New Efficient Characteristic Three Polynomial Multiplication Algorithms and Their Applications to NTRU Prime

Dr. Esra YENIARAS

Middle East Technical University \& Ministry of Education Turkiye

NIST Crypto Reading Club Presentation

September 21, 2022

Outline

(1) Problem Definition

- Quantum Computers and Post Quantum Cryptography
- NTRU Prime Protocol
- NTRU Prime Decapsulation \& Char 3 Polynomial Multiplication
- Importance of Polynomial Multiplication in Cryptography
- Our Purpose
(2) Well-Known Characteristic 3 Polynomial Multiplication Algorithms \& Recent Improvements
(3) Our Contribution: New Efficient 4-way and 5-way Char 3 Polynomial Multiplication Algorithms
- New 4-way Multiplication Algorithm (N1)
- An Improved 4-way Multiplication Algorithm (N2)
- Another Improved 4-way Multiplication Algorithm (N3)
- New 5-way Multiplication Algorithm (V1)
- Unbalanced 5-way Multiplication Algorithm (U1)

4 Application to NTRU Prime Decapsulation and Implementation Results

- Bernstein's Hybrid-1 Approach vs Our Hybrid Methods
- Bernstein's Improved B1-Hybrid Approach vs Our Improved Hybrid Methods
(5) Conclusion
(6) References

Quantum Computers and Post-Quantum Cryptography

QUANTUM COMPUTERS

- Shor's Quantum Factoring Algorithm: IFP (RSA), DLP (DH, ECDH) are vulnerable to attacks by sufficiently strong quantum computers. Thus, we need quantum-resistant algorithms!
- Grover's Search Algorithm: Reduces the search space from $\mathrm{O}(N) \rightarrow \mathrm{O}(\sqrt[2]{N})$ for brute force attacks!

AES - $128 \rightarrow 2^{64}$ not secure enough! X
AES $-256 \rightarrow 2^{128} \checkmark$

NIST's Post-Quantum Cryptography Competition

NIST started a PQC Standardization Process in 2016 and different types of quantum-resistant algorithms are submitted as follows:

- Lattice-Based: Saber, CRYSTALS-Kyber, CRYSTALS-Dilithium, New Hope, Frodo KEM, NTRU, NTRU Prime.
- Code-Based: BIKE, Classic McEllice, HQC
- Supersingular Isogeny-Based: SIKE.
- Hash-Based: Picnic, SPHINCS+.
- Multivariate-Based: GeMSS, Rainbow.
https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

NIST 3rd Round Results:

- Third Round Finalists:

Public Key Encryption/KEMs: Classic McEliece, CRYSTALS-Kyber, NTRU, Saber.
Digital Signatures: CRYSTALS-Dilithium, FALCON, Rainbow

- Third Round Alternate Candidates:

Public Key Encryption/KEMs: BIKE, FrodoKEM, HQC, NTRU Prime, SIKE

Digital Signatures: GeMSS, Picnic, SPHINCS+

- Algorithms to be Standardized:

Public Key Encryption/KEMs: CRYSTALS-Kyber Digital Signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+

- Candidates Advancing to the Fourth Round:

Public Key Encryption/KEMs: BIKE, Classic McEliece, HQC, SIKE

Digital Signatures:

Lattice-Based Cryptography and Quantum Resistance

- LATTICE-BASED HARD PROBLEMS:

1- Shortest Vector Problem (SVP)
2- Closest Vector Problem (CVP)
3- The Shortest Independent Vector Problem (SIVP)
4- Learning with errors (LWE)
5- Ring Learning with Errors (R-LWE)
6- Module Learning with Errors (M-LWE)

NTRU Prime KEM: A NIST PQC Candidate

NTRU PRIME: A LATTICE-BASED PQC ALGORITHM

- NTRU Prime KEM: A Lattice-based KEM by Bernstein et al.
- Advanced to Round 3 as alternative candidate.
- NTRU Prime Based on hard problem (SVP), to solve for input size $n \geq 100 \rightarrow$ Quantum Secure \checkmark

Why NTRU Prime: Char 3 Polynomial Multiplication

- Google-Couldfire Experiment: NTRU Prime KEM with batch key generation feature is considered as a faster and a more secure alternative to ntruhrss701 for TLS 1.3 in 2021 [6].
- NTRU Prime uses characteristic-3 polynomial multiplication in its decapsulation phase. (Possible Improvement Here!)

