Hash functions, program secrets and lattices

Giorgos Zirdelis

University of Maryland
giorgos@umd.edu

Talk outline

国 Topic is lattice-based cryptography

- Hash Functions
- Program Obfuscation
-...
- Common theme: Quest for "universal" tools

Cryptographic Hash Functions

Hash functions

- Hash functions are used everywhere in cryptography
- Both in theory and practice
- Hash-and-Sign, Merkle tree, \mathbf{B}, \ldots
- SHA-2, SHA-3
- Discrete Log
- Isogeny-based
- Factoring
- Elliptic Curves
- Lattice-based

Hash functions

- Hash functions are used everywhere in cryptography
- Both in theory and practice
- Hash-and-Sign, Merkle tree, $\mathbf{\#}, \ldots$
- SHA-2, SHA-3
- Discrete Log
- Isogeny-based
- Factoring
- Elliptic Curves
- Lattice-based

Goal: Given h, find $x \neq x^{\prime}$ s.t. $h(x)=h\left(x^{\prime}\right)$
Security: such x, x^{\prime} always exist but are hard to find

Hash functions

- Hash functions are used everywhere in cryptography
- Both in theory and practice
- Hash-and-Sign, Merkle tree, $\mathbf{\#}, \ldots$
- SHA-2, SHA-3
- Discrete Log
- Isogeny-based
- Factoring
- Elliptic Curves
- Lattice-based

Goal: Given h, find $x \neq x^{\prime}$ s.t. $h(x)=h\left(x^{\prime}\right)$
Security: such x, x^{\prime} always exist but are hard to find

- Which hash function is most secure?

Provably answer this, at least in theory?

Most secure?

- What does most secure mean for some $\frac{\underline{\omega}}{h}$?

Most secure?

- What does most secure mean for some $\frac{\sqrt{2}}{h}$?
- Collisions for $\frac{\sqrt{h}}{h}$ must be as hard, as in any other h

Most secure?

- What does most secure mean for some $\frac{\sqrt{2}}{h}$?
- Collisions for $\frac{\sqrt{h}}{h}$ must be as hard, as in any other h
- Implies a reduction: $\forall h, \quad h \leq \frac{\underline{\underline{W}}}{h}$
- for fixed security parameter
- $\frac{\underline{\underline{u}}}{h}$ inherits hardness from all h

Most secure?

- What does most secure mean for some $\frac{\underline{\underline{\omega}}}{h}$?
- Collisions for $\frac{\sqrt{h}}{h}$ must be as hard, as in any other h
- Implies a reduction: $\forall h, \quad h \leq \frac{\underline{\underline{W}}}{h}$
- for fixed security parameter
- $\frac{\underline{\underline{u}}}{h}$ inherits hardness from all h
- What are the reduction steps?

Reduction steps $h \rightarrow C_{h} \rightarrow \frac{\underline{u}}{h}$

Hash function h

Reduction steps $h \rightarrow C_{h} \rightarrow \frac{\stackrel{\rightharpoonup}{h}}{h}$

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)

- $h \rightarrow C_{h}$

Reduction steps $h \rightarrow C_{h} \rightarrow \frac{\sqrt[4]{h}}{h}$

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)

- $h \rightarrow C_{h}$

2. Reduce C_{h} to a hash function $\frac{\underline{\underline{x}}}{h}$

- $C_{h} \leq \frac{\underline{\nu}}{h}$
- Find collisions in $\stackrel{\underline{v}}{h} \Longrightarrow$ Find collisions in $C_{h}, \forall h$

Reduction steps $h \rightarrow C_{h} \rightarrow \frac{\underline{2}}{h}$

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)

- $h \rightarrow C_{h}$

2. Reduce C_{h} to a hash function $\frac{\underline{\underline{x}}}{h}$

- $C_{h} \leq \frac{\underline{\nu}}{h}$
- Find collisions in $\stackrel{\underline{v}}{h} \Longrightarrow$ Find collisions in $C_{h}, \forall h$

3. Declare $\frac{\underline{\underline{u}}}{h}$ as the most secure (WC/AVG)

Reduction steps $h \rightarrow C_{h} \rightarrow \frac{\text { w }}{h}$

Hash function h

1. Represent h in a universal way (e.g. use boolean circuits)

- $h \rightarrow C_{h}$

2. Reduce C_{h} to a hash function $\frac{\underline{\underline{x}}}{h}$

- $C_{h} \leq \frac{\underline{\nu}}{h}$
- Find collisions in $\frac{\underline{\underline{\nu}}}{h} \Longrightarrow$ Find collisions in $C_{h}, \forall h$

3. Declare $\frac{\underline{\bar{\nu}}}{h}$ as the most secure (WC/AVG)

What should $\stackrel{\stackrel{\sim}{\underline{\underline{v}}}}{h}$ be?

In the 90s...

- The question about $\stackrel{\underline{\underline{\nu}}}{h}$ was asked in [Papadimitriou '94]
...in the broader context of total problems (TFNP)
- It remained open, what $\frac{\underline{\underline{u}}}{h}$ to use...
...it all starts with the pigeonhole principle

In the 90s...

