
F1: A FAST AND
PROGRAMMABLE

ACCELERATOR FOR FULLY
HOMOMORPHIC ENCRYPTION

1/12/2022

NICK GENISE

WORK DONE AT SRI INTERNATIONAL

JOINT WITH AXEL FELDMANN, NIKOLA SAMARDZIC, ALEKSANDAR KRASTEV, SRINI DEVADAS, RON DRESLINSKI,
KARIM ELDEFRAWY, CHRISTOPHER PEIKERT, DANIEL SANCHEZ

FUNDED BY DARPA DPRIVE

1

FULLY HOMOMORPHIC ENCRYPTION (FHE)

Example, a patient encrypts their symptoms, and the
function is a medical diagnosis.

encrypted

Computer
w/out key!

2

A SHORT HISTORY OF FHE

1978: Rivest, Adleman, and Dertouzos propose “privacy homomorphism”. 𝐸𝑛𝑐 𝑚 ↦
𝐸𝑛𝑐(𝑓 𝑚).

2009: Gentry finds the first fully homomorphic encryption scheme. Bases it on a
lattice-based hardness assumption.

2011: Brakerski, Gentry, and Vaikuntanathan propose an FHE scheme based on the
popular (Ring) Learning with Errors problem.

Today: FHE was 100,000x slower than unencrypted computation, but recent efforts
are speeding this up using application specific integrated circuit (ASICs).

3

(R)LWE

4

LEARNING WITH ERRORS (LWE)

Let 𝑛 ∈ ℕ be in the hundreds, 𝑞 a function of 𝑛, and 𝜒 be a “small” distribution over
ℤ𝑞.

In 2005, Regev showed the following distribution is pseudorandom assuming worst-
case lattice problems are hard for quantum computers:

(𝒂𝑖 , 𝒂𝑖 , 𝒔 + 𝑒𝑖).

where 𝒂𝑖 ← 𝒰(ℤ𝑞
𝑛) are uniformly random vectors, 𝑒𝑖 ← 𝜒, 𝒔 ← 𝜒𝑛

Search version: can you recover 𝒔 given noisy inner-products?

5

LEARNING WITH ERRORS (LWE), ENCRYPTION SCHEME

Key Gen. : 𝑨 ← ℤ𝑞
𝑚×𝑛 for 𝑚~𝑛 𝑙𝑜𝑔(𝑞) , 𝒔 as before and 𝒆 ← 𝜒𝑚

pk = 𝑨, 𝑨𝒔 + 𝒆 = (𝑨, 𝒃), sk = 𝒔.

Enc(m): Sample a random binary vector 𝒖 and return

ct := (𝒖𝒕𝑨, 𝒖𝒕𝒃 + 𝛽𝑚) = (𝒄𝟎, 𝑐1)

where 𝛽 is a scaling, decoding factor.

Dec(ct, sk): 𝑐1 − 𝒔𝒕𝒄𝟎 ≈ 𝛽𝑚. Can recover message if 𝛽 > noise.

Note, linearly-homomorphic! (with growing noise)

6

RING LEARNING WITH ERRORS (RLWE)

Problem with LWE: The public keys are huge! Roughly 𝜃(𝜆2𝑙𝑜𝑔2(𝜆)) bits.

In 2009, partially motivated by Gentry’s FHE breakthrough, Lyubashevsky, Peikert, and
Regev proved a more compact version of LWE is secure assuming the hardness of
worst-case problems on ideal lattices.

Eventual result: efficient lattice-based encryption and a base scheme for FHE!

7

RING LEARNING WITH ERRORS (RLWE), ENCRYPTION
SCHEME

Polynomials: 𝑅𝑞 ≔ ℤ𝑞[𝑥]/(𝑥
𝑁 + 1) where 𝑁 = 2some power ≥ 1024.

𝜒 is a distribution over 𝑅𝑞 by the sampling the same distribution over polynomial

coefficients.

Key Gen: 𝑎 ← 𝑅𝑞 and 𝑠, 𝑒 ← 𝜒

pk = 𝑎, 𝑎𝑠 + 𝑒 = (𝑎, 𝑏), sk = 𝑠.

Enc(m): Sample a random binary polynomial 𝑢 and return

ct := (𝑢𝑎, 𝑢𝑏 + 𝛽𝑚) = 𝑐0, 𝑐1 ∈ 𝑅𝑞 × 𝑅𝑞

where 𝛽 is a scaling, decoding factor.

