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Talk Outline
• Motivate why NIST should be interested in zk-SNARKs 

• Outline key challenges with moving SNARKs from theory to practice. 

• Discuss each key challenge individually. 

• Plug one of my recent papers.



Why should  NIST be interested in zk-SNARKs



Why do we care about SNARKs?

• A SNARK allows a user to prove that they have run a computation correctly. 

• The verifier can check the output very quickly
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Why do we care about SNARKs?

• Can prove that a cloud computation has been carried out 
correctly.
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Why do we care about SNARKs?

• Can reduce the size (and thus improve scalability) of blockchains.
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Why do we care about zk-SNARKs
• A SNARK allows a user to prove that they have run a computation correctly. 

• The verifier can check the output very quickly 

• A zk-SNARK additionally reveals no information about the input of the computation.
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Why do we care about zk-SNARKs
• Prove existence of code vulnerabilities without putting users at risk. 

• Run an actively secure MPC.


• Build anonymous credentials. 

• Demonstrate membership in a group. 

• Many more

Privacy 
applications



What are the key challenges for moving 
SNARKs from theory to practice?



• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties. 

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

• Implementing SNARKs securely is really 
really hard. 

• Prover time is slow. 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• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties. 

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

Verifier time 
starting from10s of 

microseconds

Proof sizes starting 
from 200 bytes
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• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties


• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

Prover storage can 
depend on the 
computation.

Verifier storage 
starting from 200 

bytes.
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• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties


• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

https://en.wikipedia.org/wiki/P_versus_NP_problem

Theoretically can 
cover any 

computation in NP

The Good



• Implementing SNARKs securely is really 
really hard. 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• Implementing SNARKs securely is really 
really hard. 

• Prover time is slow. 
 
 
 
 
 

Orders of magnitude 
slower than proving the 

computation

The Challenges



Key Challenge: Implementing SNARKs is hard.



Implementing SNARKs securely is hard
• Moving complicated zero-knowledge protocols from theory to practice is hard.


• Suddenly it really really matters that the security proof is correct. 

• As a community we are still learning the best practices for how to ensure this.

EasyCrypt Audits Standards 
Efforts

Peer Review Waiting a While Independent 
Proofs



Case Study: The Groth16 SNARK
• We now have four different proofs for Groth16.


• Each of these analyses were conducted by hand.

AuditsPeer Review Waiting a While Independent 
Proofs



WIP: A Shuffle Argument for ETH 2.0
• In the Ethereum Proof of Stake algorithm, new blocks are proposed by leaders.


• Each time slot has a unique leader who is determined in advance. 

• DDOSing a single leader could grind the whole network to a halt. 

 

This is the 
new block.



WIP: A Shuffle Argument for ETH 2.0
• In the Ethereum Proof of Stake algorithm, new blocks are proposed by leaders.


• Each time slot has a unique leader who is determined in advance. 

• DDOSing a single leader could grind the whole network to a halt. 

• Solution:  hide the leader so that nobody knows who they are in advance 
(except the leader themselves). 

• We plan to implement an adaptation of the Bayer-Groth Shuffle argument.
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• BG is one of the simplest ZKPs, and seems more complex than it is due to poor 
documentation.
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WIP: A Shuffle Argument for ETH 2.0The Challenges

Short Term Plan

Documentation

Formal “research 
styled” PDF

Technical 
Specification

Reference 
Implementation Blog Post Video Explainer

This is a WIP and 
advice is welcome

• We plan to implement an adaptation of the Bayer-Groth Shuffle argument. 

• Currently it scares some implementers due to the complexity. 

• BG is one of the simplest ZKPs, and seems more complex than it is due to poor 
documentation.



Case Study:  Zero-Knowledge Standardisation Effort

• ZKProof is an effort to produce standards for ZKPs 
to ease their adoption. 
 


• We have run a total of 4 community workshops to 
gather ideas about what to standardise. 

• We have 5 active working groups that are focussing 
on specific topics. 

• We have a community reference document 
designed to be an entry level explainer for ZKPs. 