- The question about $\frac{\underline{\underline{\underline{n}}}}{h}$ was asked in [Papadimitriou '94] ...in the broader context of total problems (TFNP)
- It remained open, what $\frac{\underline{\underline{\omega}}}{h}$ to use...
...it all starts with the pigeonhole principle
- We use it to define hash functions, prior to the reduction

The pigeonhole principle - a reminder

Any function $h:[n] \rightarrow[m]$ with $n>m$ must have collisions

i.e. when \mid domain $|>|r a n g e|$

$$
[n]=\{1, \ldots, n\}
$$

Define hash functions

- Define the set of all (poly-size) functions $h:[n] \rightarrow[m]$, with $n>m$

Define hash functions

- Define the set of all (poly-size) functions $h:[n] \rightarrow[m]$, with $n>m$
- i.e. all functions that compress their input
- for convenience, we refer to these as hash functions

Define hash functions

- Define the set of all (poly-size) functions $h:[n] \rightarrow[m]$, with $n>m$
- i.e. all functions that compress their input
- for convenience, we refer to these as hash functions
- compress input \rightarrow collisions exist \rightarrow goal: find collisions

Define hash functions

- Define the set of all (poly-size) functions $h:[n] \rightarrow[m]$, with $n>m$
- i.e. all functions that compress their input
- for convenience, we refer to these as hash functions
- compress input \rightarrow collisions exist \rightarrow goal: find collisions
- This set is the union of:

1. Cryptographic hash functions (e.g. SHA-3, SIS)
2. Non-cryptographic hash functions (e.g. pairwise independence)

Represent h - (step 1) - why circuits?

Want a universal way to represent any (poly-size) hash function h (i.e. convenient to work with)

Represent h - (step 1) - why circuits?

Want a universal way to represent any (poly-size) hash function h (i.e. convenient to work with)

- Be agnostic of groups, rings, fields, distributions, keys*, ...
- Represent every hash function h, in the same way

Represent h - (step 1) - why circuits?

Want a universal way to represent any (poly-size) hash function h (i.e. convenient to work with)

- Be agnostic of groups, rings, fields, distributions, keys*, ...
- Represent every hash function h, in the same way
- Use the (poly-size) boolean circuit C_{h} that implements h
$C_{h}:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad$ with $n>m \quad$ Sig
n, m depend on the security parameter
* keys are hardcoded in C_{h}, i.e. $C_{h_{k}}$ essentially

A subtle point

- By definition, $\left\{C_{h}\right\}$ includes all (poly-size) hash function circuits that map $\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad$ with $n>m$
- Even for hash functions we might have not discovered yet!

A subtle point

- By definition, $\left\{C_{h}\right\}$ includes all (poly-size) hash function circuits that map $\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad$ with $n>m$
- Even for hash functions we might have not discovered yet!

Note: we do not have to enumerate or explicitly know this set

The question in [Pap94] - (step 2)

- Question: Reduce C_{h} to a "natural" hash function $\frac{\underline{\underline{\underline{w}}}}{h}$? What is "natural" \& why?

The question in [Pap94] - (step 2)

- Question: Reduce C_{h} to a "natural" hash function ? What is "natural" \& why?
- Circuits vs "everyday" problems
- NP-Hard: Circuit-SAT \leq_{p} Subset-Sum, Clique, Vertex Cover, TSP i.e. "natural" problems

The question in [Pap94] - (step 2)

- Question: Reduce C_{h} to a "natural" hash function $\frac{\underline{\bar{L}}}{h}$? What is "natural" \& why?
- Circuits vs "everyday" problems
- NP-Hard: Circuit-SAT \leq_{p} Subset-Sum, Clique, Vertex Cover, TSP i.e. "natural" problems
- Under every C_{h} maybe a "natural" $\frac{\underline{u}}{h}$ like the Short Integer Solutions (SIS) is hidden...

The question in [Pap94] - (step 2)

- Question: Reduce C_{h} to a "natural" hash function $\frac{\underline{\bar{\omega}}}{h}$? What is "natural" \& why?
- Circuits vs "everyday" problems
- NP-Hard: Circuit-SAT \leq_{p} Subset-Sum, Clique, Vertex Cover, TSP i.e. "natural" problems
- Under every C_{h} maybe a "natural" $\frac{\underline{\underline{u}}}{h}$ like the Short Integer Solutions (SIS) is hidden...
- This would imply:

Finding collisions in any C_{h} reduces to finding Short Integer Solutions!

Goal in summary

Goal in summary

Our results (almost there)

We reduce any hash function to an almost lattice problem, the constrained Short Integer Solutions problem (constrained-SIS)

- Sotiraki-Zampetakis-Z FOCS'18
- We believe the answer to be a lattice problem (ongoing work)
$\stackrel{?}{\Rightarrow}$ lattice-based hash functions are the most secure
- We show the first $\frac{\underline{\underline{w}}}{h}$
- Solves open problem from [Pap94]
- Our reduction is worst-case
next: SIS reminder

The SIS problem [Ajtai '96, Micciancio-Regev '04]

- Given $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}$ with $n>m \log q$ (s.t. collisions exist)
- Find distinct $\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n}$ s.t.

The SIS problem [Ajtai '96, Micciancio-Regev '04]

- Given $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}$ with $n>m \log q$ (s.t. collisions exist)
- Find distinct $\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n}$ s.t.

The SIS problem [Ajtai '96, Micciancio-Regev '04]

- Given $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}$ with $n>m \log q$ (s.t. collisions exist)
- Find distinct $\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n}$ s.t.

...implies short $\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \in\{0, \pm 1\}^{n}$ s.t. $\mathbf{A}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=\mathbf{0}$

The constrained-SIS problem

- Given $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ and semi-structured $\mathbf{G} \in \mathbb{Z}_{q}^{d \times n}$ with $n>(m+d) \log q$

The constrained-SIS problem

- Given $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ and semi-structured $\mathbf{G} \in \mathbb{Z}_{q}^{d \times n}$ with $n>(m+d) \log q$
- Find distinct $\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n}$ s.t.