Note, linearly-homomorphic! (with growing noise) 8

BGV

9

ENCRYPTION AND DECRYPTION

A BGV encryption is an RLWE encryption with the message in the “least sig. bits:”

Plaintext space = 𝑅𝑝 = ℤ𝑝[𝑥]/(𝑥
𝑁 + 1)

𝐸𝑠 𝑚 = 𝐸𝑛𝑐(𝑚): ct = 𝑐0, 𝑐1 = 𝑎𝑠 + 𝑝𝑒 +𝑚,−𝑎 ∈ 𝑅𝑞 × 𝑅𝑞

𝑝 ≪ 𝑞 with the former prime in ℤ

Note: 𝑐0 + 𝑐1𝑠 𝑚𝑜𝑑 𝑞 = 𝑝𝑒 +𝑚

10

HOMOMORPHIC ADDITION

𝐸𝑠 𝑚 + 𝐸𝑠 𝑚′ = 𝐸𝑠 𝑚+𝑚′

𝑐0, 𝑐1 + 𝑐0′, 𝑐1′ = [𝑎 + 𝑎′]𝑠 + 𝑝[𝑒 + 𝑒′] + 𝑚,−𝑎 − 𝑎′

Noise magnitude grows by ~1 bit.

11

HOMOMORPHIC MULTIPLICATION

Idea: view through the decryption equation, 𝑝𝑒 +𝑚 = 𝑐0 + 𝑐1𝑠 𝑚𝑜𝑑 𝑞. Then,

𝑚𝑚′ + 𝑝 small = 𝑐0𝑐0
′ + 𝑠 𝑐0𝑐1

′ + 𝑐0
′𝑐1 + 𝑠2𝑐1𝑐1

′ 𝑚𝑜𝑑 𝑞.

Or, (𝑐0𝑐0
′ , 𝑐0𝑐1

′ + 𝑐0
′𝑐1, 𝑐1𝑐1

′) encrypts 𝑚𝑚′ under 1, 𝑠, 𝑠2 .

We use an encryption of 𝑠2 to “Relinear-ize” back to an encryption under 𝑠!

Noise size squares (new noise ≈ 𝑒𝑒′ aka double the noise bits)!

12

POLYNOMIALS/DATA TYPES: CRT ON COEFFICIENTS

So far, we’ve ignored the structure of the modulus 𝑞.

In practice, we take 𝑞 = 𝑞1𝑞2⋯𝑞𝐿 where each 𝑞𝑖 is a distinct prime of machine-size
(32 or 64 bits).

Then, we can represent a coefficient of a polynomial in 𝑅𝑞 via the Chinese remainder

theorem: ℤ𝑞 ≅ ℤ𝑞1 × ℤ𝑞2 ×⋯× ℤ𝑞𝐿 via

𝑥 ∈ ℤ𝑞 , 𝐶𝑅𝑇 𝑥 = (𝑥 𝑚𝑜𝑑 𝑞1, 𝑥 𝑚𝑜𝑑 𝑞2, … , 𝑥 𝑚𝑜𝑑 𝑞𝐿)

Addition and multiplication in-parallel!

13

POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIALS

Using the CRT on coefficients allows us to represent 𝑅𝑞 as

𝑅𝑞 ≅ 𝑅𝑞1 × 𝑅𝑞2 ×⋯× 𝑅𝑞𝐿

What about each 𝑅𝑞𝑖 = ℤ𝑞𝑖[𝑥]/(𝑥
𝑁 + 1)?

Do the FFT!

The FFT modulo a prime number is called the NTT (number-theoretic
transform).

14

POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIALS
CONT.

If each 𝑞𝑖 ≡ 1𝑚𝑜𝑑 2𝑁, then ℤ𝑞𝑖 contains a multiplicative subgroup of size 2𝑁 which

is the roots of 𝑥𝑁 + 1 (2𝑁-th roots of unity).

The NTT is the evaluation at all 𝑁 of these points:

𝑓 ∈ 𝑅𝑞𝑖 , 𝑁𝑇𝑇 𝑓 = (𝑓 𝜔 , 𝑓 𝜔3 , … , 𝑓 𝜔2𝑁−1).

Addition and multiplication over 𝑅𝑞𝑖 in in-parallel!

Just like the FFT, the roots of unity allow us to compute this in time 𝑂(𝑁 ⋅ log(𝑁)).

15

CRT AND NTT: MAIN POINTS

CRT allows us to represent 𝑓 ∈ 𝑅𝑞 as 𝐿 polynomials in

𝑅𝑞1 × 𝑅𝑞2 ×⋯× 𝑅𝑞𝐿 .