NTRU Prime Decapsulation

NTRU PRIME DECAPSULATION \& CHAR 3 POLYNOMIAL MULTIPLICATION

- Decapsulation includes poly. mult. in $\mathbb{Z}_{3}[x] /\left(x^{p}-x-1\right)$ where p is prime [1].

```
Algorithm 1 Streamlined NTRU Prime Decapsulation Decap
(C, \(S_{k}\) )
    Input: \(\left(C, S_{k}\right)\)
    Output: HashSession(1, \(\underline{r}, C\) ) or HashSession \((0, p, C)\)
    \(c \leftarrow \operatorname{Decode}(\underline{\mathrm{c}})\)
    \(e \leftarrow(\operatorname{Rounded}(c .(3 f)) \bmod 3) \in \mathcal{R} / 3\)
    \(r^{\prime} \leftarrow \operatorname{Lift}\left(e . g^{-1}\right) \in \mathcal{R} / q\)
    \(c^{\prime} \leftarrow \operatorname{Round}\left(h . r^{\prime}\right)\)
    \(\underline{\mathrm{c}}^{\prime} \leftarrow \operatorname{Encode}\left(c^{\prime}\right)\)
    \(C^{\prime} \leftarrow\left(\underline{c}^{\prime}\right.\), HashConfirm \(\left.\left(\underline{r}^{\prime}, \underline{h}\right)\right)\)
    if \(C^{\prime}==C\) then
        return HashSession(1, \(\underline{r}, C\) )
    else
            return HashSession( \(0, p, C\) ))
    end if
```


NTRU Prime Parameters

- p and q are prime numbers, $q \geq 17,0<\omega \leq p, 2 p \geq 3 \omega$, $q \geq 16 \omega+1$ and $x^{p}-x-1$ is an irreducible polynomial in the polynomial ring $\mathbb{Z}_{q}[x]$.
- $\mathcal{R}=\mathbb{Z}[x] /\left(x^{p}-x-1\right)$ ring
$\mathcal{R} / 3=\mathbb{Z}_{3}[x] /\left(x^{p}-x-1\right)$ ring
$\mathcal{R} / q=\mathbb{Z}_{q}[x] /\left(x^{p}-x-1\right)$ field
- If the parameters are $p=761, q=4591$ and $\omega=286$ then the cryptosystem is represented as sntrup761.

Another NIST PQC Candidate: NTRU KEM

MORE PQC ALGORITHMS \& CHAR 3 MULTIPLICATION

- NTRU KEM:
- Hüsling et al., Advanced to Round 3 as a main candidate.
- Merger of two earlier submissions NTRU HRSS-KEM and NTRUEncrypt.
- Polynomial multiplication in $\mathbb{Z}_{3}[x] /\left(x^{n-1}+x^{n-2}+\ldots+1\right)$ may improve the efficiency of the decapsulation phase.
- Thus, it is worth to improve the arithmetical completixy of the polynomial multiplication over \mathbb{F}_{3}.

Importance of Polynomial Multiplication in Cryptography

POLYNOMIAL MULTIPLICATION\&CHARACTERISTIC 3 FIELDS:

- Polynomial multiplication is a very commonly used, important tool in most cryptographic protocols that effects the efficiency.
- Polynomial multiplication in char 3 fields is used in many cryptographic applications such as pairing-based cryptography and/or post-quantum cryptography: NTRU Prime, NTRU exc.
- There exist efficient 2-way, 3-way, 4-way, 5-way (or above) split type poly. mult. algorithms in binary fields. However, in char 3, we have up to 3-way split algorithms so far. This can be improved!

OUR PURPOSE IN THIS STUDY:

- Primary Purpose: To develop new \& more efficient polynomial multiplication algorithms that are specific to characteristic 3 fields in general.

And improve arithmetical complexities for multiplying polynomials in char 3. \checkmark

- Secondary Purpose: To apply these new char 3 algorithms on the NTRU Prime Decapsulation!

