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Abstract Threshold signatures improve both availability and security of digital signatures by 
splitting the signing key into N shares handed out to different parties. Later on, any subset of 
at least T parties can cooperate to produce a signature on a given message. While threshold 
signatures have been extensively studied in the pre-quantum setting, they remain sparse from 
quantum-resilient assumptions. 
In this work, we show that the Raccoon signature scheme [dEK+23] can be easily thresholdized. 
More precisely, we present Threshold Raccoon, a threshold signature that is very close to Rac-
coon. Our scheme has signature size 13 KiB and communication cost 40 KiB per user, supporting 
a threshold size as large as 1024 signers. 
All operations used during signing are due to symmetric primitives and simple lattice operations; 
in particular our scheme does not need heavy tools such as threshold fully homomorphic encryp-
tion or homomorphic trapdoor commitments as in prior constructions. Our key technical idea is 
to use one-time additive masks to mitigate the leakage of the partial signing keys through partial 
signatures. 

1 Introduction 

A threshold signature scheme [Des90, DF90] is a specific type of multiparty computation that 
aims at issuing digital signatures, for which any subset of T parties among N signers are able 
to sign a message, but (T − 1) cannot. This ability to distribute trust among several parties 
has sparked widespread interest from the blockchain ecosystem. 

In their September 2022 call for additional post-quantum signatures [NIS22, Section 4.D.1], 
NIST listed “additional functionalities” such as threshold threshold signatures to be desirable 
features. In January 2023, NIST released a draft call for multi-party threshold schemes [PB23]. 
Quantum resistance is repeatedly listed as an important criterion [PB23, Sections 3.2 and 3.3], 
with a deadline for submissions expected for 2024-2025. These two documents suggest that 
signature schemes that are both post-quantum signatures and thresholdizable would be of 
great interest for NIST. 

While there exist several pre-quantum threshold signatures, building efficient post-quantum 
threshold signatures seems to be a much more challenging task. Some solutions have been pro-
posed, but few have been implemented, and those who have suffer from major inefficiencies, 
such as large signatures, slow signing times, and sometimes both. In particular, no signature 
scheme submitted to the 2017 and 2023 NIST PQC calls for standardization have been shown 
to be efficiently thresholdizable until now. 

1.1 Our Contributions 

We propose Threshold Raccoon: a practical three-round lattice-based threshold signature 
assuming the hardness of the MLWE and MSIS problems. As its name indicates, it can be 



viewed as a thresholdized version of the masking-friendly signature Raccoon [dPEK+23]. To 
distinguish both schemes clearly, we may refer to the scheme from [dPEK+23] as Masked 
Raccoon. 

We recall in Section 2.1 a blueprint for a (standard) lattice-based signature called Lyubash-
esky’s signature without abort [ASY22]. Since it underlies both Masked Raccoon and Thresh-
old Raccoon, we will also refer to it as Vanilla Raccoon. Masked Raccoon applies several 
algorithmic tweaks to Vanilla Raccoon in order to make it masking-friendly. Since Vanilla 
Raccoon can be seen as a lattice-based variant of Schnorr signatures, it is a natural idea 
to combine one of the many existing constructions of Schnorr-based threshold signature 
[Bol03, LJY14, KG20, BCK+22, CKM+23, Lin22, RRJ+22] with Vanilla Raccoon in order to 
obtain a lattice-based threshold signature. 

Vanilla Raccoon 
(Section 2.1) 

Masked Raccoon 
[dPEK+23] 

Threshold Raccoon 
(Section 3) 

Figure 1: The Raccoon family of signature schemes. 

However, as it is well-known in the lattice community, a naive translation does not work 
since, unlike in the classical setting, the signing key and signatures must satisfy additional 
size constraints. Indeed, the folklore construction ported to the lattice setting would leak too 
much information about the (distributed) signing keys and lead to practical attacks. The key 
technical ingredient we use to mitigate this leakage is the use of pairwise one-time additive 
masks that are non-interactively shared between each pair of users at each signing procedure 
and recombined in a way that allows individual users to hide their response while preserving 
correctness. More details are provided in Section 2. 

2 Our Techniques 

Schnorr’s signature scheme has been a successful tool to construct threshold signature schemes 
in the classical setting. Our goal is to replicate this in the post-quantum setting building on (a 
variant of) Lyubashevsky’s signature scheme [Lyu09, Lyu12], a lattice-based signature scheme 
based on the Fiat-Shamir transform. 

2.1 Blueprint: Lyubashevsky’s Signature Without Abort 

We first recall Lyubashevsky’s signature scheme without abort [ASY22]. For simplicity, this 
description purposedly ignores size optimizations such as bit dropping [BG14], which are 
mostly orthogonal to our security arguments. 

nLet Rq = Zq[x]/(x + 1) be a polynomial ring. Let A ∈ Rk×ℓ and t = A · s + e, whereq 

(s, e) ∈ Rℓ × Rk are “short” vectors. The verification key vk = (A, t) is a search-MLWE q q 
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(A.1) Sample ephemeral short randomness (r, e ′ ) from an appropriate distribution and 
′compute a commitment w = A · r + e . 

