Modern zk-SNARKS

Mary Maller
Ethereum Foundation, London

Talk Outline

. Motivate why NIST should be interested in zk-SNARKSs
. Outline key challenges with moving SNARKSs from theory to practice.
- Discuss each key challenge individually.

- Plug one of my recent papers.

Why should NIST be interested in zk-SNARKSs

Why do we care about SNARKS?

- A SNARK allows a user to prove that they have run a computation correctly.

- The verifier can check the output very quickly

Jx) =y
n = SNARK(x, y)

~ yiscorrect

(x,y,)

Outsourcing Why do we care about SNARKS?

computations

- A SNARK allows a user to prove that they have run a computation correctly.

- The verifier can check the output very quickly

Jx) =y
n = SNARK(x, y)

~ yiscorrect

(x,y,)

Why do we care about SNARKS?

Outsourcing
computations

. Can prove that a cloud computation has been carried out
correctly.

=D Microsoft I Research Ourresearch -~ Programs & events -~ Blogs & podcasts ~~ About -

Pinocchio: Nearly Practical Verifiable Computation

Bryan Parno, Jon Howell, Craig Gentry, Mariana Raykova
Proceedings of the IEEE Symposium on Security and Privacy | May 2013

Published by IEEE
Best Paper Award

Outsourcing Why do we care about SNARKS?

computations

. Can reduce the size (and thus improve scalability) of blockchains.

An article to understand zkEVM, the key to
Ethereum scaling

Meet Pickles SNARK: Enabling Smart Contracts
on Mina Protocol

s Meckler, CTO and co-founder, Q1) Laks. Building Mina Protgce

Protocol Labs
Research

“y

20210510/ 8log

SnarkPack: How to aggregate SNARKs
efficiently

Nicolas Ga'lly
CryptoNertLab
Cryptography

oe@ate

Aguided dive inlo the cryplographic technigues of SnarkPack

Why do we care about zk-SNARKSs

- A SNARK allows a user to prove that they have run a computation correctly.
- The verifier can check the output very quickly

. A zk-SNARK additionally reveals no information about the input of the computation.

/' exists X\
. such thatyis |
_ correct

n = SNARK(x, y)

(y,)

Privacy Why do we care about zk-SNARKSs

applications
PP - A SNARK allows a user to prove that they have run a computation correctly.

- The verifier can check the output very quickly

. A zk-SNARK additionally reveals no information about the input of the computation.

/' exists X\
. such thatyis |
_ correct

= SNARK(x, y)

(y,)

Privacy Why do we care about zk-SNARKSs

Prove existerice of code vulnerabilities without putting users at risk.

applications

Run an actively secure MPC.

Build anonymous credentials.

Demonstrate membership in a group.

Many more

Researchers Demonstrate Potential for Zero-

Knowledge Proofs in Vulnerability Disclosure Meta says its Anonymous

Research teams led by Galois, Trail of Bits develop capabiity to mathematically prove I nt ro d u CI n g M u It I - Pa rty C red e nti a I s S e rv i c e (AC S) Wi I I
exploitability of viulnerable software without revealing critical information - ~
ECDSA library help reduce data collection

OUTREACH@DARPA MII

R — activities

berd 2019

S nce we starfed KZen, we investaed in the dev ;':|npr"| oent of a cryptagrapnic stac ke tha:

would enakle us to build a new generction of keyless crypto wallets with simpler and

stronger security eliminat ng that way typical single point of failures and tedious setug

sttack Successiul and recovery schemes.

What are the key challenges for moving
SNARKSs from theory to practice?

The Good The Challenges

* Implementing SNARKSs securely is really

Proof sizes are small. really hard.

Verification time is fast. L
°* Prover time is slow.
There are no trusted third parties.

Storage requirements are reasonable.

SNARKSs are applicable to any computation.

The Good

Proof sizes are small.

Verification time is fast.

Proof sizes starting
from 200 bytes

Verifier time
starting from10s of
microseconds

The Good

Proof sizes are small.
Verification time is fast.

There are no trusted third parties

- A trusted third party is

someone trusted to not cheat.

- Some SNARKSs do require a

one time “trusted setup” and
others do not.

- Some trusted setups are better
than others.

