more difcult for side-channel 
analysis [57]. 
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Fig. 2. Distributions of power consumption during the processing of the frst coefcient 
of s1 by small_polyeta_unpack() procedure of Dilithium-2: (a) in the range [0, 2η] 
(lines 2-9 in Fig. 3), (b) in the range [−η, η] (lines 10-17 in Fig. 3). 

6.2 Attack point 

The presented side-channel attack on Dilithium targets the secret key unpacking 
function skDecode. It is carried out at the frst step of the signing algorithm, see 
line 1 of Sign in Fig. 1. Fig. 3 shows the C code of the procedure unpack_sk() 
which realizes the function skDecode in the Dilithium implementation of [2]. In 
the frst for-loop of unpack_sk() (lines 2-4), small_polyeta_unpack() is called 
ℓ times to unpack 96 bytes of each of the ℓ polynomials in s1 ∈ Sℓ

η into n = 256 
coefcients in the range [−η, η]. In the next for-loop (lines 6-8), the byte array 
representing the k polynomials in vector s2 ∈ Sk

η is unpacked similarly. 
Since power consumption in a software implementation is typically propor-

tional to the Hamming weight of processed data [36], our ability to distin-
guish among numbers in a given range is related to their Hamming weight. In 
small_polyeta_unpack() procedure of the Dilithium implementation of [2], the 
polynomial coefcients of s1 and s2 are processed twice: frst, in the range [0, 2η] 
(lines 2-9 in Fig. 3) and second, in the range [−η, η] (lines 10-17 in Fig. 3). The 
coefcients are defned as 16-bits integers and negative numbers are represented 
in two’s complement, e.g. -1 and -2 are represented by 0xFFFF and 0xFFFE, re-
spectively. Hence, for Dilithium-2, the Hamming weights of the fve elements 
of C1 = (4, 3, 2, 1, 0) during the frst processing are HW (C1) = (1, 2, 1, 1, 0). 
Likewise, the Hamming weights of the fve elements of C2 = (−2, −1, 0, 1, 2) 
during the second processing are HW (C2) = (15, 16, 0, 1, 1). One can see that 
the pairs of Hamming weights corresponding to the same coefcient are unique: 
(HW (C1), HW (C2)) = ((1, 15), (2, 16), (1, 0), (1, 1), (0, 1)). Therefore, they are 
potentially distinguishable by power analysis. 



13 6. SIDE-CHANNEL ATTACK ON DILITHIUM 

void unpack_sk(uint8_t rho, uint8_t tr, uint8_t key, polyvec *t0, 
smallpoly s1, smallpoly s2, uint8_t sk) 
unsigned int i; 
1: ... unpacking rho, tr and key ... 
2: for (i = 0; i < L; ++i) do 
3: small_polyeta_unpack(&s1[i], sk + i*POLYETA_PACKEDBYTES); 

4: end for 
5: sk += L*POLYETA_PACKEDBYTES; 
6: for (i = 0; i < K; ++i) do 
7: small_polyeta_unpack(&s2[i], sk + i*POLYETA_PACKEDBYTES); 

8: end for 
9: sk += K*POLYETA_PACKEDBYTES; 

10: ... unpacking t0 ... 

void small_polyeta_unpack(smallpoly *r, uint8_t *a) 
/* a is the input byte array of s1 or s2 in the secret key*/ 
/* r is the corresponding output polynomial coefcients of of s1 or s2*/ 
unsigned int i; 
1: for (i = 0; i < N/8; ++i) do /* N = 256, ETA = 2 in Dilithium-2 */ 
2: r->coeffs[8*i+0] = (a[3*i+0] >> 0) & 7; 
3: r->coeffs[8*i+1] = (a[3*i+0] >> 3) & 7; 
4: r->coeffs[8*i+2] = ((a[3*i+0] >> 6) | (a[3*i+1] << 2)) & 7; 
5: r->coeffs[8*i+3] = (a[3*i+1] >> 1) & 7; 
6: r->coeffs[8*i+4] = (a[3*i+1] >> 4) & 7; 
7: r->coeffs[8*i+5] = ((a[3*i+1] >> 7) | (a[3*i+2] << 1)) & 7; 
8: r->coeffs[8*i+6] = (a[3*i+2] >> 2) & 7; 
9: r->coeffs[8*i+7] = (a[3*i+3] >> 5) & 7; 