(A.2) Generate a challenge c ∈ Rq using a hash function Hc as c ← Hc(vk, msg, w), where 
c has small coefficients. 

(A.3) Compute a response (z, y) = (c · s + r, c · e + e ′ ). 
(A.4) To verify, check that (z, y) satisfies some size constraint and that c = Hc(vk, msg, A · 

z + y − c · t). 

Figure 2: Lyubashevsky’s signature without abort, alias Vanilla Raccoon 

instance, whereas the signing key sk = (s, e) is the solution to this MLWE instance. To sign a 
message msg, the signature scheme proceeds as in Fig. 2. 

As mentioned earlier, Fig. 2 can be seen as a transposition of Schnorr’s signature to 
lattices. It is also similar to Masked Raccoon [dPEK+23], this is especially apparent when 
setting d = 1 in [dPEK+23] (1 share corresponding to the unmasked case). 

Absence of rejection sampling. This description does not involve the so-called rejection 
sampling step [Lyu12] step, which would entail enforcing interval constraints on (z, y). Rejec-
tion sampling is difficult to mask, so Masked Raccoon made the design choice to remove it. 
This requires increasing parameters in order to preserve security. 

Rejection sampling is also very challenging to perform in a distributed manner, i.e. to 
thresholdize. This is also listed as a reason by recent lattice-based threshold signatures [ASY22, 
GKS23] to remove it. 

2.2 Naive Thresholdiszation 

Due to the similarity between Schnorr’s signature scheme and the scheme in Section 2.1, we 
can try to apply the common approach used in the classical setting [Sho00, KY02, Bol03] to 
build threshold signatures starting from Schnorr. We first recall Shamir’s secret sharing. 

Shamir secret sharing. Given s ∈ Zq with q prime, we secret-share s by (a) generating 
a polynomial P ∈ Zq[x] uniformly at random in the affine space of polynomials in Zq[x] of 
degree at most T − 1 such that P (0) = s, (b) for each user i ∈ Z∗ , their share of the secret q

is si = P (i). If s is shared among N users, this is called T -out-of-N (Shamir) secret sharing. 
Given any set (si)i∈I of T distinct shares, s can be recovered by Lagrange interpolation: ∑ ∏ −j 

s = λi · si, where λi = . (1)
i − j

i∈I j∈I\{i} 

Shamir secret-sharing can be extended to Zq for non-prime q by restricting users indices to 
exceptional sets [ABCP23], then to rings Rq = Zq[x]/(f(x)) and finally to Rq-modules by 
coefficient-wise application. 
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First attempt: direct transposition. We first secret share Raccoon’s signing key (s, e) of 
Section 2.1 using Shamir’s secret sharing scheme [Sha79]. Namely, s is encoded as the constant 
term of a degree T − 1 polynomial P , and the partial signing key of user i ∈ [N ] is defined 
as the evaluation si = P (i) ∈ Rℓ along with a freshly sampled short vector ei. Each users’ q

partial signing key (implicitly) defines a partial public key ti = A · si + ei, which is an MLWE 
instance. Here, note that given any T partial signing keys (si, ei)i∈act, where act ⊂ [N ] and 
|act| = T , we can use the Lagrange coefficients (λact,i)i∈act to recompute the signing key as: ∑ 

s = λact,i · si. (2) 
i∈act 

For any set act of T signers, the distributed signing protocol proceeds as described in Fig. 3. 
a routine calculation using Eq. (2) shows that the signature is valid. 

′(B.1) User i ∈ act computes wi = A · ri + ei. To protect against rushing adversaries (see 
[BN06]) it initially only outputs a hash commitment Hcom(wi). 

(B.2) After obtaining the hash commitment from all users in act, user i reveals wi and 
checks the correctness of all other reveals. 

(B.3) User i collects all the commitments and locally generates a challenge c ←∑ 
Hc(vk, msg, w), where w = wj .j∈act 

′(B.4) User i computes a response (zi, yi) = (c · λact,i · si + ri, c · ei + ei) and outputs (zi, yi) 
as its partial signature. ∑ ∑

(B.5) The final signature is (c, z, y) = (c, j∈act zj , j∈act yj ), verified as in Raccoon by 
checking the equality c = Hc(vk, msg, A · z + y − c · t). 

Figure 3: Naive and insecure threshold signature 

Difficulty of Handling Lagrange Coefficients. While correct, the above construction 
admits an attack. This stems from the fact that Lagrange coefficients are large and can be 
chosen adaptively by the adversary. 

In more detail, looking at Item (B.4) carefully, we can alternatively view user i as gener-
ating a signature with a signing key (λact,i · si, ei). Importantly, si is scaled by the Lagrange 
coefficient λact,i. Since the user i provides a valid signature — a partial signature of the thresh-
old scheme — this allows the adversary to obtain information on the corresponding scaled 
partial public key tact,i = λact,i · A · si + ei. 