Cash: Orlando Station Report

The Good

Proof sizes are small.
Verification time is fast.

There are no trusted third parties

- A trusted third party is

someone trusted to not cheat.

- Some SNARKSs do require a

one time “trusted setup” and
others do not.

- Some trusted setups are better

than others.

BI6BD /M APed]

Cash: Orlzndo Siation Report

The Good

Proof sizes are small.
Verification time is fast.

There are no trusted third parties

- A trusted third party is
someone trusted to not cheat.

- Some SNARKSs do require a

one time “trusted setup” and
others do not.

- Some trusted setups are better
than others.

The Power of Tau or: How | Learned to
Stop Worrying and Love the Setup

L £ < Min

/////_ \\“"l

"lT"
sl

- A trusted third party is
The Good someone trusted to not cheat.

- Some SNARKSs do require a
one time “trusted setup” and
others do not.

* Proof sizes are small.

* Verification time is fast.

- Some trusted setups are better

There are no trusted third parties than others.

The Power of Tau or: How | Learned to
Stop Worrying and Love the Setup

L £ < Min

/////_ \\\"l
il T ""

\Jf—— | DogByte Attack: Playing Red
\ ////I N Team for Eth2.0 VDF

BI6BD /M APed]

Cash: Orlzndo Siation Report

The Good

Proof sizes are small.
Verification time is fast.
There are no trusted third parties

Storage requirements are reasonable.

Prover storage can
depend on the
computation.

Verifier storage
starting from 200
bytes.

The Good

Theoretically can

Proof sizes are small. cover any
computation in NP

Verification time is fast.
There are no trusted third parties
Storage requirements are reasonable.

SNARKSs are applicable to any computation.

P+ NP

Euler diagram for P, NP, NP-complete, and NP- o
hard set of problems (excluding the empty language
and its complement, which belong ta P but are not
NP-complete)

https:/en.wikipedia.org/wiki/P_versus_NP_problem

The Challenges

* Implementing SNARKSs securely is really
really hard.

Background

On March 1, 2018, Ariel Gabizon, a cryptographer employed by the Zcash Company at the time, discovered a subtle
cryptographic flaw in the [BCTV14] paper that describes the zk-SNARK construction used in the original launch of Zcash. The

flaw allows an attacker to create counterfeit shielded value in any system that depends on parameters which are generated as
described by the paper.

This vulnerability is so subtle that it evaded years of analysis by expert cryptographers focused on zero-knowledge proving
systems and zk-SNARKSs. In an analysis [Parno15] in 2015, Bryan Parno from Microsoft Research discovered a different mistake

y» | Prover time comparison of GKR+Groth16 vs. Groth16 for proving
= zhrollu

We implemented the following circuit to measure Gnark'’s performance.

Op Runtime (sec) The Challenges

Groth16 Prover - 2215 hashes 20.2
Groth16 Prover - 2217 hashes 78.2

Extrapolation to 2422 hashes 2587.0 ° Implementing SNARI(S Securely iS l‘eally
Extrapolation to 2223 hashes 5006.3 I’ea”y hard.

We implemented the GKR prover and the Groth16 circuit of proof of the proof verification.

With 222 (~4M) hashes: * Prover time is slow

Op Runtime (sec) for 2722 hashes Runtime (sec) for 2223 hashes
GKR Prover assignment 6.0 8.4

GKR Prover 50.0 95.7

SNARK Assignment 0.3 0.66

SNARK Prover 48.2 76.5

Total 104.6 181.2

Baseline 2587.0 5006.3

research.protocol.zifs tes/snarks/

Use the parallelism

GPU based prover

Which is a 27-fold improvement compared to the baseline for 8M hashes.

600s
B bellman

<M bellperson CPU

Orders of magnitude

slower than proving the
computation

m bellperson OpenCl
_—m bellperson CUDA

B

1,00C,000 1C,0C0,000 00,000,0C0

Key Challenge: Implementing SNARKSs is hard.

Implementing SNARKSs securely is hard

- Moving complicated zero-knowledge protocols from theory to practice is hard.
- Suddenly it really really matters that the security proof is correct.

- As a community we are still learning the best practices for how to ensure this.