• We have additional online resources.

zkproof.org

Standards 
Efforts

http://zkproof.org


Key Challenge: Prover time is high.



• SNARK provers depend (quasi)-linearly on the computation being proven and 
the constants are large.


• Computation dominated by group multiplications and Fast Fourier 
Transforms. 

• The faster the prover, the more we can prove.

Specialised 
Hardware

Smaller 
Computations Recursion

Prover Time is High



Specialised Hardware
• ZKPrize an ongoing competition to produce better hardware for SNARKs. 

• A related project is building specialised hardware for verifiable delay functions. 

• ASICs can have a huge impact on SNARK proving time.



Recursion
• Recent work has looked into building SNARKs of SNARKs. 

• This can improve prover time whenever smaller computations are repeated 
frequently: one key use case is blocklists.
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Recursion
• Recent work has looked into building SNARKs of SNARKs. 

• This can improve prover time whenever smaller computations are repeated 
frequently: one key use case is blocklists. 

• There are lots of exciting developments in this area.



Smaller Computations
• Usually the computation we are trying to prove has to be translated 

into a language the SNARK can read. 

• i.e. we must arithmetise the computation. 

• The better our translation the faster the SNARK. 
 

https://en.wikipedia.org/wiki/
Arithmetic_circuit_complexity

https://www.zeroknowledgeblog.com/index.php/
the-pinocchio-protocol/r1cs

https://zcash.github.io/halo2/concepts/arithmetization.html

https://cathieyun.medium.com/building-on-
bulletproofs-2faa58af0ba8



Smaller Computations
• Usually the computation we are trying to prove has to be translated 

into a language the SNARK can read. 

• i.e. we must arithmetise the computation. 

• The better our translation the faster the SNARK. 

• Recent research directions look into minimising SNARK prover 
costs.



Lookup Arguments
• Lookup arguments can be used to reduce the number of constraints 

required to represent a computation. 

• They are an extension to arithmetic circuits/ r1cs/ cairo/ tiny ram etc.



The Power of Plookup

• Suppose Gadget A is used over and over and over again in the 
circuit. 

• Don’t check with arithmetic gates that gadget A is correct, instead 
“lookup” whether the result is in a precomputed set.

Most circuits are composed 
of several sub circuits that 

are used multiple times.+

+ x
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The Power of Plookup

• Suppose Gadget A is used over and over and over again in the 
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• Don’t check with arithmetic gates that gadget A is correct, instead 
“lookup” whether the result is in a precomputed set.

Most circuits are composed 
of several sub circuits that 
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Can instead check if 
a wire is included in 

a set of precomputed 
values.



Recent personal research:  Caulk



Very New Result

• We build a zero-knowledge lookup argument that has fast prover 
time. 

• The prover is m^2 + m log(N) for N the size of the table and m the 
number of lookups. 

• Proof size is constant. 

• Verification is a constant number of pairings.



Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle 
trees.
w^N = 1

f(w) = y for 
w a “root of 

unity”



Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle 
trees.
w^N = 1

f(w) = y for 
w a “root of 

unity”

for each w, 
store pi = Proof 

that f(w) = y



Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle 
trees.

f(w) = y for 
w a “root of 

unity”

w^N = 1

for each w, 
store pi = Proof 

that f(w) = y

Given y 
prove 

knowledge of 
pi and w

Also prove 
w^N = 1

This proof is fast This proof is log(N) 



Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle 
trees. 

• I made the proof zero-knowledge and started formalising.
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Very New Result

• Arantxa started an internship with me at the EF. 

• Anca suggested extending the results to “batch” membership 
proofs (i.e. lookup arguments). 

• Arantxa and I explored how to do this efficiently. 

• Mark and Arantxa explore definitions of “linkability”

We use a “non-zk” 
membership proof as a 

starting point. 



Very New Result

• Dmitry and I implement the scheme in rust. 

• Results are much better than Merkle trees.   

• Comparison with RSA accumulators depends on the size of m. 

• Result went out on 23rd May 2022

https://github.com/caulk-crypto/caulk



Thank-you for listening


