A Masked Pure-Hardware Implementation of Kyber Cryptographic Algorithm

Tendayi Kamucheka, Alexander Nelson, David Andrews, Miaoqing Huang

Acknowledgement: NIST – Award 60NANB20D016
About Us

- Computer Systems Design Lab & AESIR Lab at University of Arkansas – Computer Science & Computer Engineering Department

- Background – Hardware design, Embedded Systems, High Performance Computing, FPGAs, GPGPU

(Top) Tendayi Kamucheka, Alexander Nelson
(Bottom) David Andrews, Miaoqing Huang
Motivations

• Part of larger effort to set up testing lab for PQC algorithms
• Demonstrate an implementation agnostic approach to masking Kyber (& other lattice-based schemes) on FPGA
• Highlight measurable noise differences between hiding and hiding-plus-masking techniques
Design: Unmasked

- As close as possible to reference design
- Common modules are reused between encryption and decryption operations
- Some hiding techniques via loop unrolling for exposed modules

Re-use, Re-use, Re-use!!!
Design: Masked

- First-order masking applied to the Decryption algorithm with the reuse of common modules
- Series of PRNGs produces random inputs
- Overall algorithm avoids directly handling secret keys during decryption operation
 - $sk_1 = sk + R$
 - $sk_2 = R$
 - $m = m_1 + m_2$
Measurements & Setup

- **Equipment:**
 - Tektronix MDO 3 Series oscilloscope
- **Platform:** Xilinx Virtex-7 (VC707)
- **Measured** 5, 10, and 20k traces from VCCAUX_IO & VCCBRAM V & I power rails
- **Results** shown are 20k random vs. fixed inputs for unmasked and masked inputs

<table>
<thead>
<tr>
<th>Power Rail</th>
<th>Traces</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCAUX_IO (V)</td>
<td>5, 10, 20k</td>
</tr>
<tr>
<td>VCCAUX_IO (I)</td>
<td>5, 10, 20k</td>
</tr>
<tr>
<td>VCCBRAM (V)</td>
<td>5, 10, 20k</td>
</tr>
<tr>
<td>VCCBRAM (I)</td>
<td>5, 10, 20k</td>
</tr>
</tbody>
</table>
Evaluation

• Standard TVLA for evaluation
 • Leakage threshold set to ±4.5
 • Pass/Fail per point
• Welch’s t-test is a statistical test that highlights differences between two datasets
• TVLA is not a security guarantee – but the magnitude of t-values gives an idea of (signal to noise) SNR ratio

\[t = \frac{X_A - X_B}{\sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}} \]

Where:
- \(X_A \) = sample mean for each point across time
- \(S_A \) = standard deviation
- \(N_A \) = cardinality

\[\text{Leakage threshold} \]

\[\text{NOT a bulletproof test!} \]
Results

- **Hiding Only**
 - Unmasked VCCAUX_IO (V)
 - Masked VCCAUX_IO (V)
 - Unmasked VCCAUX_IO (I)
 - Masked VCCAUX_IO (I)

- **Hiding + Masking**
 - Unmasked VCCAUX_IO (V)
 - Masked VCCAUX_IO (V)
 - Unmasked VCCAUX_IO (I)
 - Masked VCCAUX_IO (I)

- **Hiding Only**
 - Unmasked VCCBRAM (V)
 - Masked VCCBRAM (V)

- **Hiding + Masking**
 - Unmasked VCCBRAM (V)
 - Masked VCCBRAM (V)

Time = 1e-5 sec

Time = 1e-7 sec
Conclusions

• Demonstrated an implementation agnostic design for masking Kyber
• Demonstrated effectiveness of 1st-order masking for Kyber on FPGA

• Critique:
 • Remove decoupling capacitors for cleaner signal and better measurements

• Future work:
 • Continued developed of testing capabilities of testing platform
Questions?

• Contact info:
 • Tendayi Kamucheka – tfkamuch@uark.edu

 • Computer Systems Design Lab (Lab P.I.s)
 • Miaoqing Huang – mqhuang@uark.edu
 • David Andrews – dandrews@uark.edu

 • AESIR Lab (Lab P.I.)
 • Alexander Nelson – ahnelson@uark.edu