And improve the implementation run-time of NTRU Prime Decapsulation \checkmark

Well-Known Characteristic 3 Polynomial Multiplication Algorithms

\checkmark SB: Schoolbook polynomial multiplication algorithm.
\checkmark LT: Schoolbook recursion method [8]. We refer to it as the last term method.
KA2: Improved (Refined) Karatsuba 2-way polynomial multiplication algorithm [8].
UB: Unbalanced Refined Karatsuba 2-way polynomial multiplication algorithm [8].
KA3: (Improved) Karatsuba like 3-way polynomial multiplication algorithm [10].

Well-Known Characteristic 3 Polynomial Multiplication Algorithms

RECENT IMPROVEMENTS:

\checkmark A3: In 2018, Cenk, Hasan, and Zadeh [7] introduced a 3-way split polynomial multiplication algorithm using interpolation method which is similar to Toom-Cook's formula [7].
\rightarrow A3 is more efficient than SB, Refined Karatsuba 2-way, (Improved) Karatsuba like 3-way algorithms.
\checkmark B1: In 2021, Bernstein et al. proposed a 3-way algorithm in $[6,8]$.
$\rightarrow \mathbf{B 1}$ is more efficient than $\mathbf{A} 3$ over \mathbb{F}_{3} but slower than it over \mathbb{F}_{9}.

- We develop new efficient 4-way split algorithms N1, N2, and N3.
- Furthermore, we develop new efficient 5-way split algorithm V1 and the unbalanced 5-way version U1.
- We reduce the arithmetical complexities for Char 3 polynomial multiplication in general, by the help of the proposed $\mathrm{N} 1, \mathrm{~N} 2$, N3, V1, and U1 algorithms.
- Finally, we apply the hybrid use of N1, N2, N3, V1 and U1 combined with the others on NTRU Prime Decapsulation. We obtain speedups in the C implementation run-times (cycle counts) of the multiplication step compared to Bernstein's methods.

New 4-way Multiplication Algorithm (N1)

N1 is a multiplication algorithm in Char 3, with seven $1 / 4$ sized multiplications, which is derived by using the interpolation method in \mathbb{F}_{9}.

$$
\left.\begin{array}{l}
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{4 n-1} x^{4 n-1} \\
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{4 n-1} x^{4 n-1}
\end{array}\right\}
$$

are two polynomials of degree $4 n-1$ where $n=4^{k}$ for some $k \geq 0$. Let $y=x^{n}, C(x)=A(x) B(x)$ and,

N1 4-way Split Algorithm

$$
\left.\begin{array}{l}
A_{0}=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \\
A_{1}=a_{n}+a_{n+1} x+\ldots+a_{2 n-1} x^{n-1} \\
A_{2}=a_{2 n}+a_{2 n+1} x+\ldots+a_{3 n-1} x^{n-1} \\
A_{3}=a_{3 n}+a_{3 n+1} x+\ldots+a_{4 n-1} x^{n-1} \\
B_{0}=b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1} \\
B_{1}=b_{n}+b_{n+1} x+\ldots+b_{2 n-1} x^{n-1} \\
B_{2}=b_{2 n}+b_{2 n+1} x+\ldots+b_{3 n-1} x^{n-1} \\
B_{3}=b_{3 n}+b_{3 n+1} x+\ldots+b_{4 n-1} x^{n-1}
\end{array}\right\}
$$

then,

$$
\left.\begin{array}{l}
A(x)=A_{0}+y A_{1}+y^{2} A_{2}+y^{3} A_{3} \\
B(x)=B_{0}+y B_{1}+y^{2} B_{2}+y^{3} B_{3}
\end{array}\right\}
$$

N1 4-way Split Algorithm

thus, the result of the multiplication becomes,

$$
\begin{aligned}
C(x) & =\left(A_{0}+y A_{1}+y^{2} A_{2}+y^{3} A_{3}\right)\left(B_{0}+y B_{1}+y^{2} B_{2}+y^{3} B_{3}\right) \\
& =C_{0}+C_{1} y+C_{2} y^{2}+C_{3} y^{3}+C_{4} y^{4}+C_{5} y^{5}+C_{6} y^{6}
\end{aligned}
$$

For interpolation we need 7 point but since \mathbb{F}_{3} does not have enough points we use points from \mathbb{F}_{9}.