$(\bmod q)$

The constrained-SIS problem

- Given $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ and semi-structured $\mathbf{G} \in \mathbb{Z}_{q}^{d \times n}$ with $n>(m+d) \log q$
- Find distinct $\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n}$ s.t.

$(\bmod q)$

constrained-SIS vs SIS

constrained-SIS (WC)

A is arbitrary
\mathbf{G} is semi-structured

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n} \text { s.t. }
$$

$$
\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2} \text { and } \mathbf{G} \mathbf{x}_{1}=\mathbf{0}=\mathbf{G} \mathbf{x}_{2}
$$

SIS (AVG)

A is uniformly random

$$
\begin{gathered}
\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n} \text { s.t. } \\
\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2}
\end{gathered}
$$

constrained-SIS vs SIS

constrained-SIS (WC)

A is arbitrary
G is semi-structured

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n} \text { s.t. }
$$

$$
\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2} \text { and } \mathbf{G} \mathbf{x}_{1}=\mathbf{0}=\mathbf{G x}_{2}
$$

- unclear how to sample "most secure" keys

SIS (AVG)

A is uniformly random

$$
\begin{gathered}
\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n} \text { s.t. } \\
\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2}
\end{gathered}
$$

- can sample keys
- unclear if SIS is the most secure h

constrained-SIS vs SIS

constrained-SIS (WC)

A is arbitrary
G is semi-structured

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n} \text { s.t. }
$$

$$
\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2} \text { and } \mathbf{G} \mathbf{x}_{1}=\mathbf{0}=\mathbf{G x}_{2}
$$

- unclear how to sample "most secure" keys

SIS (AVG)

A is uniformly random

$$
\begin{gathered}
\mathbf{x}_{1}, \mathbf{x}_{2} \in\{0,1\}^{n} \text { s.t. } \\
\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2}
\end{gathered}
$$

- can sample keys
- unclear if SIS is the most secure h

Goal: (aka reduction)

1. show that constrained-SIS is a hash function
2. reduce any hash function to constrained-SIS

Goal: constrained-SIS is a hash function - pt1

Goal:

1. show that constrained-SIS $=(\mathbf{A}, \mathbf{G})$ is a hash function

Goal: constrained-SIS is a hash function - pt1

Goal:

1. show that constrained-SIS $=(\mathbf{A}, \mathbf{G})$ is a hash function

- A and G must compress their common input

Goal: constrained-SIS is a hash function - pt1

Goal:

1. show that constrained-SIS $=(\mathbf{A}, \mathbf{G})$ is a hash function

- A and \mathbf{G} must compress their common input
- A is compressing, choice of params \checkmark

Goal: constrained-SIS is a hash function - pt1

Goal:

1. show that constrained-SIS $=(\mathbf{A}, \mathbf{G})$ is a hash function

- A and \mathbf{G} must compress their common input
- A is compressing, choice of params \checkmark
- G is compressing, choice of params...

Goal: constrained-SIS is a hash function - pt1

Goal:

1. show that constrained-SIS $=(\mathbf{A}, \mathbf{G})$ is a hash function

- A and \mathbf{G} must compress their common input
- A is compressing, choice of params \checkmark
- G is compressing, choice of params...
- ...but why should $\mathbf{G x}=\mathbf{0}$?

Goal: constrained-SIS is a hash function - pt1

Goal:

1. show that constrained-SIS $=(\mathbf{A}, \mathbf{G})$ is a hash function

- A and \mathbf{G} must compress their common input
- A is compressing, choice of params \checkmark
- G is compressing, choice of params...
- ...but why should $\mathbf{G x}=\mathbf{0}$?
- G has structure \checkmark

The G in constrained-SIS

- G similar to the gadget matrix from [Micciancio-Peikert '12]

The G in constrained-SIS

- G similar to the gadget matrix from [Micciancio-Peikert '12]
- $\mathbf{G x}=\mathbf{0}$ can always be satisfied by some $\mathbf{x} \in\{0,1\}^{n}$

The G in constrained-SIS

- G similar to the gadget matrix from [Micciancio-Peikert '12]
- $\mathbf{G x}=\mathbf{0}$ can always be satisfied by some $\mathbf{x} \in\{0,1\}^{n}$
- choose last $(n-d \log q)$ bits of \mathbf{x} arbitrarily (last row)...

The G in constrained-SIS

- G similar to the gadget matrix from [Micciancio-Peikert '12]
- $\mathbf{G x}=\mathbf{0}$ can always be satisfied by some $\mathbf{x} \in\{0,1\}^{n}$
- choose last $(n-d \log q)$ bits of \mathbf{x} arbitrarily (last row)...
- ... $\mathbf{G x}=\mathbf{0} \Leftrightarrow 1 x_{1}+2 x_{2}+4 x_{4}+\cdots+2^{\ell} x_{2^{\ell}}=-\star \star \star \cdots \star$

The G in constrained-SIS

- \mathbf{G} similar to the gadget matrix from [Micciancio-Peikert '12]
- $\mathbf{G x}=\mathbf{0}$ can always be satisfied by some $\mathbf{x} \in\{0,1\}^{n}$
- choose last $(n-d \log q)$ bits of \mathbf{x} arbitrarily (last row)...
- ... $\mathbf{G x}=\mathbf{0} \Leftrightarrow 1 x_{1}+2 x_{2}+4 x_{4}+\cdots+2^{\ell} x_{2^{\ell}}=-\star \star \star \cdots \star$
- rest of \mathbf{x} is uniquely determined using backwards substitution \& binary decomposition

$$
\left(\begin{array}{lll|lll|lll|l}
1 & 2 & 4 & 3 & 0 & 6 & 5 & 6 & 2 & 1 \\
0 & 0 & 0 & 1 & 2 & 4 & 1 & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
* \\
* \\
* \\
* \\
* \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)(\bmod 8)
$$