The adversary can adaptively ask user i to sign on a scaled public key of its choice by 
specifying a different signer set act ⊂ [N ]. By collecting enough tact,i with specifically crafted 
Lagrange coefficients λact,i, the partial signing key si can be recovered via simple linear algebra. 
In the classical setting where the noise vector ei does not exist, the above attack does not 
apply since all the obtained scaled partial public keys are linearly dependent. 

This phenomenon is not new to our work. Lattice-based cryptography has always had a 
hard time handling Lagrange coefficients, see for example [ABV+12, BLMR13, BGG+18]. This 
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has led some works to rely on an alternative secret sharing scheme know as the {0, 1}-linear (or 
{−1, 0, 1}-linear) secret sharing scheme, see e.g., [LST18, BGG+18, DLN+21, ASY22, CSS+22, 
CCK23]. While this gets around the issue with Lagrange coefficients, the downside is that the 
reconstruction algorithm becomes much more complex and individual shares grow by at least √ 
O(N 2) [LST18]. Alternatively, we can blow up the modulus size q to scale with O(N !2) 
to argue that large Lagrange coefficients become relatively small to q [ABV+12, BGG+18, 
CCK23]. However, it is clear that such an approach leads to impractical parameters. 

2.3 Our Solution: Masking the Commitments 

We sidestep all these prior hurdles by using a very simple idea, exploiting the fact that 
threshold signatures are interactive. In more detail, assume for now that every two pairs of 
users i, j ∈ act privately share two one-time random masks (mact,i,j , mact,j,i) ∈ (Rℓ )2. We q

modify the signing protocol of the naive threshold signature scheme as in Fig. 4. 

′(C.1) User i ∈ act computes a commitment wi = A · ri + ei, a (public) row mask mact,i = ∑ 
mact,i,j , and outputs (Hcom(wi), mact,i).5 

j∈act 
(C.2) After obtaining the hash commitments and row masks from all users in act, user i 

reveals wi. 
(C.3) User i collects all the commitments and locally generate a challenge c := ∑ 

Hc(vk, msg, w), where w = wi. ∑i∈act 
∗(C.4) User i computes a (private) column mask mact,i = j∈act mact,j,i and response 

∗ ′ (zi, yi) = (c · λact,i · si + ri + mact,i, c · ei + ei), and outputs (zi, yi) as its partial 
signature. ∑ ∑

(C.5) The final signature is (c, z, y) = (c, j∈act(zj − mact,j ), j∈act yj ) and is verified as 
in Item (A.4). 

Figure 4: Construction with masked commitments but non-authenticated views. 

∑ ∑ ∗Notice the sum of the row masks and column masks are equal: j∈act mj,act = j∈act mj,act. 
When all the users are honest, it can be checked that the aggregated response becomes: ∑ 

z = (zj − mact,j ) 
j∈act ∑ 

∗ = (c · λact,j · sj + rj + (mact,j − mact,j )) 
j∈act ∑ 

= c · s + rj 
j∈act 

This gives a Raccoon signature as desired (see Item (A.3)). 
5 See Fig. 5 for why we call it row and column masks. 
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Intuition of the Security Proof. A typical security proof of a Lyubashevsky signature 
consists of invoking honest-verifier zero-knowledge of the (implicit) underlying identification 
protocol and programming the random oracle. At a high level, the reduction first samples a 
challenge c and response (z, y) distributed independently from the signing key, and simulates 
the commitment w = A·z+y−c·t (see Item (A.4)). Informally, if the commitment randomness 
(r, e ′ ) are sufficiently larger than the scaled signing key (c · s, c · e), such a reduction remains 
indistinguishable from the real world. It is worth highlighting that (r, e ′ ) cannot be too large 
since the response (z, y) must be “short”, unlike in the classical Schnorr signature. Finally, it 
programs the random oracle as Hc(vk, msg, w) := c. 

Let us consider porting this proof to the threshold setting. To illustrate the effect of our 
masking idea, we explain what happens without them. Without the mask, user i outputs a 

′partial signature (zi, yi) = (c ·λact,i · si + ri, c · e+ei). To perform the above proof strategy, the 
reduction must sample the response (zi, yi) and simulate the commitment as wi = A · zi + 
yi − c · tact,i without the partial signing key si, where tact,i = Asi + ei is the (implicit) partial 
public key. However, notice the above proof strategy falls apart since the scaled partial signing 
key c · λact,i · si is not guaranteed to be small compared to the commitment randomness ri as 
the Lagrange coefficients λact,i can become arbitrarily large modulo q. Moreover, we cannot 
just sample ri random over Rℓ since this breaks the condition that the response zi is short. q

Recall here that this is not an artifact of the proof strategy since there is a concrete attack, 
as we explained above. 

m1,1 + m1,2 + m1,3 + m1,4 + m1,5 = 

+ + + + + 

m2,1 + m2,2 + m2,3 + m2,4 + m2,5 = 

+ + + + + 

m3,1 + m3,2 + m3,3 + m3,4 + m3,5 = 

+ + + + + 

m4,1 + m4,2 + m4,3 + m4,4 + m4,5 = 

+ + + + + 

m5,1 + m5,2 + m5,3 + m5,4 + m5,5 = 

= = = = =
 

∗ ∗ ∗ ∗ ∗ + + + + =m m m m m1 2 3 4 5 

∗Figure 5: Relationships between mi,j , mi and mj , where we drop the subscript act = 
{1, 2, 3, 4, 5} for readability. 