. Standards
EasyCrypt Audits Etforts
Peer Review Waiting a While Independent

Proofs

Case Study: The Groth16 SNARK

- We now have four different proofs for Grothi6.

- Each of these analyses were conducted by hand.

Independent

Proofs Audlits

Peer Review Waiting a While

The Algebraic Group Model and its Applications

On the Size of Pairing-based Non-interactive Arguments*
Georg Fuchshauver! Eike Kiltz? Julian Loss?

Jens Groth** April 15, 2019

University College London, UK
j.groth@ucl ac.uk ! Inria, ENS, CNRS. PSL, France
georg.fuchsbaner@ens.fr
* Ruhr University Bochum, Germany
{eike.kiltz, julian.loss}@rub.de

Snarky Ceremonies Another Look at Extraction and Randomization of Groth’s
zk-SNARK

Markulf Kohlweiss'?, Mary Maller®, Janno Siim*, Mikhail Volkhov?®

' JOHK Karim Baghery*, Markulf Kohlweiss?3, Janno Siim®#, and Mikhail Volkhov?

? The University of Edinburgh, UK
{mkohlwei, mikhail.volkhov}®ed.ac.uk
¥ Ethereum Foundation
mary.maller@ethereum.org
* University of Tartu, Estonia
janno.aiim@ut . ee

" imee-COSIC, KU Leuven, Belgium
karim.baghery@kuleuven.be
* 101K
* The University of Edinburgh, UK
1 University of Tartu. Estonia
[mkohlwei, jeiim, mikhail.volkhov}@ed.ac.uk

WIP: A Shuftle Argument for ETH 2.0

- In the Ethereum Proof of Stake algorithm, new blocks are proposed by leaders.
- Each time slot has a unique leader who is determined in advance.

- DDOSing a single leader could grind the whole network to a halt.

This is the

new block.

WIP: A Shuftle Argument for ETH 2.0

- In the Ethereum Proof of Stake algorithm, new blocks are proposed by leaders.
- Each time slot has a unique leader who is determined in advance.
- DDOSing a single leader could grind the whole network to a halt.

- Solution: hide the leader so that nobody knows who they are in advance
(except the leader themselves).

- We plan to implement an adaptation of the Bayer-Groth Shuffle argument.

) research

Whisk: A practical shuffle-based SSLE protocol for Ethereum

Consensus single-secret-leader-election

asn

~

Hello all,

WIP: A Shuftle Argument for ETH 2.0

- We plan to implement an adaptation of the Bayer-Groth Shuffle argument.

The Challenges

- Currently it scares some implementers due to the complexity.

- BG is one of the simplest ZKPs...

Simplified SSLE
\./ single-secret-le:
X

1 r ~TinnN
xdder-eie)

15 DAYS LATER H

Killari @ asn Febs

Whisk sounds really complex and heavy. Have you considered Algorand’s model? It seems to be a lot
simpler solution to this problem. One drawback | can see with it is that each slot gets multiple proposals
which results into extra communication, but its significantly less than Whisk requires.

The Challenges

WIP: A Shuftle Argument for ETH 2.0

- We plan to implement an adaptation of the Bayer-Groth Shuffle argument.

documentation.

Short Term Plan

|

Documentation

- Currently it scares some implementers due to the complexity.

- BG is one of the simplest ZKPs, and seems more complex than it is due to poor

TV

Formal “research
styled” PDF

Technical
Specification

Reference
Implementation

Blog Post

Video Explainer

The Challenges

WIP: A Shuftle Argument for ETH 2.0

- We plan to implement an adaptation of the Bayer-Groth Shuffle argument.

documentation.

Short Term Plan

|

Documentation

- Currently it scares some implementers due to the complexity.

- BG is one of the simplest ZKPs, and seems more complex than it is due to poor

This is a WIP and
advice is welcome

TV

Formal “research
styled” PDF

Technical
Specification

Reference
Implementation

Blog Post

Video Explainer

Standards
Efforts

Case Study: Zero-Knowledge Standardisation Effort

. ZKProof is an effort to produce standards for ZKPs
to ease their adoption.

ZKPROOF

- We have run a total of 4 community workshops to
gather ideas about what to standardise.