$$
\left(\begin{array}{ccc|ccc|ccc|c}
1 & 2 & 4 & 3 & 0 & 6 & 5 & 6 & 2 & 1 \\
0 & 0 & 0 & 1 & 2 & 4 & 1 & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
* \\
* \\
x_{7} \\
x_{8} \\
x_{9} \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right) \quad(\bmod 8)
$$

binary decomposition (last row)
$1 \cdot x_{7}+2 \cdot x_{8}+4 \cdot x_{9}+(1 \cdot 1)=0(\bmod 8) \Rightarrow x_{7}=x_{8}=x_{9}=1$

$$
\left(\begin{array}{ccc|ccc|ccc|c}
1 & 2 & 4 & 3 & 0 & 6 & 5 & 6 & 2 & 1 \\
0 & 0 & 0 & 1 & 2 & 4 & 1 & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
x_{4} \\
x_{5} \\
x_{6} \\
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)(\bmod 8)
$$

binary decomposition (2nd row)
$1 \cdot x_{4}+2 \cdot x_{5}+4 \cdot x_{6}+\underbrace{(1+2+4+1)}_{\text {back substitution }}=0(\bmod 8)$

$$
\left(\begin{array}{lll|lll|lll|l}
1 & 2 & 4 & 3 & 0 & 6 & 5 & 6 & 2 & 1 \\
0 & 0 & 0 & 1 & 2 & 4 & 1 & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)(\bmod 8)
$$

binary decomposition (1st row)
$1 \cdot x_{1}+2 \cdot x_{2}+4 \cdot x_{3}+\underbrace{17}_{\text {back substitution }}=0(\bmod 8)$

$$
\left(\begin{array}{lll|lll|lll|l}
1 & 2 & 4 & 3 & 0 & 6 & 5 & 6 & 2 & 1 \\
0 & 0 & 0 & 1 & 2 & 4 & 1 & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)(\bmod 8)
$$

Goal: constrained-SIS is a hash function - pt2

- $2^{n-d \log q}$ different values of \mathbf{x} can satisfy $\mathbf{G x}=\mathbf{0}$
- same \mathbf{x} are mapped as: $\mathbf{x} \mapsto \mathbf{A x}$

Goal: constrained-SIS is a hash function - pt2

- $2^{n-d \log q}$ different values of \mathbf{x} can satisfy $\mathbf{G x}=\mathbf{0}$
- same \mathbf{x} are mapped as: $\mathbf{x} \mapsto \mathbf{A x}$
- range of $\mathbf{x} \mapsto \mathbf{A x}$ is q^{m}

Goal: constrained-SIS is a hash function - pt2

- $2^{n-d \log q}$ different values of \mathbf{x} can satisfy $\mathbf{G x}=\mathbf{0}$
- same \mathbf{x} are mapped as: $\mathbf{x} \mapsto \mathbf{A x}$
- range of $\mathbf{x} \mapsto \mathbf{A x}$ is q^{m}
- $2^{n-d \log q}>q^{m}$

Goal: constrained-SIS is a hash function - pt2

- $2^{n-d \log q}$ different values of \mathbf{x} can satisfy $\mathbf{G x}=\mathbf{0}$
- same \mathbf{x} are mapped as: $\mathbf{x} \mapsto \mathbf{A x}$
- range of $\mathbf{x} \mapsto \mathbf{A x}$ is q^{m}
- $2^{n-d \log q}>q^{m} \Rightarrow \quad$ enough \mathbf{x} to have collisions in \mathbf{A}
i.e. |domain| $>$ |range|

Goal: constrained-SIS is a hash function - pt2

- $2^{n-d \log q}$ different values of \mathbf{x} can satisfy $\mathbf{G x}=\mathbf{0}$
- same \mathbf{x} are mapped as: $\mathbf{x} \mapsto \mathbf{A x}$
- range of $\mathbf{x} \mapsto \mathbf{A x}$ is q^{m}
- $2^{n-d \log q}>q^{m} \Rightarrow \quad$ enough \mathbf{x} to have collisions in \mathbf{A}
i.e. \mid domain $|>|r a n g e|$
constrained-SIS is a hash function \checkmark
next: $C_{h} \leq$ constrained-SIS

Goal: $C_{h} \leq$ constrained-SIS

Reduce C_{h} to constrained-SIS

Goal: $C_{h} \leq$ constrained-SIS

Reduce C_{h} to constrained-SIS

Goal: Construct A, G out of C_{h}

Goal: $C_{h} \leq$ constrained-SIS

Reduce C_{h} to constrained-SIS
Goal: Construct A, G out of C_{h} we start with G

$C_{h} \leq$ constrained-SIS - the G pt

- Embed C_{h} in \mathbf{G} using OR and XOR gates
- Circuit gates in $C_{h} \rightarrow$ Linear equations in \mathbf{G}

$C_{h} \leq$ constrained-SIS - the G pt

- Embed C_{h} in \mathbf{G} using OR and XOR gates
- Circuit gates in $C_{h} \rightarrow$ Linear equations in \mathbf{G}

OR: $x_{1} \vee x_{2}=y, z=x_{1} \oplus x_{2} \Longleftrightarrow 1 y+2 z-x_{1}-x_{2}=0(\bmod 4)$
XOR: $x_{1} \oplus x_{2}=y, z=x_{1} \wedge x_{2} \Longleftrightarrow 1 y+\mathbf{2 z}-x_{1}-x_{2}=0(\bmod 4)$