– The row masks mi (blue, dotted pattern) are all public. 
– An adversary corrupting the user set {1, 2, 3} learns the set (mi,j )min(i,j)≤3 and can infer 

∗the column masks (mj )j≤3 (red). 

m1 

+ 

m2 

+ 

m3 

+ 

m4 

+ 

m5 

=
 

m 

Additive masks. This brings us to our masking idea. At a high level, the masking allows 
the reduction to move around the partial signing keys around in such a way that the response 
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can be simulated using only the full signing key, without the partial signing key. Effectively, 
we can remove the Lagrange coefficients in the reduction, and arrive at a reduction similar to 
the standard non-thresholdised signature scheme. 

Let us explain via an example. Assume the adversary queries a set act = {1, 2, 3, 4, 5}
with two honest users 4 and 5 as in Fig. 5. Let us focus on the four masks (mact,i,j )i,j∈{4,5}
not known to the adversary. From Item (C.1), recall that the first signing round reveals the ∑ ∑ 
sums j∈{4,5} mact,4,j and j∈{4,5} mact,5,j to the adversary since all (mact,i,j )min(i,j)≤3 (in 
red in Fig. 5) are known to the adversary. This leaves us one degree of freedom; the sums∑ ∑∗ ∗ 

j∈{4,5} mact,j,4 and j∈{4,5} mact,j,5 are distributed uniformly random from the view of the∑
adversary, conditioned on their sum being i,j∈{4,5} mact,i,j . Put differently, the column masks 

∗ ∗ m ∑and m are distributed uniformly random, conditioned on their sum being consistent act,4 act,5 
with j∈{4,5} mact,j . Using this, in the proof, we can argue that the two responses (z4, z5) 
generated as ( )∗ ∗ c · λact,4 · s4 + r4 + mact,4, c · λact,5 · s5 + r5 + mact,5 (3) 

are distributed identically to responses generated as     ∑ 
∗ ∗r4 + mact,4, c ·  λact,i · si + r5 + mact,5 

 , 
i∈{4,5} 

∗ ∗where m is sampled uniformly random and m is set as the unique value that guarantees act,4 act,5 
consistency with the verification equations.∑ ∑

Lastly, we use the fact that j∈{4,5} λact,j ·sj = s− λact,j ·sj (see Eq. (2)), where j∈corrupt 
the adversary (and the reduction) controls the secrets for all users in corrupt = act\{4, 5}. 
Plugging this into the above, the reduction can instead generate the responses as   ∑ 

∗ ∗r4 + mact,4, c · s − c · λact,j · sj + r5 + mact,5 
 . 

j∈corrupt 

Since the reduction can now simulate the response c · s + r5 of the base signature scheme only 
using the full signing key s, we can rely on prior proof techniques at this point to complete 
the proof. 

Subtle Issue with the Proof and a Fix. While the intuition is simple, the concrete proof 
requires much care. One important point we glossed over was how we guarantee Eq. (3). Recall 
users 4 and 5 only locally generate the challenge c := Hc(vk, msg, w), where w = 

∑ 
wi isi∈act 

the aggregated commitment (see Item (C.3)). 
In particular, a malicious adversary could send users 4 and 5 inconsistent commitments 

′(e.g., malicious user 1 provides distinct w1 and w to users 4 and 5), in which case, the1 
′locally derived challenges c and c by users 4 and 5 may differ. Against such an adversary, the 

reduction cannot argue Eq. (3), and incidentally, the proof breaks down. In fact, we can turn 
this idea into a concrete attack, similarly to those explained prior. 

This brings us to our final construction, Threshold Raccoon, where we fix this issue by 
modifying the users to authenticate their views in the second round. One way we achieve this 
is to let the users add a signature to the hash commitments it received in Item (C.2). Another 
way is to let the users add a MAC instead. Our construction is detailed in Section 3. 
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Sharing the Masks. Lastly, we explain how pairs of users (i, j) ∈ act share the masks mact,i,j 

and mact,j,i during the signing protocol. We simply generate seeds (seedi,j )i,j∈[N ] during the 
key generation phase and give (seedi,j , seedj,i)j∈[N ] to user i as part of their partial signing 
key. Once the set act is defined, user i can locally compute the random masks mact,i,j and 
mact,j,i by using a PRF on seedi,j and seedj,i respectively. For the masks to never be repeated, 
we assume each signing session has a unique identifier for which the PRF is called upon. 