- We have 5 active working groups that are focussing
on specific topics.

WG Name
Documents

(Tlogram roup) ° ° - We have a community reference document
- designed to be an entry level explainer for ZKPs.

7KP Systems &

Extensions (TG]

E-protocols (70 . We have additional online resources.

DAPOL (TG)

Standardize
interoperakility between

zkinterface (TG)
frontends< and backerds in

ZX systems

Standardize the use cf

Snar«-Frierdly specific crypiograpn c
. . . h repgo
Primitives [105] primitives inside of the PY
circuit o7 a ZK syslem

http://zkproof.org

Key Challenge: Prover time is high.

Prover Time is High

- SNARK provers depend (quasi)-linearly on the computation being proven and
the constants are large.

- Computation dominated by group multiplications and Fast Fourier
Transforms.

- The faster the prover, the more we can prove.

Specialised Smaller

. Recursion
Hardware Computations

. ZKPrize an ongoing competition to produce better hardware for SNARKsS.
- A related project is building specialised hardware for verifiable delay functions.

- ASICs can have a huge impact on SNARK proving time.

The VDF Alliance is a collection of academic,

An nOU nCing the non-profit, and corporate collaborators

Zprize Competition! building open source hardware for the

blockchain ecosystem

March 8, 2022

Recursion
. Recent work has looked into building SNARKSs of SNARKS.

- This can improve prover time whenever smaller computations are repeated
frequently: one key use case is blocklists.

Paper 2021/1577

SNARKBIlock: Federated Anonymous
Blocklisting from Hidden Common Input

Aggregate Proofs

Michael Rosenberg, Mary Maller, and lan Miers

Recursion

. Recent work has looked into building SNARKSs of SNARKS.

- This can improve prover time whenever smaller computations are repeated
frequently: one key use case is blocklists.

- We have known for a while that recursion is promising.

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data On cycles of pairing-friendly elliptic curves

Incrementally Verifiable Computation

or Nir Bitansky” Ran Canetti* ,
Proofs of Knowledge Imply Time/Space Efficiency nirbitan@tau.ac.il canetti@tau.ac.il Alessandro Chiesa Lynn Chua Matthew Weidner
Tel Aviv University Boston University and alexch@berkeley.edu chualynn@berkeley.edu malw2@cam.ac.uk

Tel Aviv University UC Berkeley UC Berkeley Cambridge
Alessandro Chiesa Eran Tromer'

valiant@mit.edu, Massachusetts Institute of Technology . . \
P B alexch@csail.mit.edu tromer@tau.ac.il

MIT Tel Aviv University November 5, 2018

Paul Valiant

December 28, 2012

Recursion

. Recent work has looked into building SNARKSs of SNARKS.

- This can improve prover time whenever smaller computations are repeated
frequently: one key use case is blocklists.

- There are lots of exciting developments in this area.

Proofs for Inner Pairing Products and Applications

Benedikt Biinz
benedikt@cs.stanford.edu
Stanford Universily
Pratyush Mishra
pratyush@berkeley.edu
UC Berkeley

Mary Maller
mary.maller@ethereum. org
Fthereum Foundation
Psi Vesely
psi@berkeley.edu
UC Berkeley

ne haloZ Book
Nirvan Tyagi
tyagi@cs.cornell.edu
Cornell University

Recursion

Paper 2021/529
SnarkPack: Practical SNARK Aggregation

Nicolas Gailly, Mary Maller, and Anca Nitulescu

Alternative terms: Induction; Accumulation scheme; Proof-carrying data

However, the computation of G reguires a length 2F multiexponentation ‘G,s),wheresis
composed of the round challenges u,,- -+ , 1 arrangec in a binary counting structure. This is the
linear-time computation that we want tc amortise across a batch of proof instances. Instead of
computing (7, natice that we can express (7 as a commitment to a pelynomial

Paper 2020/499

Proof-Carrying Data from Accumulation
Schemes

Benedikt Bunz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner

Paper 2020/1618

Proof-Carrying Data without Succinct
Arguments

Benedikt Bunz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner

Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes
Joanna Tziallat

Abhiram Kothapalli*f Srinath Setty”™

*Microsoft Research 'New York University

'Carnegie Mellon University

Smaller Computations

- Usually the computation we are trying to prove has to be translated
into a language the SNARK can read.