10: r->coeffs[8*i+0] = ETA - r->coeffs[8*i+0]; 
11: r->coeffs[8*i+1] = ETA - r->coeffs[8*i+1]; 
12: r->coeffs[8*i+2] = ETA - r->coeffs[8*i+2]; 
13: r->coeffs[8*i+3] = ETA - r->coeffs[8*i+3]; 
14: r->coeffs[8*i+4] = ETA - r->coeffs[8*i+4]; 
15: r->coeffs[8*i+5] = ETA - r->coeffs[8*i+5]; 
16: r->coeffs[8*i+6] = ETA - r->coeffs[8*i+6]; 
17: r->coeffs[8*i+7] = ETA - r->coeffs[8*i+7]; 
18: end for 

Fig. 3. The C code of secret key unpacking procedure unpack_sk() which realizes the 
function skDecode in the Dilithium implementation of [2]. 

Fig. 2 illustrates distributions of power consumption during the processing 
of the frst polynomial coefcient of s1, s1[0], by small_polyeta_unpack() pro-
cedure for the case of Dilithium-2. Plots in Fig. 2(a) and (b) are made based on 
10K traces at the trace point with the maximum absolute Welch’s t-test score 
within the intervals covering the execution of lines 2-9 and lines 10-17 in Fig. 3, 
respectively. The overlap between the plots representing diferent numbers de-
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Fig. 4. The equipment used for trace acquisition. 

termines the difculty of distinguishing these numbers. We can see that numbers 
with diferent Hamming weights are clearly separable. Contrary, those with the 
same Hamming weight overlap almost completely. 

6.3 Equipment 

Our equipment for trace acquisition is shown in Fig. 4. It consists of a Chip-
Whisperer-Pro, a CW308 UFO main board and six CW308T-STM32F4 target 
boards. Five of the CW308T-STM32F4 are used for profling, and one for the 
attack. Multiple profling devices are used for minimizing the negative efect of 
inter-device variability on the neural network’s classifcation accuracy [62]. 

The ChipWhisperer-Pro is a hardware security evaluation toolkit based on an 
open hardware platform and open-source software [48]. It can be used to measure 
power consumption and control communication between the target device and 
the computer. ChipWhisperer-Pro measures the voltage over a shunt resistor 
which is placed in series with the target device. The voltage is proportional 
to the current draw of the device. Hence, for a constant supply voltage, the 
measured voltage is proportional to the total power consumption of the device. 

The CW308 UFO board is a general-purpose platform for evaluating multiple 
targets [21]. The target board is plugged into a dedicated U connector. 

Each CW308T-STM32F4 target board contains a STM32F415-RGT6 chip 
based on ARM Cortex-M4 32-bit RISC core operating at a frequency of 24Mhz [22]. 
The traces are sampled at 96MS/s, i.e. four data points per clock cycle. The 
choice of sampling rate is limited by the size of ChipWhisperer-Pro bufer which 
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Fig. 5. (a) An average power trace representing unpack_sk() procedure of Dilithium-2 
in which: ① is unpack ρ, tr and K, ② is unpack s1, ③ is unpack s2, and ④ is unpack t0. 
(b) A segment corresponding to the unpacking of s1 by small_polyeta_unpack(). (c) 
A 440-point segment representing eight coefcients of s1 (input to neural networks). 

is 98K samples1 . If a higher sampling rate is used, all points of interest do not 
ft into the bufer. 

6.4 Trace acquisition 

Using the equipment described above, we capture from each profling device 
traces for training neural networks. We also capture traces for testing from the 
device under attack. Both profling and attack traces are captured for diferent 
messages selected at random. 

