
Modern zk-SNARKs
Mary Maller 

Ethereum Foundation, London

Talk Outline
• Motivate why NIST should be interested in zk-SNARKs 

• Outline key challenges with moving SNARKs from theory to practice. 

• Discuss each key challenge individually. 

• Plug one of my recent papers.

Why should NIST be interested in zk-SNARKs

Why do we care about SNARKs?

• A SNARK allows a user to prove that they have run a computation correctly. 

• The verifier can check the output very quickly

f(x) = y
π = 𝖲𝖭𝖠𝖱𝖪(x, y)

(x, y, π)

y is correct

Why do we care about SNARKs?

• A SNARK allows a user to prove that they have run a computation correctly. 

• The verifier can check the output very quickly

f(x) = y
π = 𝖲𝖭𝖠𝖱𝖪(x, y)

(x, y, π)

y is correct

Outsourcing
computations

Why do we care about SNARKs?

• Can prove that a cloud computation has been carried out
correctly.

Outsourcing
computations

Why do we care about SNARKs?

• Can reduce the size (and thus improve scalability) of blockchains.

Outsourcing
computations

Why do we care about zk-SNARKs
• A SNARK allows a user to prove that they have run a computation correctly. 

• The verifier can check the output very quickly 

• A zk-SNARK additionally reveals no information about the input of the computation.

π = 𝖲𝖭𝖠𝖱𝖪(x, y)

(y, π)

exists x
such that y is

correct

Why do we care about zk-SNARKs
• A SNARK allows a user to prove that they have run a computation correctly. 

• The verifier can check the output very quickly 

• A zk-SNARK additionally reveals no information about the input of the computation.

π = 𝖲𝖭𝖠𝖱𝖪(x, y)

(y, π)

exists x
such that y is

correct

Privacy
applications

Why do we care about zk-SNARKs
• Prove existence of code vulnerabilities without putting users at risk. 

• Run an actively secure MPC.

• Build anonymous credentials. 

• Demonstrate membership in a group. 

• Many more

Privacy
applications

What are the key challenges for moving
SNARKs from theory to practice?

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties. 

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

• Implementing SNARKs securely is really
really hard. 

• Prover time is slow. 
 
 
 
 
 

The Good The Challenges

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties. 

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

Verifier time
starting from10s of

microseconds

Proof sizes starting
from 200 bytes

The Good

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

• A trusted third party is
someone trusted to not cheat. 

• Some SNARKs do require a
one time “trusted setup” and
others do not. 

• Some trusted setups are better
than others.

The Good

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

• A trusted third party is
someone trusted to not cheat. 

• Some SNARKs do require a
one time “trusted setup” and
others do not. 

• Some trusted setups are better
than others.

The Good

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

• A trusted third party is
someone trusted to not cheat. 

• Some SNARKs do require a
one time “trusted setup” and
others do not. 

• Some trusted setups are better
than others.

The Good

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

• A trusted third party is
someone trusted to not cheat. 

• Some SNARKs do require a
one time “trusted setup” and
others do not. 

• Some trusted setups are better
than others.

The Good

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

Prover storage can
depend on the
computation.

Verifier storage
starting from 200

bytes.

The Good

• Proof sizes are small. 

• Verification time is fast. 

• There are no trusted third parties

• Storage requirements are reasonable. 

• SNARKs are applicable to any computation.

https://en.wikipedia.org/wiki/P_versus_NP_problem

Theoretically can
cover any

computation in NP

The Good

• Implementing SNARKs securely is really
really hard. 

 
 
 
 
 
 

The Challenges

• Implementing SNARKs securely is really
really hard. 

• Prover time is slow. 
 
 
 
 
 

Orders of magnitude
slower than proving the

computation

The Challenges

Key Challenge: Implementing SNARKs is hard.

Implementing SNARKs securely is hard
• Moving complicated zero-knowledge protocols from theory to practice is hard.

• Suddenly it really really matters that the security proof is correct. 

• As a community we are still learning the best practices for how to ensure this.

EasyCrypt Audits Standards
Efforts

Peer Review Waiting a While Independent
Proofs

Case Study: The Groth16 SNARK
• We now have four different proofs for Groth16.

• Each of these analyses were conducted by hand.

AuditsPeer Review Waiting a While Independent
Proofs

WIP: A Shuffle Argument for ETH 2.0
• In the Ethereum Proof of Stake algorithm, new blocks are proposed by leaders.

• Each time slot has a unique leader who is determined in advance. 

• DDOSing a single leader could grind the whole network to a halt. 

 

This is the
new block.

WIP: A Shuffle Argument for ETH 2.0
• In the Ethereum Proof of Stake algorithm, new blocks are proposed by leaders.

• Each time slot has a unique leader who is determined in advance. 

• DDOSing a single leader could grind the whole network to a halt. 

• Solution: hide the leader so that nobody knows who they are in advance
(except the leader themselves). 

• We plan to implement an adaptation of the Bayer-Groth Shuffle argument.

WIP: A Shuffle Argument for ETH 2.0
• We plan to implement an adaptation of the Bayer-Groth Shuffle argument. 

• Currently it scares some implementers due to the complexity. 

• BG is one of the simplest ZKPs…

The Challenges

WIP: A Shuffle Argument for ETH 2.0
• We plan to implement an adaptation of the Bayer-Groth Shuffle argument. 

• Currently it scares some implementers due to the complexity. 

• BG is one of the simplest ZKPs, and seems more complex than it is due to poor
documentation.