$C_{h} \leq$ constrained-SIS - the G pt

- Embed C_{h} in \mathbf{G} using OR and XOR gates
- Circuit gates in $C_{h} \rightarrow$ Linear equations in \mathbf{G}

$$
\begin{array}{r}
\text { OR: } x_{1} \vee x_{2}=y, z=x_{1} \oplus x_{2} \Longleftrightarrow \mathbf{1} y+\mathbf{2 z}-x_{1}-x_{2}=0(\bmod 4) \\
\text { XOR: } x_{1} \oplus x_{2}=y, z=x_{1} \wedge x_{2} \Longleftrightarrow 1 y+\mathbf{2 z}-x_{1}-x_{2}=0(\bmod 4)
\end{array}
$$

$\mathbf{G}=\left(\begin{array}{ccccc}\text { output gate } & \text { output wires } & 0 & 0 & 0 \\ 0 & \text { intermediate gate } & \text { intermediate wires } & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \text { input gate } & \text { input wires }\end{array}\right)$

$C_{h} \leq$ constrained-SIS - the G pt

- Embed C_{h} in \mathbf{G} using OR and XOR gates
- Circuit gates in $C_{h} \rightarrow$ Linear equations in \mathbf{G}

$\mathbf{G}=\left(\begin{array}{ccccc}\text { output gate } & \text { output wires } & 0 & 0 & 0 \\ 0 & \text { intermediate gate } & \text { intermediate wires } & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & \text { input gate } & \text { input wires }\end{array}\right)$
- $\mathbf{G x}_{1}=\mathbf{0}=\mathbf{G} \mathbf{x}_{2}$ represents evaluation of $C_{h}\left(x_{1}\right)$ and $C_{h}\left(x_{2}\right)$
- x contains evaluation of $C_{h}(x)$ gate-by-gate
- $\mathbf{x}=(\text { output, intermediate steps, input })^{T}$

$C_{h} \leq$ constrained-SIS - the A pt

A extracts the output of $C_{h}(x)$ from \mathbf{x}

$C_{h} \leq$ constrained-SIS - the A pt

A extracts the output of $C_{h}(x)$ from \mathbf{x}

- Set $\mathbf{A}=(1,0,0)$

$C_{h} \leq$ constrained-SIS - the A pt

A extracts the output of $C_{h}(x)$ from \mathbf{x}

- Set $\mathbf{A}=(1,0,0)$
- $\mathbf{x}=(\text { output, intermediate steps, input })^{T}$

$C_{h} \leq$ constrained-SIS - the A pt

A extracts the output of $C_{h}(x)$ from \mathbf{x}

- Set $\mathbf{A}=(1,0,0)$
- $\mathrm{x}=(\text { output, intermediate steps, input) })^{T}$
- $\mathbf{A x}=$ output $\Rightarrow \mathbf{A x}=C_{h}(x)$

$C_{h} \leq$ constrained-SIS - the A pt

A extracts the output of $C_{h}(x)$ from \mathbf{x}

- Set $\mathbf{A}=(1,0,0)$
- $\mathbf{x}=(\text { output, intermediate steps, input })^{T}$
- $\mathbf{A x}=$ output $\Rightarrow \mathbf{A x}=C_{h}(x)$
- $\mathbf{A x}_{1}=\mathbf{A} \mathbf{x}_{2} \quad$ implies $C_{h}\left(x_{1}\right)=C_{h}\left(x_{2}\right) \Rightarrow$ a collision for $h \checkmark$

$C_{h} \leq$ constrained-SIS - the A pt

A extracts the output of $C_{h}(x)$ from \mathbf{x}

- Set $\mathbf{A}=(1,0,0)$
- $\mathbf{x}=(\text { output, intermediate steps, input })^{T}$
- $\mathbf{A x}=$ output $\Rightarrow \mathbf{A x}=C_{h}(x)$
- $\mathbf{A x}_{1}=\mathbf{A} \mathbf{x}_{2} \quad$ implies $\quad C_{h}\left(x_{1}\right)=C_{h}\left(x_{2}\right) \Rightarrow$ a collision for $h \checkmark$

Find Short Integer Solutions for $\mathbf{A}, \mathbf{G} \Longrightarrow$ Find collisions in constrained-SIS
\Longrightarrow Find collision in C_{h} for any h
\Longrightarrow 른

Series of reductions

Our result shows that:

SIS, LWE, SIVP, GapSVP, Minkowksi, n-SVP, SHA, DLog, $\ldots \leq$ constrained-SIS

These problems can be solved by finding collisions

Minnkowski: $\|v\|_{2} \leq \sqrt{n} \operatorname{det}(\mathcal{L})^{1 / n}$

The post-quantum quest

A strong post-quantum guarantee for $\frac{\sqrt{h}}{h}$?

The post-quantum quest

A strong post-quantum guarantee for $\stackrel{N}{\bar{h}}$?
A quantum speedup for constrained-SIS
\Longleftrightarrow quantum speedup for finding collisions, in general

The post-quantum quest

A strong post-quantum guarantee for \bar{h} ?
A quantum speedup for constrained-SIS
\Longleftrightarrow quantum speedup for finding collisions, in general
"Morally", a quantum speedup for lattice problems(?)
\Longleftrightarrow quantum speedup for finding collisions, in general

The post-quantum quest

A strong post-quantum guarantee for $\frac{\underline{N}}{\bar{h}}$?
A quantum speedup for constrained-SIS
\Longleftrightarrow quantum speedup for finding collisions, in general
"Morally", a quantum speedup for lattice problems(?)
\Longleftrightarrow quantum speedup for finding collisions, in general

This would be a strong implication. Should we expect this?