3 Threshold Raccoon: Our Threshold Signature Scheme 

Our 3-round threshold signature, named Threshold Raccoon, is given formally in Figs. 6 
and 7 and a security reduction is stated in Theorem 4.1. We assume the presence of a trusted 
centralised party to run the key generation algorithm KeyGen. This can also be achieved with 
a distributed key generation algorithm. The design of a suitable DKG, while important, is 
outside of the scope of this work. The key generation runs Shamir’s Secret Sharing algorithm 
in order to derive a Raccoon public key along with N secret key shares such that any T are 
sufficient to sign.6 It takes as inputs the system parameters pp(κ), a threshold T , and a total 
number of parties N . 

3.1 Key Generation 

Algorithm 1: KeyGen (pp, T,N) 

1: A ←Rk
q 
×ℓ ▷ Sample matrix 

2: (s, e) ← Dt 
ℓ ×Dt 

k ▷ Small secret and noise 
3: t := ⌊A · s + e⌉νt 

▷ Part of public key in Rk 
qt 

4: vk := (A, t) 
5: P ←Rℓ

q [X] with deg(P) = T − 1, P(0) = s ▷ Shamir Secret Sharing 
6: (si)i∈[N ] := (P(i)) ▷ Secret shares i∈[N ]
7: for i ∈ [N ] do 
8: (vksig,i, sksig,i) ← KeyGensig(1κ) ▷ Standard signature keys for each user 
9: for j ∈ [N ] do 

10: seedi,j ← {0, 1}κ ▷ Pairwise-shared seeds 

11: for i ∈ [N ] do 
12: ski := (si, (vksig,i)i∈[N ], sksig,i, (seedi,j , seedj,i)j∈[N ]) 

13: return (vk, (ski)i∈[N ]) 

Figure 6: Centralised key generation for Threshold Raccoon. In above, we assume the key 
generation algorithm initialises the state of each user j. 

The key generation algorithm is defined formally in Fig. 6. As a threshold version of the 
plain Raccoon signature, the key generation algorithm generates the public key in the same 

6 Strictly speaking, the underlying signature scheme is not Raccoon as we use discrete Gaussians instead of 
sum of uniforms. However, we attribute Raccoon as the core features (i.e., removing rejection sampling and 
optimisations) are the same. 
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manner. A short secret (s, e) ← Dℓ × Dk is sampled and the public key is (A, ⌊As + e⌉νt 
),t t 

where ⌊As + e⌉νt 
is the modulus rounding operation, which essentially drops the νt least 

significant bits on each entry of the input vector. The main changes are the use of secret 
sharing and pairwise shared seeds. 

Pairwise Shared Seeds. To ensure the unforgeability of the signing procedure, the users’ 
∗individual responses are additively hidden with private column mask vectors (mi )i∈act. These 

are later subtracted from the aggregated response with the publicly computable row mask 
vectors 

∑ 
mi, see see Fig. 5 for an illustration. i∈act 

These mask vectors can be viewed as a T -out-of-T shared secret that is computed on-
the-fly and non-interactively during the individual ShareSign protocols, and its shared values 
are recomputed by the combine algorithm using the communication transcript. These shares 
are pairwise shared between users and have to be unique between sessions. To achieve this, 
we generate them as the result of a pseudorandom function PRF from a seed and the session 
id: PRF(seedi,j , sid) with the seeds (seedi,j )(i,j)∈[N ]×[N ] that are generated and given to the 
corresponding users during the key generation. 

Signing Keys. To ensure that users agree on the view of the signing session in Round 2, 
they sign their view under a personal signing key. The key generation chooses a personal 
verification and signing key for all parties, (vksig,i, sksig,i). Alternatively, key generation can 
generate N2 pairwise symmetric keys so that all parties are pairwise linked. Then the view is 
authenticated using T MACs per party. This is more efficient when T is small because MACs 
are much smaller than post quantum digital signatures. Such symmetric keys may be derived 
from the pairwise shared seeds explained above. 

3.2 Distributed Signing Procedure 

Signing proceeds in 3 rounds. In essence, we use two T -out-of-T secret sharings. The first 
one is of the commitment w and the second is a masking term m that is used to mask the 
distributions of the partial responses in the Fiat-Shamir transform underlying Raccoon. Over 
the first two rounds, this commitment w is exchanged in a commit-reveal manner to prevent 
potential attacks from rushing adversaries. We note that some important yet tedious consis-
tency checks (e.g., check whether session for sid exists) in our signing protocol is outsourced 
to Section 7, Fig. 8 for better readability. 

First round. Every party j inside the signing set act generates their (rounded) MLWE 
commitment share wj encoding the ephemeral randomness rj . In parallel, they use their 
pairwise-shared seeds (seedj,i)i∈act and the session id sid to compute a public row mask mj = ∑ 

PRF(seedj,i, sid). We recall Fig. 5 for a pictorial explanation of the mask term. Theyi∈act 
then publish mj , as well as a hash commitment cmtj of wj . 