Fig. 5(a) shows a full trace recorded by the ChipWhisperer-Pro during the 
execution of the signing algorithm of Dilithium-2. It is computed as an av-
erage over 1000 measurements to reduce the noise. The trace covers a nearly 
complete execution of unpack_sk() except for the last part of t0 unpacking. 
Fig. 5(b) gives a zoomed in view of the segment representing the unpacking of 
s1. The segment representing the unpacking of s2 looks similarly. In both cases, 
there are four blocks of 32 identical patterns corresponding to the four calls of 
small_polyeta_unpack() in the for-loop. Fig. 5(c) shows a further zoomed in 

1 ChipWhisperer-Pro has an option of streaming, however, streaming can be used only 
at a maximum of 10 MHz sampling frequency. 
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view of the segment representing the processing of eight consecutive coefcients 
of s1. Such segments are used as input for neural networks. 

The traces which are captured using ChipWhisperer platform do not re-
quire an additional synchronisation because the ChipWhisperer-Pro provides 
the clock signal for the target board and hence the sampling frequency is per-
fectly synchronized with the clock frequency of the target board. Furthermore, 
the ChipWhisperer platform is essentially noise free. Hence, the conditions in 
our experiments represent a best case scenario for the attacker. 

6.5 Profling stage 

Let T ∈ Rr×u be a set containing the union of traces captured from the profling 
devices, where r is the total number of traces and u = pn(ℓ + k)/8 is the total 
number of data points in each trace, with p being the number of data points 
covering the processing of eight consecutive polynomial coefcients of s1 or s2 

in unpack_sk() (they are processed in the same way). 
1 ∈ Rr×pnℓ/8To create a training set, we frst extract from T two subsets, T∗ 

∈ Rr×pnk/8and T∗ 
2 , representing the unpacking of s1 and s2 by the procedure 

unpack_sk(), respectively (see Fig. 5(b)). We then partition T∗ into nℓ/8 seg-1 
ments T∗ 

1[j] ∈ Rr×p, j ∈ {0, 1, . . . , nℓ/8−1}, representing the processing of eight 
consecutive polynomial coefcients of s1 (see Fig. 5(c)). Similarly, we partition 
T∗ 

2, into nk/8 segments T∗ 
2[j] ∈ Rr×p, j ∈ {0, 1, . . . , nk/8 − 1}, representing the 

processing of eight consecutive polynomial coefcients of s2. The training set is 
composed as a union of all these segments: 

nℓ/[8−1 nk/[8−1[ 
T ∗ T ∗ 

2[j]) ∈ R((ℓ+k)nr/8)×pTtr = ( 1[j]) ( . 
j=0 j=0 

Finally, we standardize Ttr by transforming each trace T = (t1, . . . , tp) ∈ Ttr, 
′ ′ ′ ′ ti−µito T = (t1, . . . , tp) such that t = , for all i ∈ {1, . . . , p}, where and µi andi σi 

σi are the mean and the standard deviation of the traces of Ttr at the ith data 
point. 

We use the same multilayer perceptron (MLP) architecture as in the side-
channel attack on CRYSTALS-Kyber of [26] except for the input size and the 
number of output classes. In the attack of [26], neural networks are binary clas-
sifers. In our case, the neural networks classify into fve classes correspond-
ing to the fve values of polynomial coefcients of s1 and s2. We experimented 
with many variations of the architecture and types of neural networks, but none 
yielded better results. 

From the pseudocode of the procedure small_polyeta_unpack() in Fig. 3, 
it is clear that each group of eight polynomial coefcients of the input byte array 
is unpacked diferently. For this reason, we train eight neural network models 
Nb, one per each b ∈ {0, 1, . . . , 7}. One can also see from the pseudocode of the 
procedure unpack_sk() in Fig. 3 that vectors s1 and s2 are unpacked in exactly 
the same way. Therefore, we train the same models for both s1 and s2. To train 



17 7. EXPERIMENTAL RESULTS 

Nb, each trace T∗ 
i [j] ∈ Ttr is labeled by the value of the polynomial coefcient 

si[8j + b], for b ∈ {0, 1, . . . , 7} and j ∈ {0, 1, . . . , m/8 − 1}, where m = nℓ for 
i = 1 and m = nk for i = 2. 

The neural networks are trained with a batch size of 1024 for a maximum of 
100 epochs using early stopping with patience 10. We use Nadam optimizer with 
a learning rate of 0.001 and a numerical stability constant ϵ = 1e-08. Categorical 
cross-entropy is used as a loss function to evaluate the network classifcation 
error. 70% of the training set is used for training and 30% is left for validation. 
Only the model with the highest validation accuracy is saved. 