- i.e. we must arithmetise the computation.

The haloZ2 Book

- The better our translation the faster the SNARK. PLONKish Arithmetization

The arithmetization used by Hzalc 2 comes from PLONK, or more precisely its extension UltraPLONK
that suppcrts custom gates and lookup arguments. We'll call it PLONKish.

https:/zcash.github.io/halo2/concepts/arithmetization.html

Constraint System Proof

A conslraint system is a collection of two Kinds ol constraints:

Multiplicative constraint (secret-secret muitiplication):

We now have the compulation that we want o prove, nicely expressed

X'y = 2

s a segquence of lines that simplv assign the result o1 the multiplication

of sums of variahles to a new variable: great!
S P That’s not enough though: to build our “Pinocchio™ zk-Snark that can
o Y g A R prove Lhel we did indeed run our computalion, withoul revenling the
: . . . b b

Linear constraint (secret variables with cleartext weights):
| valucs used when doing it, we need o take it one step further: make

another transformation that desenbes the same computation in a

A simple arithmetic circuit.

ax + by +cz+ ...

different format.

https:/en.wikipedia.org/wiki/ https:/www.zeroknowledgeblog.com/index.php/

. T ,) . https:/cathieyun.medium.com/building-on-
Arithmetic_circuit_complexity the-pinocchio-protocol/rics

bulletproofs-2faas8afoba8

Smaller Computations

Usually the computation we are trying to prove has to be translated
into a language the SNARK can read.

i.e. we must arithmetise the computation.
The better our translation the faster the SNARK.

Recent research directions look into minimising SNARK prover
COSts.

Doubly Efficient Interactive Proofs for General Gemini: Elastic SNARKSs for Diverse Environments

Arithmetic Circnits with Linear Praver Time Linear-Time Arguments with Sublinear Verification

"

Jiaverss Zoane®, Tianye Loo™ Wiann Wane®** Yinoo Zoanc®, Daww

Soxet, Xane X', Yueesu Zuasu™.

Ahstract. We smpoae & new conbly effeinrs mleractive prool nmtoen)
lor geamecal artlocetic cairvws, e protoocol pomcalies iy inleiaclive
proaf for layered circuit: pregeend Ly Coldwasser, Kalai and Rothilum wo
srbatracy ciccants, whils presecving the optimal prover complexaty that is
strictly linear to the dee of the coroeits, The srood eiwe remaing swewnct
for lewe depeh ctrents aned the weaBer ne i3 sublinear loe stroctme
v aie, W Uheo voaslract & new soro hmowledpy sopssval sl anm fur
general astametis sirculE wsing our row imeractise proof nrotocol 1o

gether woth polynomial commtmernts

Cur key tecanigue is o mew sumcheck equation thay reduces o clum
ahacnn the cnrpat of oo layvr 19 eliom: abant 13 put anly, mstess
ooains abosl wl Lbe Byars above wlodh ioevilably icours ao overbesd
proportionsl wo the depth of the dircuin, \We devdoped efficizon alporichms
for the srover 2 rur thos sumcheck protocol and to cambine mcltple
vloims bock into ane in Hncar “me in the size of the clreuit,

Not orly doe: onre now nimtaend 2ohseve aptimal prover enmplow iy asymp-
Lotically, Lut it 3= slso ellicie ol an prackes Qus exposiaents show Loatl
it coly takes D3 seconds o peasrate the proct for a dircait with more
than 600 000 zates, whooh is 15 times fador tham the criging interactive
proaf prosoce! ¢n she caresponding Jayerec cirouit, Tho proof (i is 208
kilrnytea ard the vonfier ame w 66 wllzestrda Cue smplemestatane
v ek penerad waitlaseic Covuils Jieclly, wolboul sacaloomiog s
to layered cireuits with a high overhesd on the ez: of the cirenit,

Janathan Bootle Alessandro Chicsa
sot@zurich.izom, cam alessandro.chiesa®epfl.ch
IBM Research EPFL
Yuncong Hu Michele Orri
yuncong hufberkeley.edy: michele.orruGberkeley.edu
e llr.rirr.lr,y U Berke ey
Abstract