The post-quantum quest

A strong post-quantum guarantee for $\frac{\underline{N}}{\bar{h}}$?
A quantum speedup for constrained-SIS
\Longleftrightarrow quantum speedup for finding collisions, in general
"Morally", a quantum speedup for lattice problems(?)
\Longleftrightarrow quantum speedup for finding collisions, in general

This would be a strong implication. Should we expect this?
This motivates the open problem section

Open problems

\$ A worst-to-average case reduction from constrained-SIS to itself?

- Conjecture for $\stackrel{\underline{\underline{\underline{v}}}}{h}: \mathbf{A} \leftarrow \$, \mathbf{G} \leftarrow$ semi-random (random \star) experiments?

Open problems

P A worst-to-average case reduction from constrained-SIS to itself?

- Conjecture for $\frac{\underline{\underline{\underline{v}}}}{h}: \mathbf{A} \leftarrow \$, \quad \mathbf{G} \leftarrow$ semi-random (random \star) experiments?
- approx-SVP/CVP equivalent to constrained-SIS?
- approx-SVP/CVP are fundamental lattice problems
- Minkowski short vectors \& pigeonhole principle

Open problems

P A worst-to-average case reduction from constrained-SIS to itself?

- Conjecture for $\frac{\underline{\underline{w}}}{h}: \mathbf{A} \leftarrow \$, \quad \mathbf{G} \leftarrow$ semi-random $($ random \star) experiments?
- approx-SVP/CVP equivalent to constrained-SIS?
- approx-SVP/CVP are fundamental lattice problems
- Minkowski short vectors \& pigeonhole principle
- Direct reduction of specific hash functions to lattice problems?
- SHA \leq approx-SVP? \rightarrow provable security level?

Open problems

P A worst-to-average case reduction from constrained-SIS to itself?

- Conjecture for $\frac{\underline{\underline{\underline{v}}}}{h}: \mathbf{A} \leftarrow \$, \quad \mathbf{G} \leftarrow \operatorname{semi-random}($ random \star) experiments?
- approx-SVP/CVP equivalent to constrained-SIS?
- approx-SVP/CVP are fundamental lattice problems
- Minkowski short vectors \& pigeonhole principle
- Direct reduction of specific hash functions to lattice problems?
- SHA \leq approx-SVP? \rightarrow provable security level?
! Structured lattices in this framework? (e.g. ideal lattices)
* understand potential \& limitations of structured lattices

몸 on structured lattices: more evidence for hardness, the better we sleep

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

- The handshake lemma. Given undirected graph $G(V, E)$:

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

- The handshake lemma. Given undirected graph $G(V, E)$:

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

- A vertex with odd degree, implies another vertex with odd degree

Back to [Papadimitriou '94]

...mathematical principles that guarantee a solution...

- The handshake lemma. Given undirected graph $G(V, E)$:

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

- A vertex with odd degree, implies another vertex with odd degree
- Hardness in finding this other odd degree vertex

Complexity of factoring integers? in PPA [Jerábek '16]

"NP $\cap C O-N P$ "

- How low can Factoring go?
- Factoring \leq approx-SVP/CVP?

A non-exhaustive list:
- Public-key encryption - (pk, sk) e.g. RSA
- Zero Knowledge Proofs
- Multiparty Computation
- Attribute-Based Encryption
- Fully-Homomorphic Encryption

modern crypto (a natural question)

A non-exhaustive list:

- Public-key encryption - (pk, sk) e.g. RSA
- Zero Knowledge Proofs
- Multiparty Computation
- Attribute-Based Encryption
- Fully-Homomorphic Encryption

Super-tool to build crypto tools?

modern crypto (the answer: yes)

A non-exhaustive list:

- Public-key encryption - (pk, sk) e.g. RSA
- Zero Knowledge Proofs
- Multiparty Computation
- Attribute-Based Encryption
- Fully-Homomorphic Encryption

Super-tool to build crypto tools?
Program Obfuscation

Program Obfuscation

Main character: programs

Goal: hide program secrets

What is obfuscation? (main character)

- An obfuscator is a program compiler

$$
x \longrightarrow P P(x)
$$

What is obfuscation? (main character \rightarrow obf)

- An obfuscator is a program compiler

What is obfuscation? (obf \rightarrow code)

- An obfuscator is a program compiler

What is obfuscation?

- An obfuscator is a program compiler

\widetilde{P} hides implementation details of P
e.g. constants, variable values, procedures

Virtual Black-Box (VBB) security [Had00, BGI+01]

- An obfuscator is a program compiler

VBB security: only learn $(x, P(x))$

Obfuscation in practice

- Heuristic solutions (obfuscation as a product)
- International C code obfuscation (since 1984)

Obfuscation in practice

- Heuristic solutions (obfuscation as a product)
- International C code obfuscation (since 1984)
- Goal: prove security based on a hard math problem
- e.g. Lattice problems

Does VBB obfuscation exist?

Too good to be true?

Does VBB obfuscation exist?

- VBB obfuscation is impossible in the general case $;$

Does VBB obfuscation exist?

???

- VBB obfuscation is impossible in the general case $)^{-}$

Does VBB obfuscation exist?

- VBB obfuscation is impossible in the general case
- There is a program P we cannot VBB obfuscate

Does VBB obfuscation exist?

- VBB obfuscation is impossible in the general case
- There is a program P we cannot VBB obfuscate
- ...and a few programs that can be VBB obfuscated

Does VBB obfuscation exist?

- VBB obfuscation is impossible in the general case
- There is a program P we cannot VBB obfuscate
- ...and a few programs that can be VBB obfuscated
- simple programs that predate our work
[Can97, Wee05, CD08, CRV10, BVWW16, Zha16]
point functions, hyperplanes, conjunctions

Does VBB obfuscation exist?