6.6 Attack stage 

At the attack stage, the neural networks Nj mod 8 trained at the profling stage 
are used to recover the coefcients si[j], for j ∈ {0, 1, . . . ,m − 1}, where m = nℓ 
for i = 1 and m = nk for i = 2. 

The neural network Nj mod 8 inputs a trace segment T ∈ Rp related to si[j] 
and outputs a score vector Si,j = Nj mod 8(T ) whose elements quantify the likeli-
hood that si[j] = a in T , for an integer a ∈ [−η, η]. For an attack using multiple 
traces, the most likely value of si[j] is determined by computing a cumulative 
probability of N score vectors, where N is the number of traces used in the 
attack. 

At the fnal step, we decide which recovered polynomial coefcients to accept 
as correct and which ones to leave for the post-processing recovery. The decision 
depends on the post-processing variant used. 

In the frst variant of post-processing, which assumes the knowledge of t0, we 
sort the predicted polynomial coefcients of both s1 and s2 vectors (which are 
n(ℓ + k) in total) in the descending order according to the maximum probability 
of their score vectors. In other words, we determine which of the coefcients are 
predicted by neural networks which the highest confdence. Then, the top half 
of the elements of the ordered list are accepted as correct. The other half is left 
for the the post-processing to recover. 

In the second variant of post-processing, which does not require the knowl-
edge of t0, we sort the predicted polynomial coefcients of s1 (which are n · ℓ in 
total) in a similar way as above. We accept as correct ⌊x · n · ℓ⌋ top elements of 
the ordered list, where x is a fraction in the range [0, 1]. The rest is left for the 
the post-processing to recover. We quantify the attack success probability as a 
function of the fraction x in the experimental results section. 

7 Experimental Results 

In this section, we evaluate the presented side-channel attack with both post-
processing variants on an implementation of Dilithium-2 in ARM Cortex-M4 by 
Abdulrahman et al. [2]. 
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Table 2. Time for capturing the training and test sets. 

Test 
set 

Time for capturing N traces 

N = 1 N = 100 N = 1000 

1.2 sec 36.6 sec 358.2 sec 

Training 
set 

Time for capturing 5 × 2.5K traces 

4.8 hrs 

Table 3. Empirical probability to recover a single coefcient of s1, s1[j], by power 
analysis using N traces; each entry in the middle column is a mean probability over 
all s1[j] with the same j mod 8, for j ∈ {0, 1, · · · , 1023}. 

N 
0 1 2 

j mod 8 

3 4 5 6 7 
Avg. 

1 
10 

100 
1000 

0.942 
0.980 
0.983 
0.983 

0.925 
0.951 
0.952 
0.954 

0.975 
0.999 
0.999 
0.999 

0.967 
0.993 
0.995 
0.995 

0.945 
0.988 
0.991 
0.991 

0.920 
0.951 
0.954 
0.956 

0.924 
0.956 
0.959 
0.960 

0.784 
0.863 
0.870 
0.871 

0.923 
0.960 
0.963 
0.964 

7.1 Recovering the coefcients of s1 and s2 by power analysis 

At the profling stage, we capture from each of the fve profling devices 2.5K 
power traces for neural network training. Each trace is captured during the 
execution of the signing algorithm for a secret key and a message selected at 
random. After applying the trace expansion strategy described in Section 6.5, 
the total number of training traces becomes 2.5K × 5 × 128 × 2 = 3.2M, with 
p = 440 data points in each trace. Using the resulting training set, we train eight 
neural network models Nb, b ∈ {0, 1, . . . , 7}. The training time for a single model 
is less than 40 min on a PC with an Intel Core i7-10750H CPU with a 16GB 
RAM running at 2.6GHz. When combined with the 4.8 hours for trace capture 
listed in Table 2, the total profling time is less than 10 hours. 