Second round. Each party j reveals their MLWE commitment share wj . Additionally they 
sign their current view of the signing session under their personal signing keys sksig,j (or 
alternatively, using MAC keys). The commit-reveal is a standard technique so that the ad-
versary does not generate its commitments in accordance with those of the honest users (see 
for instance [BN06]). 
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Algorithm 2: ShareSign1(state, sid, act, msg) 
1: assert{ ConsistCheck1(state, sid, act, msg) } ▷ Consistency checks, see Fig. 8 

′2: (rj , ej ) ← Dℓ ×Dk ▷ Sample small ephemeral randomness and small noise w w 
′3: wj := A · rj + ej ▷ MLWE commitment in Rq

k without rounding 
4: cmtj := Hcom(sid, act, msg, wj ) ▷ Hash commitment 
5: Fetch (seedj,i)i∈act from state.sk 
6: mj := 

∑ 
PRF(seedj,i, sid) ▷ Compute row blinder in Rℓ

qi∈act { }
7: state.session[sid] := sid, act, msg, 1, {rj , wj , cmtj , mj }, ∅ ▷ New session state 
8: return contrib1[j] := (cmtj , mj ) 

Algorithm 3: ShareSign2(state, sid, contrib1) 
1: assert{ ConsistCheck2(state, sid, contrib1) } ▷ Consistency checks, see Fig. 8 
2: Fetch sksig,j from state.sk 
3: σj ← Signsig(sksig,j , sid || act || msg || contrib1) ▷ Sign first-round contribution with standard signature 
4: Fetch wj from state.sessions[sid].internal ▷ Recall wj from ShareSign1 

5: state.session[sid] := 
{
sid, act, msg, 2, {rj , wj , cmtj , mj }, contrib1

} 
▷ Update session state 

6: return contrib2[j] := (wj , σj ) 

Algorithm 4: ShareSign3(state, sid, contrib2) 
1: assert{ ConsistCheck3(state, sid, contrib2) } ▷ Consistency checks, see Fig. 8 
2: Let session = state.sessions[sid] 
3: Fetch (sid, act, msg) from session 
4: Fetch rj from session.internal and sj , (vksig,i)i∈[N ], (seedi,j )i∈act from state.sk 
5: Fetch contrib1 = (cmti, mi)i∈act from session.contrib1 

6: Parse contrib2 = (wi, σi)i∈act 

7: for i ∈ act do 
8: assert{ cmti = Hcom(sid, msg, act, wi) } ▷ Check consistency of hash commitments 
9: assert{ Verifysig(vksig,i, sid || act || msg || contrib1, σi) = 1 } ▷ Check same first-round contribution 

used 

10: w := 
⌊∑ 

wi 
  

▷ Aggregated rounded commitment in Rk 
i∈act qwνw 

11: c := Hc∑(state.vk, msg, w) ▷ Global challenge 
12: m ∗ := PRF(seedi,j , sid) ▷ Compute column blinder in Rℓ

qj i∈act 

13: zj := c · λact,j · sj + rj + m ∗ 
j ▷ Individual response in Rℓ

q 

14: return contrib3[j] := zj 

Algorithm 5: Combine(vk, sid, msg, contrib1, contrib2, contrib3) 
1: Parse contrib1 = (cmti, mi)i∈act, contrib2 = (wi, σi)i∈act, contrib3 = (zi)i∈act 

2: Parse vk = (A, t ) 
3: w := 

⌊∑ 
wi ▷ Aggregated rounded commitment in Rk 

i∈act qwνw∑
4: z := (zi − mi) ▷ Aggregated response shifted by column blinders in Rℓ

qi∈act 
5: c := Hc(vk, msg, w) ▷ Global challenge 
6: y := ⌊A · z − 2νt · c · t⌉νw 

▷ Intermediate value in Rk
qw 

7: h := w − y ▷ Hint in Rk
qw 

8: return sig := (c, z, h) 

Figure 7: Signing procedure for Threshold Raccoon. In above, we omit the subscript and 
assume state is the state of party j ∈ act. Consistency checks are described in Fig. 8. 
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Third round. All parties checks that the received commitment share wj is consistent with 
the hash commitments in the first round and that all the signatures from the second round 
verify. It then computes the resulting global commitment w as 

⌊∑ 
wi 

  
using the mes-i∈act νw

sages they received from the first two rounds. Then, parties compute the signature challenge 
c = Hc(vk, msg, w) for themselves. ∑∗The parties further compute a secret column mask mj = i∈act PRF(seedi,j , sid) using 
their pairwise-shared seeds (seedi,j )i∈act and the session id sid. They use this to define their 

∗response share zj = c · λact,j · sj + rj + mj for sj their secret share and λact,j a Lagrange 
coefficient corresponding to the active signing set act. Since 

∑ 
λact,i · si = s sums to the i∈act 

full secret s, these shares sum to a valid response shifted by the column masks. Here, the 
∗main observation is that 

∑ 
mi = 

∑ 
m (see Fig. 5). Lastly, they return the response i∈act i∈act i 

share zj . 

Combination. Once all parties have completed all rounds, the coordinator runs a combine 
algorithm to compute the signature. This algorithm simply rounds the sum of the MLWE com-
mitments to get the full commitment w = 

⌊∑ 
wi 

  
. The challenge is c = Hc(vk, msg, w).i∈act νw

The response is the sum of the response shares, subtracted with the sum of the public column∑
masks: z = (zi − mi). Finally, the hint is computed as h = w − ⌊A · z − 2νt · c · t⌉νwi∈act 
where vk = (A, t). It returns a signature (c, z, h) of Raccoon. 