We introduce and stucy elastic SVARKSs, @ class of suecinct arguments where the prover has multiple
confgurations with different time and memory radeoffs, which can be selected depending or the execution
environment and the proved statement. The output proof :s independent of the chosen configuration

W vonstruct am elustic SNARK [or runk-1 cunstraint sausfiability (R1CS), In a2 tme-efllicrent
conlguration, the prover uses 4 linewr number of crystogrgpine operaions and @ inewr amount o memuory.
In « spuce-elliciznl conligurstion, te prover wes « quasithinesr number of avplographic operstiom and o
loganthmee mncunt of mzmocy. A key compunent o] vur constraction is an elisie probatilste crool.
Along the way, we wlso formubate o stresaning, Tamework fur R1CS Gial we devm ol indepenlent inlerest.

We additonally contibuie Gemini, @ Rust implementation vl vur prowcol. Our benchmirks show
thaat Gerimi, on 4 single machine, suppurts RICS mstances with tzos of billiom of couslruints,

Keywnrds: micractive oracle proofs; SNARKS; streaming algorithms

from Tensor Codes

Jonathan Bootle Alessandro Chiesa Jens Groth
jonathan bEccotlegherceley.2du a'c-xrh@hﬂ"l'ﬂ'lﬁy.ﬂr"n “ens@dfin-ty arg
LC Berkeley LIC Berkeley Dfinity

Necember 28, 2020

Abstract

Minumiziag he computational cost of the prover is acental goal in the area o7 succinct wguments. In
perticular, it rewains a challenginmg open problen to coastivet a sueanct aguiient wheve the proser rues
in Locar time and e vedifier runs o polyloganthmic tine.

We make progress towards this zoal by presenting a new linear-time probatilistic proof, For anv
fixed ¢ = 0, we comstruct an interwetive oreele prool (10OP) Giat, when wsed for the sucslicbility of wnm
N-gue anthmeede circail, bas a grover ts uses QN Gield opetions and @ verifier that uses O(N<)
field operations, The sublinear verifier time |s achieved in the holographic sening for every circult (the
verifier has oraclz cocass o a linear-size ercoding of the circuic that s computzble (n lirecr time)

When cambined with g lincar-time collision-resisiant hash function, our IOP immediziely leads o an
ergument system where the peover perfarms (20 8) ficld eperations and hash computations, and the verifier
performs (V) feld aperations and hash computations (2iven = short Zigeat of the V-2ate circuit).

Keswouds: ivteractive anecle proofs, temso codes, succinet agimnents

Lookup Arguments

- Lookup arguments can be used to reduce the number of constraints
required to represent a computation.

- They are an extension to arithmetic circuits/ rics/ cairo/ tiny ram etc.

pooiup: A simplified polynomial protocol for
lookup tables

Ariel Gabizon Zachary J. Williamson
Aztec Aztec

November 20, 2020

Abstract

We present a protocol for checking the values of a committed polynomial f €
[[X | over a multiplicative subgronp If C [F of size n, are contained in the values of
a table t € F. Our protocol can be viewed as a simplification of one from Bootle ct.
al [BCG "] for a similar problem, with potential efficiency improvements when d < n.
In particular, [BCG ' |'s protocol requires comitting to several auxiliary polynomials
of degree d-log n, whereas ours requires three commitments to anxiliary polynomials
of degree n, which can be much smaller in the case d ~ n.

Oune commnon use case of this primitive in the zk-SNARK setting is a “batched
range proof”, where one wishes to check all of f's values on ff are in & range
0,.... M|, We pregent a slightly optimized protocol for this special case, and pose
improving it as an open problem,

zcash.github.ioj/halo2/design/proving-system/lockup html

The halc2 Book

Lookup argument

Halo 2 uses the following lookup technique, which allows for lookups In arbitrary sets, and Is
arguably simpler than Plookup.

Arya: Nearly Linear-Time Zero-Knowledge
Proofs for Correct Program Execution *

Jonathan Bootle, Andrea Cerulli, Jens Groth. Sune Jakobsen, Mary Maller **

University College London

. Suppose Gadget A is used over and over and over again in the
circuit.