NTT allows to represent 𝑅𝑞1 as ℤ𝑞𝑖
𝑁 .

This is the “double-CRT” form. It allows polynomial addition and multiplication to be
done in parallel over finite fields.

Much of the overhead in (software) FHE is computing forward and inverse NTT’s.
This is because most operations require us to switch between NTT form and
coefficient form.

16

PLAINTEXT SLOTS

The same idea applies to 𝑝. That is, if 𝑝 ≡ 1 𝑚𝑜𝑑 2𝑁, then the NTT can be applied to
the plaintext space 𝑅𝑝 ≅ ℤ𝑝

𝑁.

We call this a “packed” ciphertext since each ct can encrypt 𝑁 elements in ℤ𝑝. Each

plaintext element is in a plaintext “slot.”

For large computations, we need cross-talk between slots. This is done by signed
permutations (automorphisms) on the ct polynomials. Note, these automorphisms are
transitive on the slots.

𝜎 𝑎𝑠 + 𝑝𝑒 +𝑚 = 𝜎 𝑎 𝜎 𝑠 + 𝑝𝜎 𝑒 + 𝜎(𝑚).

Encryption under the wrong key! Need to key-switch again :/.

17

GENERAL CASE FOR PLAINTEXT SLOTS, POWER OF
TWO DIMENSION

Let 𝑝 be a prime not equal to 2. Then 𝑥𝑛 + 1 factors into irreducible
polynomials of the same degree, d, over the finite field ℤ𝑝!

𝑥𝑛 + 1 = ෑ

𝑖∈{1,… ,𝑙}

𝐹𝑖(𝑥)

The degree 𝑑 is the smallest number s.t. 𝑝 ≡ 1 𝑚𝑜𝑑 2𝑛. Then 2𝑛 = 𝑙𝑑.

18

WHAT ARE THE GENERAL SLOTS?
Our old friend, the Chinese Remainder Theorem, gives us the answer:

𝑅𝑝 =
ℤ𝑝 𝑥

(𝑥𝑛 + 1)
≅
ℤ𝑝 𝑥

𝐹1 𝑥
⊗

ℤ𝑝 𝑥

𝐹2 𝑥
⊗⋯⊗

ℤ𝑝 𝑥

𝐹𝑙 𝑥
≅ 𝐺𝐹(𝑝𝑑)𝑙

This map is given by evaluating a polynomial in 𝑅𝑝 by a root of each polynomial. Let
𝜂1 be a root to 𝐹1(𝑥) and 𝜅𝑖 be distinct coset representatives of ℤ𝑚

∗ / 𝑝 .

𝑓 𝑥 ↦ 𝑓 𝜂1
𝜅1 , 𝑓 𝜂2

2 , … , 𝑓 𝜂𝑙
𝜅𝑙

This can be done with a DFT over a finite field!

19

COMPARISON: NTT V.S. GENERAL
NTT: When 𝑞 ≡ 1 𝑚𝑜𝑑 2𝑛, 𝑥𝑛 + 1 = ς𝑖∈{1,3,…,2𝑛−1}(𝑥 − 𝜔𝑖) splits completely into

degree-1 factors. Then,

𝑅𝑞 =
ℤ𝑞 𝑥

(𝑥𝑛 + 1)
≅

ℤ𝑞 𝑥

𝑥 − 𝜔1
⊗

ℤ𝑞 𝑥

𝑥 − 𝜔3
⊗⋯⊗

ℤ𝑞 𝑥

𝑥 − 𝜔2𝑛−1
≅ ℤ𝑞

𝑛

General: When 𝑝 is a prime not equal to 2, 𝑥𝑛 + 1 = ς𝑖∈{1,… ,𝑙}𝐹𝑖(𝑥) factors into

same-degree irr. polynomials and

𝑅𝑝 =
ℤ𝑝 𝑥

(𝑥𝑛 + 1)
≅
ℤ𝑝 𝑥

𝐹1 𝑥
⊗

ℤ𝑝 𝑥

𝐹2 𝑥
⊗⋯⊗

ℤ𝑝 𝑥

𝐹𝑙 𝑥
≅ 𝐺𝐹(𝑝𝑑)𝑙

20

PLAINTEXT SLOTS: MAIN POINTS

We apply signed permutations to enable plaintext “cross-talk.” Usually we
pick 𝜅𝑖 so these are rotations on the slots.