The Challenges

Short Term Plan

Documentation

Formal “research
styled” PDF

Technical
Specification

Reference
Implementation Blog Post Video Explainer

WIP: A Shuffle Argument for ETH 2.0The Challenges

Short Term Plan

Documentation

Formal “research
styled” PDF

Technical
Specification

Reference
Implementation Blog Post Video Explainer

This is a WIP and
advice is welcome

• We plan to implement an adaptation of the Bayer-Groth Shuffle argument. 

• Currently it scares some implementers due to the complexity. 

• BG is one of the simplest ZKPs, and seems more complex than it is due to poor
documentation.

Case Study: Zero-Knowledge Standardisation Effort

• ZKProof is an effort to produce standards for ZKPs
to ease their adoption. 

• We have run a total of 4 community workshops to
gather ideas about what to standardise. 

• We have 5 active working groups that are focussing
on specific topics. 

• We have a community reference document
designed to be an entry level explainer for ZKPs. 

• We have additional online resources.

zkproof.org

Standards
Efforts

http://zkproof.org

Key Challenge: Prover time is high.

• SNARK provers depend (quasi)-linearly on the computation being proven and
the constants are large.

• Computation dominated by group multiplications and Fast Fourier
Transforms. 

• The faster the prover, the more we can prove.

Specialised
Hardware

Smaller
Computations Recursion

Prover Time is High

Specialised Hardware
• ZKPrize an ongoing competition to produce better hardware for SNARKs. 

• A related project is building specialised hardware for verifiable delay functions. 

• ASICs can have a huge impact on SNARK proving time.

Recursion
• Recent work has looked into building SNARKs of SNARKs. 

• This can improve prover time whenever smaller computations are repeated
frequently: one key use case is blocklists.

Recursion
• Recent work has looked into building SNARKs of SNARKs. 

• This can improve prover time whenever smaller computations are repeated
frequently: one key use case is blocklists. 

• We have known for a while that recursion is promising.

Recursion
• Recent work has looked into building SNARKs of SNARKs. 

• This can improve prover time whenever smaller computations are repeated
frequently: one key use case is blocklists. 

• There are lots of exciting developments in this area.

Smaller Computations
• Usually the computation we are trying to prove has to be translated

into a language the SNARK can read. 

• i.e. we must arithmetise the computation. 

• The better our translation the faster the SNARK. 
 

https://en.wikipedia.org/wiki/
Arithmetic_circuit_complexity

https://www.zeroknowledgeblog.com/index.php/
the-pinocchio-protocol/r1cs

https://zcash.github.io/halo2/concepts/arithmetization.html

https://cathieyun.medium.com/building-on-
bulletproofs-2faa58af0ba8

Smaller Computations
• Usually the computation we are trying to prove has to be translated

into a language the SNARK can read. 

• i.e. we must arithmetise the computation. 

• The better our translation the faster the SNARK. 

• Recent research directions look into minimising SNARK prover
costs.

Lookup Arguments
• Lookup arguments can be used to reduce the number of constraints

required to represent a computation. 

• They are an extension to arithmetic circuits/ r1cs/ cairo/ tiny ram etc.

The Power of Plookup

• Suppose Gadget A is used over and over and over again in the
circuit. 

• Don’t check with arithmetic gates that gadget A is correct, instead
“lookup” whether the result is in a precomputed set.

Most circuits are composed
of several sub circuits that

are used multiple times.+

+ x

+x

The Power of Plookup

• Suppose Gadget A is used over and over and over again in the
circuit. 

• Don’t check with arithmetic gates that gadget A is correct, instead
“lookup” whether the result is in a precomputed set.

Most circuits are composed
of several sub circuits that

are used multiple times.+

+ x

+x

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

Can instead check if
a wire is included in

a set of precomputed
values.

Recent personal research: Caulk

Very New Result

• We build a zero-knowledge lookup argument that has fast prover
time. 

• The prover is m^2 + m log(N) for N the size of the table and m the
number of lookups. 

• Proof size is constant. 

• Verification is a constant number of pairings.

Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle
trees.
w^N = 1

f(w) = y for
w a “root of

unity”

Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle
trees.
w^N = 1

f(w) = y for
w a “root of

unity”

for each w,
store pi = Proof

that f(w) = y

Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle
trees.

f(w) = y for
w a “root of

unity”

w^N = 1

for each w,
store pi = Proof

that f(w) = y

Given y
prove

knowledge of
pi and w

Also prove
w^N = 1

This proof is fast This proof is log(N)

Very New Result

• Story: Vitalik had an idea for how to do fast membership proofs . 

• i.e. membership proofs up to 100x faster than Poseidon Merkle
trees. 

• I made the proof zero-knowledge and started formalising.

f(w) = y for
w a “root of

unity”

for each w,
store pi = Proof

that f(w) = y

Given y
prove

knowledge of
pi and w

Also prove
w^N = 1

Very New Result

• Arantxa started an internship with me at the EF. 

• Anca suggested extending the results to “batch” membership
proofs (i.e. lookup arguments). 

• Arantxa and I explored how to do this efficiently. 

• Mark and Arantxa explore definitions of “linkability”

We use a “non-zk”
membership proof as a

starting point.

Very New Result

• Dmitry and I implement the scheme in rust. 

• Results are much better than Merkle trees.  

• Comparison with RSA accumulators depends on the size of m. 

• Result went out on 23rd May 2022

https://github.com/caulk-crypto/caulk

Thank-you for listening