- Don’t check with arithmetic gates that gadget A is correct, instead
“lookup” whether the result is in a precomputed set.

Most circuits are composed
of several sub circuits that
are used multiple times.

. Suppose Gadget A is used over and over and over again in the
circuit.

- Don’t check with arithmetic gates that gadget A is correct, instead
“lookup” whether the result is in a precomputed set.

Most circuits are composed
of several sub circuits that

values.

are used multiple times.
1 2 3 4
)) / 3
Can instead check if 9 10 11 12
a wire is included in 13 14 15 16
a set of precomputed 17 18 19 20

Recent personal research: Caulk

Very New Result

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin?, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu?, and Mark Simkin®

! Universitat Pompeu Fabral
* Ethereum Foundation®
4 Protocol Labs®

We build a zero-knowledge lookup argument that has fast prover
time.

The prover is m"2 + m log(N) for N the size of the table and m the
number of lookups.

Proof size is constant.

Verification is a constant number of pairings.

Very New Result

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin?, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu?, and Mark Simkin®

! Universitat Pompeu Fabral
* Ethereum Foundation®
4 Protocol Labs®

. Story: Vitalik had an idea for how to do fast membership proofs .

- i.e. membership proofs up to 100x faster than Poseidon Merkle
trees.

f(w) =y for
w a “root of
unity”

Very New Result

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin?, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu?, and Mark Simkin®

! Universitat Pompeu Fabral
* Ethereum Foundation®
4 Protocol Labs®

. Story: Vitalik had an idea for how to do fast membership proofs .

- i.e. membership proofs up to 100x faster than Poseidon Merkle
trees.

for each w,
store pi = Proof
that f(w) =y

f(w) =y for
w a “root of
unity”

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin®, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu?, and Mark Simkin?

! Universitat Pompeu Fabral
2 Ethereum Foundation®
4 Protocol Labs?

. Story: Vitalik had an idea for how to do fast membership proofs .

- i.e. membership proofs up to 100x faster than Poseidon Merkle
This proof is fast This proof is log(N)

Given y
prove
knowledge of
pi and w

for each w,
store pi = Proof
that f(w) =y

f(w) =y for
w a “root of
unity”

Also prove
w”™N =1

Very New Result

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin?, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu?, and Mark Simkin®

! Universitat Pompeu Fabral
* Ethereum Foundation®
4 Protocol Labs®

- Story: Vitalik had an idea for how to do fast membership proofs .

- i.e. membership proofs up to 100x faster than Poseidon Merkle
trees.

- I made the proof zero-knowledge and started formalising.

Giveny
prove
knowledge of
pi and w

for each w,
store pi = Proof
that f(w) =y

f(w) =y for
w a “root of
unity”

Also prove

w”™N =1

Very New Result

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin?, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu?, and Mark Simkin®

! Universitat Pompeu Fabral
* Ethereum Foundation®
4 Protocol Labs®

- Arantxa started an internship with me at the EF.

We use a “non-zk”
membership proof as a
starting point.

- Anca suggested extending the results to “batch” membership
proofs (i.e. lookup arguments).

- Arantxa and | explored how to do this efficiently.

- Mark and Arantxa explore definitions of “linkability” Paper 2020/527

Aggregatable Subvector Commitments for
Stateless Cryptocurrencies

Dmitry Khovratovich

Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and

Very New Result

Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico*', Vitalik Buterin®, Dmitry Khovratovich?, Mary Maller?,
Anca Nitulescu’, and Mark Simkin*

! Universitat Pompeu Fabral
* Ethereum Foundation®
4 Protocol Labs®

Dmitry and I implement the scheme in rust.

Results are much better than Merkle trees.

Comparison with RSA accumulators depends on the size of m.

Result went out on 23rd May 2022

|
= MTPoa-20
MTPoz-8

]02 —A— RSA
—a— Caulk-8
p— Caulk-20
\El
@
E 10!
a0 e
- o
g - p—
= 10Y -
.—-"’&
—— —— ‘é’-’/—’/
r'} -
10-1 == —
- | N
10 16 20 32 20

Lookup size (m)
Figurc 6: Comparison for lookup tablcs

https:/github.com/caulk-crypto/caulk

Thank-you for listening