At the attack stage, we select at random 100 diferent secret keys and, for each 
key, capture traces during the execution of the signing algorithm by the device 
under attack for 1000 messages selected at random2 . Then, the model Nj mod 8 

trained at the profling stage is used to recover the polynomial coefcient si[j], 
for all i ∈ {1, 2} and j ∈ {0, 1, . . . , 1023}. For an attack using N traces, the value 
of si[j] is determined by computing a cumulative probability of N score vectors 
Si,j inferred by the model Nj mod 8. 

Tables 3 and 4 summarise the attack results for s1 and s2, respectively. They 
list empirical probabilities to recover a single coefcient of si by power analysis 
2 It is does not matter whether the messages are selected random, or kept fxed, 

because skDecode takes only the secret key as input (see line 1 of Sign in Fig. 1). 



19 7. EXPERIMENTAL RESULTS 

Table 4. Empirical probability to recover a single coefcient of s2, s2[j], by power 
analysis using N traces; each entry in the middle column is a mean probability over 
all s2[j] with the same j mod 8, for j ∈ {0, 1, · · · , 1023}. 

j mod 8 
N Avg. 

0 1 2 3 4 5 6 7 

1 0.943 0.925 0.973 0.970 0.950 0.924 0.919 0.781 0.923 
10 0.978 0.948 0.999 0.996 0.988 0.957 0.946 0.857 0.959 

100 0.981 0.950 0.999 0.997 0.991 0.961 0.947 0.861 0.961 
1000 0.981 0.950 0.999 0.997 0.992 0.962 0.948 0.865 0.962 

using a diferent number of traces N ∈ {1, 10, 100, 1000}. Since a table showing 
all 1024 coefcients of si would be too large, we grouped the probabilities into 
eight groups according to the neural network Nj mod 8 which is used the recover 
the coefcient. Each entry in the middle column of Tables 3 and 4 is a mean 
probability over all si[j] with the same index j mod 8, for j ∈ {0, 1, · · · , 1023}
and i ∈ {0, 1}. 

From the Tables 3 and 4, one can see that the coefcients si[j] with j mod8 = 
7 have a considerably lower recovery probability than the rest of the coefcients. 
To explain this, we examined the assembly of small_polyeta_unpack() pro-
cedure. We found that, for the coefcients si[j] with j mod8 = 7, the compiler 
does not allocate store and mask instructions in the same way as for the other 
coefcients. For this reason, the values associated with si[j] with j mod8 = 7 
are manipulated less, hence a weaker leakage. 

From the last columns of both tables, one can see that the probability to 
recover a single coefcient of s1 or s2 frst increases with the growth of N and 
then fattens after N = 100. By increasing the number of traces further, we do 
not gain much. For N = 1000, the probability to recover a single coefcient of 
s1 is 0.964, thus the probability to recover the full s1 is 0.9641024 ≈ 0. Similarly, 
for N = 1000, the probability to recover the full s2 is 0.9621024 ≈ 0. This shows 
that pure power analysis cannot recover all polynomial coefcients of s1 or s2 

reliably. 

7.2 Recovering complete s1 and s2 using linear equations 

Next, we evaluate the frst post-processing variant, based on solving a system of 
the linear equations induced by t = As1 + s2. 

We sort 2048 polynomial coefcients si[j], i ∈ {0, 1}, j ∈ {0, 1, · · · , 1023}, 
recovered by power analysis in the descending order according to the maxi-
mum probability of the corresponding score vectors Si,j inferred by the models 
Nj mod 8. We accept as correct the top half of the resulting sorted list. Since 
the elements of score vectors represent the likelihood that si[j] = a, for a ∈ 
{−2, −1, 0, 1, 2}, the higher is the maximum probability in the score vector Si,j , 
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Table 5. Empirical probability to recover 1024 coefcients of s1 and s2 by power 
analysis using N traces. The last column shows an average CPU time required to 
recover the rest of coefcients by using linear algebra (LA). 