Verification. We do not explicitly define the verification algorithm since it is identical to 
those of the plain Raccoon signature scheme. 

Remark 3.1 (Statefulness). The signing algorithm requires signers never to respond with re-
spect to the same session ID twice. They must store all session IDs that they have used 
previously and abort if they receive a repeated request. 

4 Security Reduction 

The security of our threshold signature Threshold Raccoon is summarised in Theorem 4.1. 

Theorem 4.1. The threshold signature scheme Threshold Raccoon described in Fig. 7 is 
unforgeable under the unforgeability of the (non-thresholdised) signature scheme, pseudoran-
domness of PRF, the Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis 

assumptions. 
Formally, for any adversary A against the unforgeability game making at most QH and 

QSign queries to the random oracles Hc, Hcom and the signing oracle, respectively, there ex-
ists adversaries BSign, BPRF, B, and B ′ against the unforgeability of the signature scheme, 
pseudorandomness of PRF, and Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis 

problems, respectively, such that 

sig-uf (QH + 1) · QSign
Gamets-uf (κ) ≤ N · Adv (κ) + AdvPRF (κ) + A BSign BPRF 2n−1 

QH + Q2 
H + AdvHint-MLWE SelfTargetMSIS 

+ (κ) + Adv (κ)
22κ B B ′ 

where Time(BSign), Time(BPRF), Time(B), Time(B ′ ) ≈ Time(A). 
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NIST level κ QSign σw T νt νw ℓ k ω |vk| |sig| |trans|/T 

I 128 260 242 37 40 4 5 19 3.9 12.7 40.8 

III 192 264 242 36 40 6 7 31 5.8 18.9 59.6 

V 256 260 242 35 41 7 8 44 7.2 21.6 69.1 

Our security reduction relies on the hardness of Hint-MLWEq,ℓ,k,QSign,σt,σw,C . This new as-
sumption was formalized and studied in a recent paper [KLSS23]. A significant advantage 
of Hint-MLWE is the existence of a very efficient reduction to the standard MLWE assump-
tion. Moreover, this reduction covers the parameters used in Threshold Raccoon. In our con-
text, it states that the public key (A, t = A · s + e) remains pseudorandom even if QSign 

hints7 (ci, ̄zi) are provided to the adversary, where ci ← C corresponds to the challenge and 
′ ¯ = ci ) is a natural by-product of the signing process. zi · (s, e) + (ri, ei 

5 Instantiation and Implementation 

5.1 Parameter Sets 

Table 1 presents admissible parameter sets for NIST levels I, III and V. We take the noise 
distributions Dt and Dw to be Gaussian distributions with parameters σt and σw, respectively. 
The challenge c is sampled from the set of polynomials such that ∥c∥∞ = 1 and ∥c∥1 = ω, 
which is the same set as in Masked Raccoon or Dilithium. We note |vk|, |sig| and |trans| the 
size in bytes of the verification key, the signature and the transcript of the signing procedure 
(Fig. 7), respectively. 

Table 1: Parameter sets. The sizes |vk| and |sig| are provided in kilobytes. All parameter sets 
satisfy (⌊log2 q⌉, n, σt, max T ) = (49, 512, 220 , 1024). 

√ 

Comparison with Masked Raccoon. We can see that the parameters of Threshold Rac-
coon and Masked Raccoon [dEK+23] are similar. The modulus q and the degree n are identical 
in both cases, and many other parameters are close if not identical. 

The main difference is the Masked Raccoon uses sums of uniforms, while Threshold Rac-
coon uses Gaussians. The main motivation in [dEK+23] for using sums of uniforms is that 
they are easier to sample securely in the context of side-channels, while still being usable 
in Rényi divergence-based arguments in a way that almost guarantees the same tightness as 
Gaussians, see [dEK+23, Appendix A] for more details. 

In this work we prefer to use Gaussians, as they make our security proofs simpler and we are 
not concerned with side-channel attacks. In addition, Hint-MLWE with Gaussians distributions 
can be reduced to standard MLWE using a reduction from [KLSS23]. This reduction has better 
tightness than what would be provided by a Rényi divergence-based, and allows us to increase√
the maximum number of queries QSign by a factor O( κ · n · (k + ℓ)). This is why Table 1 
shows higher values for QSign than [dEK+23], despite the similar parameters. 