After each permutation, we need to do a key-switching operation (usually
represented as a matrix-vector multiply).

Key-switching cannot by done in NTT form (evaluation rep.).

21

THE FHE INTERFACE (SERVER SIDE)

Ciphertext Add: Add the polynomials 𝑚𝑜𝑑 𝑞, 𝑐0, 𝑐1 + 𝑐0′, 𝑐1′ .

Ciphertext Multiply: Compute (𝑐0𝑐0
′ , 𝑐0𝑐1

′ + 𝑐0
′𝑐1, 𝑐1𝑐1

′) then relinearize to 𝑐0′′, 𝑐1′′ .

Ciphertext Rotate: Compute 𝜎(𝑐0), 𝜎(𝑐1) then key-switch.

22

ACCELERATING FHE WITH ASICS (F1)

23

CHALLENGES TO
ACCELERATING

You want a chip that:

1. stores multiple ciphertexts and hints,

2. accelerates FHE operations like ADD, MULT, and
ROTATE,

3. reduces bottlenecks to data-movement or high re-use,

4. with few functional units with high throughput.

24

OVERVIEW OF F1

Small Design: 151 𝑚𝑚2

Large scratch pad: 64 𝑀𝐵

Compute clusters with FUs for NTT,
mod mult, mod add, and
automorphism.

Each FU operates on an RNS
polynomial, or a (1K-16K) vector of 24-
bit values.

Note, for 𝑁 = 16𝐾, 𝐿 = 16, then a ct
is 2𝑀𝐵. (A KSH is 32 𝑀𝐵.)

25

NTT-FRIENDLY MONTGOMERY MULTIPLIERS

Recall that the RNS moduli, 𝑞𝑖, are of the form 𝑞𝑖 ≡ 1𝑚𝑜𝑑 2𝑁.

We use a Word-Level Montgomery multiplier, word size ~11 bits, for our modular multipliers.

This algorithm was initially used by Can Mert, Ozturk, and Savas in accelerating NTTs using
FPGAs. (eprint)

We modify it to 𝑞𝑖 s.t. 𝑞𝑖 ≡ −1 𝑚𝑜𝑑 216. This allows us to remove one multiplier and save area
and power.

26

https://eprint.iacr.org/2019/109.pdf

4 STEP NTT

Recall, the NTT is an FFT for modular arithmetic. Given 𝑓 ∈ 𝑅/𝑞𝑖𝑅, compute

𝑁𝑇𝑇 𝑓 = 𝑓 𝜔 , 𝑓 𝜔3 , … , 𝑓 𝜔2𝑁−1

where 𝜔 is a primitive 2𝑁th root of unity mod 𝑞𝑖.

We do both the forward and inverse NTT with the same hardware. This is by using a 4 Step NTT and mixing DIT and DIF
butterflies. Our NTT is only for 𝐸 = 128 elements. So, we reduce all NTT to 128-point NTTs.

27

AUTOMORPHISM FUNCTIONAL UNITS

Each automorphism is 𝜎 𝑓 𝑥 ↦ 𝑓(𝑥𝑖) for some 𝑖 ∈ ℤ2𝑁
∗ (odd).

The automorphisms form a group and are generated by 𝑖 = −1 and 𝑖 = 3.

Standard hardware approaches fail! A general 16𝐾 permutation is too complex.

Our functional unit reduces to how an automorphism acts on a degree 𝐸 = 128 subfield and the basis. For
example, in 𝑁 = 256, we have 𝑓 𝑥 = 𝑓0 𝑥2 + 𝑥𝑓1 𝑥2 . (Basis is {1, 𝑥} here.)

𝜎 𝑓 𝑥 = 𝜎 𝑓0 𝑥2 + 𝜎(𝑥)𝜎 𝑓1 𝑥2

28

AUTOMORPHISM FUNCTIONAL UNIT

29

𝜎 𝑓 𝑥 = 𝜎 𝑓0 𝑥2 + 𝜎(𝑥)𝜎 𝑓1 𝑥2

PERFORMANCE AND FUTURE WORK

F1 Accelerates FHE programs by 𝟓𝟒𝟎𝟎 × −𝟏𝟕𝟎𝟎𝟎 × compared to software solutions run on a standard
CPU.

Future work: accelerate more complex FHE operations (e.g., key-switching), focus on bootstrapping, and
accelerate FHEW/TFHE schemes. (F1 is best used on BGV, BFV, and CKKS.)

30

THANK YOU!

31