Probability to recover 1024 coefcients of s1 and s2 LA post-processing 

N = 1 N = 10 N = 100 N = 1000 CPU time 

0.09 0.83 0.99 1 2 sec 

Fig. 6. Empirical probability to recover 1024 coefcients of s1 and s2 by power analysis 
as a function of the number of traces; the saturation point is marked in red. 

the more confdent3 is the prediction si[j] = a. The rest of the coefcients of s1 

is derived by solving a system of linear equations as described in Section 5.1. 
Table 5 shows empirical probabilities to recover 1024 coefcients of s1 and 

s2 by power analysis using a diferent number of traces N . The last column 
gives an average CPU time required to recover the rest of coefcients by solving 
linear equations. We can see that this variant of post-processing takes only a few 
seconds. We can also see that the likelihood to recover 1024 coefcients of s1 and 
s2 by power analysis increases sharply with the growth of N . The success rate of 
a single-trace attack is 9%. In the attacks using 1000 traces, we always recover 
all 1024 coefcients correctly. Clearly, this may be due to an insufciently large 
test set. 

Fig. 6 further illustrates the relation between of the attack success probability 
and the number of traces N . We can see that the curve grows sharply and then 

3 Clearly, even if a neural network predicts si[j] = k with 100% probability, it does 
not mean that this is correct, since the network is not a perfect classifer. 
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Table 6. Empirical probability to recover ⌊x ·1024⌋ coefcients of s1 by power analysis 
using N traces; α is an estimate of the Core-SVP bit hardness required to recover the 
remaining coefcients of s1 by BKZ with blocksize β. 

Fraction Probability to recover ⌊x · 1024⌋ coef. of s1 BKZ post-processing 
x 

N = 1 N = 10 N = 100 N = 1000 β α 

3/4 0 0.16 0.70 0.82 160 46.7 
4/5 0 0.04 0.42 0.54 115 33.6 
5/6 0 0.01 0.20 0.26 86 25.2 

fattens. The saturation point is reached at N = 74. The corresponding success 
probability is 0.99. 

7.3 Recovering complete s1 using lattice reduction 

Finally, we evaluate the second post-processing variant using lattice reduction. 
In the same way as in the frst variant, we the sort 1024 polynomial coef-

fcients of s1 recovered by power analysis in descending order according to the 
maximum probability of the corresponding score vectors Si,j inferred by the 
models Nj mod 8. We accept as correct the top ⌊x · 1024⌋ coefcients of the re-
sulting sorted list, where x is a given fraction. The rest of the coefcients of s1 

is derived by BKZ lattice reduction. 
Table 6 shows empirical probabilities to recover ⌊x · 1024⌋ coefcients of s1 

by power analysis using N traces for diferent fractions x. The BKZ blocksize β 
required to fnd the remaining coefcients of s1 by lattice reduction is estimated 
by using the lattice estimator developed as a part of [3]. The last column gives 
an estimate of the corresponding Core-SVP bit hardness, α ≈ 0.292β. For the 
case of x = 3/4, recovering the remaining coefcients requires a similar amount 
of work as the records for the SVP challenge [55]. On the other hand, for the 
x = 4/5 case, the remaining coefcients should be recoverable with relatively 
powerful hardware and a bit of time. Finally, for the x = 5/6 case, one can run 
the attack on a consumer-grade desktop computer, with the attack completing 
in about 6 hours. 

We can also see that, with this variant of post-processing, single-trace at-
tacks are not successful. For the same number of traces N , the attack success 
probability is lower than the one in Table 5. 

Fig. 7 plots attack success probabilities as functions of N for diferent frac-
tions x = 3/4, 4/5 and 5/6. We can see that, compared to the curve in Fig. 6, 
all three curves grow less sharply. The saturation points are (283, 0.79), (326, 
0.51) and (221, 0.25) for x = 3/4, 4/5 and 5/6, respectively. We can also see that 
the curves fatten, implying that the success probability cannot be increased 
considerably by using more traces for the attack. 
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Fig. 7. Empirical probability to recover ⌊x · 1024⌋ coefcients of s1 by power analysis 
for diferent fractions x; the saturation points are marked in red. 

7.4 Extension to Dilithium-3 and 5 

The presented attack is extendable to other versions of Dilithium, although it 
will be considerably more difcult. The frst reason for this, relevant only for 
Dilithium-3, is a larger range [−η, η] = [−4, 4] of polynomial coefcients of the 
secret key. This makes the classifcation problem more challenging as neural 
networks have to distinguish among nine classes instead of fve. The fact that 
Hamming weights of numbers in the ranges [0, 8] and [−4, 4] do not form unique 
pairs further complicates the case. 