7 The term “hint” in Hint-MLWE [KLSS23] is not the same as the hint in the signing process of Dilithium 
[LDK+22] (h in Threshold Raccoon). This is an unfortunate collision of terminology. 
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5.2 Implementation and Experiments 

We have developed a high-performance implementation of Threshold Raccoon which can easily 
accomodate T = 1024 simulated signers (with the parameters in Table 1.) If we ignore possible 
communication latencies and enable 4.5 gHz turbo on an i7-12700, creating a signature (the 
three steps of ShareSign, κ = 128) requires from 11.1 ms (T = 4) to 116 ms (T = 1024) 
of single-core computation from each signer. The verification function is independent of T 
and N , and requires approximately 0.230 ms. Table 2 contains more detailed benchmarking 
results. 8 

Table 2: Threshold Raccoon (κ = 128) Cycle counts on a single core of an Intel i7-12700 
CPU with “turbo boost” disabled. The units are millions of cycles; divide by 2.1 (fixed clock 
frequency in gHz) to obtain millisecond numbers. Measurements for KeyGen, Combine, and 
Verify are for the entire process, while ShareSigni is per signer (when signing is a parallel 
process, this is equivalent to the elapsed time). 

T KeyGen ShareSign1 ShareSign2 ShareSign3 Combine Verify 
4 0.592 20.092 0.539 1.588 1.128 1.094 

16 0.417 20.076 2.102 5.559 1.209 1.093 
64 0.817 21.830 8.216 21.350 1.579 1.100 

256 2.838 33.549 32.788 84.333 3.186 1.095 
1024 11.491 67.213 131.887 338.614 11.571 1.106 

This implementation recycles components such as NTT and signature serialization from 
the Raccoon NIST submission [dPEK+23]. It uses κ-bit MACs keyed with pairwise seedi,j 
(and sid) to authenticate contributions, as discussed in Section 3.1. The Uniform and Gaussian 
random samplers, MACs and PRFs are built from the SHAKE128 [NIS15] extensible output 
function. This function (or, more precisely, its Keccak permutation component) dominates 
the overall running time, requiring up to 80% of cycles. This is despite the code utilizing an 
AVX2 SIMD Keccak that computes four permutations at the same time. 

At κ = 128, public key is |vk| = 3856 bytes. Due to non-uniform distributions, the ac-
tual signature encoding size is variable, but can be (with high probability) upper bounded at 
|sig| ≤ 12736 bytes. Communicating the secret key shares and PRF/MAC seed pairs to each 
of the N potential signers requires 12556 + 32N bytes with this implementation. The signing 

1 1bandwidth requirements (in bytes) are |contrib1| = 12576, |contrib2| = 15680 + 16T , andT T 
1 |contrib3| = 12544, bringing the total per-signer contribution to 40800 + 16T bytes. If asym-T 
metric signatures rather than pairwise MACs were used, each signer contribution would have 
a size asymptotically independent of T . 

6 Full Version 

The full version of this work can be found at: 

https://tprest.github.io/pdf/pub/threshold-raccoon-anonymous.pdf 
8 The Threshold Raccoon implementation used to generate these benchmarking results is available to review-

ers: https://anonymous.4open.science/r/ec24-thrc-F64C 
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7 Omitted Consistency Check Algorithms in Threshold Raccoon 

Here we include the deferred consistency checks from the signing protocol in Threshold Rac-
coon (see Fig. 7). Note that by ConsistCheck1, we always have j ∈ act and act ⊆ [N ] for any 
user index j in state and act in state.session[sid], if a session for sid exists. In particular, this 
check will be omitted from ConsistCheck2 and ConsistCheck3. 

Algorithm 6: ConsistCheck1(state, sid, act, msg) 
1: assert{ sid contains (act, msg) } ▷ Check that session id sid is in correct form 
2: assert{ state.session[sid] = ⊥ } ▷ Check that user never signed using sid 
3: Fetch user index j from state 
4: assert{ j ∈ act ∧ act ⊆ [N ] } 

Algorithm 7: ConsistCheck2(state, sid, contrib1) 
1: assert{ state.session[sid] ̸= ⊥ } ▷ The user already created a session with sid 
2: Let session = state.session[sid] 
3: Fetch user index j from state 
4: Fetch (sid ′ , act, cmtj , mj ) from session 
5: assert{ The set of keys (i.e. indices) in contrib1 is exactly act } 

▷ Check contrib1 includes |act| number of first round messages 
6: for i ∈ act do 
7: assert{ contrib1[i] is of the form contrib1[i] = (cmti, mi) } 

▷ Check contrib1 is defined over the indices in act and of a valid form 

8: assert{ session is of the form session = {sid ′ , act, msg, 1, {rj , wj , contrib1[j]}, ∅} } 
▷ Check sid and contrib1[j] is consistent with internal state 

Algorithm 8: ConsistCheck3(state, sid, contrib2) 
1: assert{ state.session[sid] ̸= ⊥ } ▷ The user already opened a session with sid 
2: Let session = state.session[sid] 
3: Fetch user index j from state 
4: Fetch (sid ′ , act) from session 
5: assert{ The set of keys in contrib2 is exactly act } 

▷ Check contrib2 includes |act| number of second round messages 
6: for i ∈ act do 
7: assert{ contrib2[i] is of the form contrib2[i] = (wi, σi) } 

▷ Check contrib2 is defined over the indices in act and of a valid form 

8: assert{ session is of the form session = {sid ′ , act, msg, 2, {rj , wj , contrib1[j]}, contrib1} } 
▷ Check sid is consistent with internal state 

Figure 8: Consistency checks for Threshold Raccoon 
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