- VBB obfuscation is impossible in the general case
- There is a program P we cannot VBB obfuscate
- ...and a few programs that can be VBB obfuscated
- simple programs that predate our work
[Can97, Wee05, CD08, CRV10, BVWW16, Zha16]
point functions, hyperplanes, conjunctions
(2) Can we obfuscate more programs

Our results

- Wichs-Z FOCS'17
concurrent/independent GKW'17
- Distribution-VBB obfuscate a large and expressive family of programs
- Most general result so far, provably secure under the Learning-with-Errors assumption

Compute-and-Compare programs (definition)

Compute-and-Compare programs (input)

Compute-and-Compare programs (output)

Compute-and-Compare programs (output)

CC obfuscation \& security

Black-Box

simulation security when y is random given f, m
Obfuscation hides params: f, y, m

Evasive programs

- if y is random given $f, m \ldots$
- ...then for most $x \Rightarrow f(x) \neq y$
- why bother then?

Why obfuscate evasive programs?

Correctness is meaningful Security, not meaningful

Correctness, not meaningful Security is meaningful

Applications

New applications $\boldsymbol{\oplus}$

- Hide the access policy: upgrade Attribute-based Encryption to Predicate Encryption
- re-use existing ABE keys (modular approach)
- Upgrade Witness Encryption to null iO
- Private authentication using biometric data
- Obfuscate conjunctions under LWE

Post-quantum applications

some recent work

- Post-Quantum Multi-Party Computation [ABGKM, EUROCRYPT '21]
- Post-Quantum Zero-Knowledge in Constant Rounds [Bitansky-Shmueli, STOC '20]
- Weak Zero-Knowledge [Bitansky-Khurana-Paneth, STOC '19]
- Optimal Traitor-Tracing [CVWWW, TCC '18]
optimized construction [GVW'18]
perfect correctness [GKVW'20]

On circular security

Encrypt your own secret key: Proofs and Heuristics

A fundamental question [GM'84]

- Is Enc($\mathrm{pk}, \mathrm{sk}_{i}$) always secure?
- bit-by-bit encryption of $\mathrm{msg}=\mathrm{sk}$
- We give a negative answer $)^{2}$
- public-key bit-by-bit CPA secure \rightarrow circular insecure (strong/non-pq assumptions [Rot13, KRW15])
- We refute a Random-Oracle heuristic for security of $\operatorname{Enc}\left(\mathrm{pk}, \mathrm{sk}_{i}\right)$
- the only heuristic transformation known
- Why investigate this type of security?

A fundamental question [GM'84]

- Is Enc($\mathrm{pk}, \mathrm{sk}_{i}$) always secure?
- bit-by-bit encryption of $\mathrm{msg}=\mathrm{sk}$
- We give a negative answer $)^{2}$
- public-key bit-by-bit CPA secure \rightarrow circular insecure (strong/non-pq assumptions [Rot13, KRW15])
- We refute a Random-Oracle heuristic for security of $\operatorname{Enc}\left(\mathrm{pk}, \mathrm{sk}_{i}\right)$
- the only heuristic transformation known
- Why investigate this type of security?
- Fundamental question
- Recently in the news! (iO candidates)
\rightarrow Fully-Homomorphic Encryption (bootstrapping)

Can Random Oracles help?

- Random Oracles (RO) are used both in theory and practice
- Publicly accessible gigantic source of randomness
- i.e. $\mathrm{RO}(x)=$ random
- In practice, replacing RO $=$ SHA-2/SHA-3
- In theory, replacing RO = it's complicated

Can Random Oracles really help?

Power of RO

- Transform any IND-CPA scheme to a circular secure one [BRS03]
- $\operatorname{Enc}_{\mathrm{Ro}}(\mathrm{pk}, m)=\operatorname{Enc}(\mathrm{pk}, r), \mathrm{RO}(r) \oplus m$

Can Random Oracles really help?

Power of RO

- Transform any IND-CPA scheme to a circular secure one [BRS03]
- $\operatorname{Enc}_{\mathrm{Ro}}(\mathrm{pk}, m)=\operatorname{Enc}(\mathrm{pk}, r), \mathrm{RO}(r) \oplus m$

Power of obfuscation $\Delta \sqrt{\Delta}$

- We construct an IND-CPA scheme that cannot be upgraded as above...
...no matter which hash function is used to implement RO

Circular insecurity: sem \rightarrow circ-insec

Assume bit encryption

secret key: Dec(sk, •)
public key: Enc(pk, •)

Circular insecurity: sem \rightarrow circ-insec

Assume bit encryption

secret key: Dec(sk, •)
public key: Enc(pk, •)

$$
y \leftarrow \$
$$

- $\mathrm{sk}^{\prime} \rightarrow(\mathrm{sk}, y)$

Circular insecurity: sem \rightarrow circ-insec

Assume bit encryption

secret key: Dec(sk, •)

$$
y \leftarrow \$
$$

- $\mathrm{sk}^{\prime} \rightarrow(\mathrm{sk}, y)$
public key: Enc(pk, •)

Circular insecurity: sem \rightarrow circ-insec

Assume bit encryption

secret key: $\operatorname{Dec}(\mathrm{sk}, \cdot)$

$$
y \leftarrow \$
$$

- $\mathrm{sk}^{\prime} \rightarrow(\mathrm{sk}, y)$
public key: Enc(pk, •)

Circular insecurity: sem \rightarrow circ-insec

Assume bit encryption

secret key: Dec(sk,•)

$$
y \leftarrow \$
$$

- $\mathrm{sk}^{\prime} \rightarrow(\mathrm{sk}, y)$
public key: Enc(pk,•)

Circular insecurity: sem \rightarrow circ-insec

Assume bit encryption

secret key: $\operatorname{Dec}($ sk, $\cdot)$

$$
y \leftarrow \$
$$

- $\mathrm{sk}^{\prime} \rightarrow(\mathrm{sk}, y)$
public key: Enc(pk, •)

- $\mathrm{pk}^{\prime} \rightarrow(\mathrm{pk}, \mathrm{Obf})$
- y indep of $\mathrm{sk} \Rightarrow$ semantic security
$\stackrel{\otimes}{\times}$ recover $\mathrm{sk} \Rightarrow$ break security!