The second reason for increased difculty of the attack is a larger absolute 
number of coefcients of s1 ∈ Sℓ and s2 ∈ Sk to be recovered through side-η η 
channel analysis due to the larger parameters ℓ and k, see Table 1. This raises 
requirements on the probability to recover a single coefcient. In the presented 
attack, we achieve good results by recovering the jth coefcient using a single 
neural network model Nj mod 8 trained once. More sophisticated methods such as 
ensemble learning [50,61] and iterative re-training [49] may be needed to further 
increase the single coefcient recovery probability. For the attacks in noisier 
conditions, convolutional neural networks [42, 51], or transformers [12, 29] may 
be more suitable neural network architectures than MLP. Noise reduction, e.g. 
by using autoencoders [42, 63], may also be helpful. 

8 Countermeasures 

Our presented side-channel attack would be substantially more difcult if the 
signing algorithm would take the secret key as input in a masked form as, e.g., 
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in the masked implementation of Dilithium by Coren et al. [20]. If the coef-
cients of random masks are in the range (−q/2, q/2], then the coefcients of the 
masked shares representing s1 and s2 are also in the range (−q/2, q/2]. Thus, 
the classifcation problem would be considerably more difcult4 . In addition, the 
attacker would need to recover the coefcients of all shares of s1 or s2 in the same 
position to recover a given coefcient of s1 or s2. It may be worth mentioning 
that the template attack on CRYSTALS-Kyber KEM presented in [10] can dis-
tinguish values in the range (−q/2, q/2] with the help of q2 templates. However, 
since CRYSTALS-Kyber uses q = 3329 while Dilithium uses q = 8380417, the 
Dilithium’s case is considerably more difcult. 

A k-order masking increases the size of the secret key representation by a 
factor of k + 1 which may not be desirable. Another possible countermeasure 
against the presented attack is to shufe the secret key at the end of the key 
generation algorithm. In this case, the signing algorithm would take as input 
a shufed version of the key together with the shufing permutation. To over-
come the shufing countermeasure, the attacker could try either to recover the 
shufing permutation by a side-channel attack on the signing algorithm, or to 
stop shufing from being executed by the key generation algorithm using a fault 
attack. The former is known to be possible for KEMs, see the attacks on the 
decapsulation algorithms of Saber and CRYSTALS-Kyber presented in [6]. How-
ever, these attacks require many traces captured for chosen ciphertexts. They 
can recover at most two shufing indexes from a single trace. The latter is also 
known to be possible for KEMs, see the fault attack on the decapsulation algo-
rithm of CRYSTALS-Kyber presented in [31]. 

Finally, the presented side-channel attack would be more difcult if the se-
cret key would be encoded in a constant-weight code, e.g., using the method 
of Maghrebi et al. [43]. In theory, encoding the coefcients of s1 or s2 to the 
same weight should result in uniform power consumption during their unpack-
ing, eliminating any potential leakage. However, since coding-based countermea-
sures may leave exploitable correlations, assessing their efcacy in protecting 
Dilithium from single-trace attacks is a topic for future research. 

9 Conclusion 

We have presented a practical side-channel attack on an implementation of 
Dilithium-2 that exploits leakage in the secret key unpacking procedure of the 
signing algorithm. The attack is not specifc to Dilithium-2, it is extendable to 
other versions as well. It may also be applicable to other PQC algorithms which 
use a similar implementation of the secret key unpacking procedure. 

Our experimental results show that, if the low order bits of the public key 
vector t are known, it is possible to recover the full secret key vector s1 key from a 
single trace with a non-negligible probability. No previous side-channel attack on 

4 Note that some masked implementations of Dilithium, e.g. [46], do not protect the 
secret key at the input of the signing algorithm. Such implementations are potentially 
vulnerable to the presented attack. 
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Dilithium has successfully recovered the full s1 with fewer than 100 traces. Apart 
from highlighting the importance of protecting the secret key of Dilithium from 
single-trace attacks, our results call for a re-evaluation of the role of compression 
of the public key vector t in the security of Dilithium implementations. 

Future work includes developing stronger countermeasures against physical 
attacks on implementations of PQC algorithms. 
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