Random Oracles: real vs ideal

- GKW'17 shows similar result for Fujisaki-Okamoto
- Caution: RO Model \rightarrow Standard Model (SHA-3, ...)
- Ideally, we wouldn't need RO
- comparable efficiency without RO?
is obfuscation a success story?

is obfuscation a success story?

- "relaxed" form of obfuscation \Rightarrow almost all crypto
- indistinguishability Obfuscation
- iO most probably exists as of 2021 (non-pq)! [..., JLS'21, ...]
- other new constructions involve new circular security definitions

is obfuscation a success story?

tales of iO

- "relaxed" form of obfuscation \Rightarrow almost all crypto
- indistinguishability Obfuscation
- iO most probably exists as of 2021 (non-pq)! [..., JLS'21, ...]
- other new constructions involve new circular security definitions
- Cryptographic hardness of NASH equilibria [AKV'05, BPR'15]
- 2-Round Multiparty Computation [GGHR'14, GP'15]
- Program Watermarking [CHNVW '16]
- Quach-Wichs-Z TCC'18

is obfuscation a success story?

tales of iO

- "relaxed" form of obfuscation \Rightarrow almost all crypto
- indistinguishability Obfuscation
- iO most probably exists as of 2021 (non-pq)! [..., JLS'21, ...]
- other new constructions involve new circular security definitions

$$
a(b+c) \approx a b+a c
$$

- Cryptographic hardness of NASH equilibria [AKV'05, BPR'15]
- 2-Round Multiparty Computation [GGHR'14, GP'15]
- Program Watermarking [CHNVW '16]
- Quach-Wichs-Z TCC'18 ...

Recent work - future post-quantum directions

- Adaptive prefix encryption under LWE (Z '21)
- prefix enc = original Hierarchical IBE
- algebraic instead of bb IBE use - focus on params
\$...but "really adaptive" post-quantum HIBE still open (EUROCRYPT '10 [ABB10, CHKP10])
- pairings superior to lattices

Recent work - future post-quantum directions

- Adaptive prefix encryption under LWE (Z '21)
- prefix enc = original Hierarchical IBE
- algebraic instead of bb IBE use - focus on params
\$...but "really adaptive" post-quantum HIBE still open (EUROCRYPT '10 [ABB10, CHKP10])
- pairings superior to lattices
- (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
- very active for post-quantum - theory \& practice

Recent work - future post-quantum directions

- Adaptive prefix encryption under LWE (Z '21)
- prefix enc = original Hierarchical IBE
- algebraic instead of bb IBE use - focus on params
\$...but "really adaptive" post-quantum HIBE still open (EUROCRYPT '10 [ABB10, CHKP10])
- pairings superior to lattices
- (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
- very active for post-quantum - theory \& practice
\star Structured lattices: new techniques/algorithms?
- efficient ZK \rightarrow new ideas

Recent work - future post-quantum directions

- Adaptive prefix encryption under LWE (Z '21)
- prefix enc = original Hierarchical IBE
- algebraic instead of bb IBE use - focus on params
\$...but "really adaptive" post-quantum HIBE still open (EUROCRYPT '10 [ABB10, CHKP10])
- pairings superior to lattices
- (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
- very active for post-quantum - theory \& practice
\star Structured lattices: new techniques/algorithms?
- efficient ZK \rightarrow new ideas
- IBE/ABE followed after PKE. Next primitive to \qquad

Recent work - future post-quantum directions

- Adaptive prefix encryption under LWE (Z '21)
- prefix enc = original Hierarchical IBE
- algebraic instead of bb IBE use - focus on params
\$...but "really adaptive" post-quantum HIBE still open (EUROCRYPT '10 [ABB10, CHKP10])
- pairings superior to lattices
- (Zero-Knowledge) Proofs, Obfuscation (iO), FHE
- very active for post-quantum - theory \& practice
\star Structured lattices: new techniques/algorithms?
- efficient ZK \rightarrow new ideas
- IBE/ABE followed after PKE. Next primitive to \qquad
- LWR, LPN
 3_141,*_3_1415, *_3__1415; register int _314,_31415,__31415,*_31 _3_14159,_-3_1415;*_3141592654=_-31415 =2,_3141592654[0][_3141592654 $-1]=1[\ldots 3141]=5 ; _^{3} _1415=1$; do \{_3_14159=_314=0,_31415++;for(31415 $=0 ; _31415<(3,14-4) * _$31415; _31415++) _31415[_3141]=_314159[_31415]=
 --3_1415 +_3141; for $\quad\left(_31415=3141-\right.$
_-3_1415 ; -31415;_31415--
,_3_141 ++, -3_1415++) \{_314
$+=_314 \ll 2$; \quad - $314 \ll=1$; $314+=$
*_3_1415;_31 =_314159+_314;
if $\left(!\left(* _31+1\right) \quad\right.$) ${ }^{(} 31=_314 /$

Thank you!