N1 4-way Split Algorithm

Note that, since $x^{2}+1$ is an irreducible polynomial over \mathbb{F}_{3} then $\mathbb{F}_{9} \cong \mathbb{F}_{3}[x] /\left(x^{2}+1\right)$, thus we can represent the elements of \mathbb{F}_{9} as polynomials of degree less than 2. Let's define $\omega \in \mathbb{F}_{9}$ such that $\omega^{2}+1=0$.

Table: Comparison of basic operations, $a, b, c, d \in \mathbb{F}_{3}$

Operation	\mathbb{F}_{3} cost	\mathbb{F}_{9} cost
$(a+b \omega)+(c+d \omega)=(a+c)+(b+d) \cdot \omega$	2 Adds	1 Add
$(a+b \omega) \cdot(c+d \omega)=(a c-b d)+(b c+a d) \cdot \omega$	2 Adds+4 Mults	1 Mult
$\omega \cdot a, 1 \cdot a,(-1) \cdot a$	0	0
$\omega \cdot(a+b \omega)=-b+a \cdot \omega$	0	0

Multiplying an element of \mathbb{F}_{9} by $\omega, 1$, or -1 is cost-free.

N1 4-way Split Algorithm

We choose $\{\omega,-\omega, \omega+1,-\omega+1,-\omega-1, \omega-1, \infty\}$ as the points of evaluation for interpolation and we get the following system of equations,
$P_{0}=\left[\left(A_{0}-A_{2}\right)+\omega\left(A_{1}-A_{3}\right)\right] \cdot\left[\left(B_{0}-B_{2}\right)+\omega\left(B_{1}-B_{3}\right)\right]=C(\omega)$
$P_{1}=\left[\left(A_{0}-A_{2}\right)-\omega\left(A_{1}-A_{3}\right)\right] \cdot\left[\left(B_{0}-B_{2}\right)-\omega\left(B_{1}-B_{3}\right)\right]=C(-\omega)$
$P_{2}=\left[\left(A_{0}+A_{1}+A_{3}\right)+\omega\left(A_{1}-A_{2}-A_{3}\right)\right] \cdot\left[\left(B_{0}+B_{1}+B_{3}\right)+\omega\left(B_{1}-B_{2}-B_{3}\right)\right]=C(\omega+1)$
$P_{3}=\left[\left(A_{0}+A_{1}+A_{3}\right)+\omega\left(-A_{1}+A_{2}+A_{3}\right)\right] \cdot\left[\left(B_{0}+B_{1}+B_{3}\right)+\omega\left(-B_{1}+B_{2}+B_{3}\right)\right]=C(-\omega+1)$
$P_{4}=\left[\left(A_{0}-A_{1}-A_{3}\right)+\omega\left(-A_{1}-A_{2}+A_{3}\right)\right] \cdot\left[\left(B_{0}-B_{1}-B_{3}\right)+\omega\left(-B_{1}-B_{2}+B_{3}\right)\right]=C(-\omega-1)$
$P_{5}=\left[\left(A_{0}-A_{1}-A_{3}\right)+\omega\left(A_{1}+A_{2}-A_{3}\right)\right] \cdot\left[\left(B_{0}-B_{1}-B_{3}\right)+\omega\left(B_{1}+B_{2}-B_{3}\right)\right]=C(\omega-1)$
$P_{6}=A_{3} \cdot B_{3}=C_{6}$

N1 4-way Split Algorithm

Solving the matrix representation of the system of equation,

$$
\left[V_{i j}\right]_{7 \times 7} \cdot\left[C_{i}\right]_{7 \times 1}=\left[P_{j}\right]_{7 \times 1}
$$

then,

$$
\Rightarrow\left[C_{i}\right]_{7 \times 1}=\left[V_{i j}\right]_{7 \times 7}^{-1} \cdot\left[P_{j}\right]_{7 \times 1}
$$

N1 4-way Split Algorithm

yields,

$$
\left.\begin{array}{l}
C_{0}=-P_{0,0}+P_{2,0}+P_{4,0}+P_{6}-P_{2,1}-P_{4,1} \\
C_{1}=P_{2,0}-P_{4,0}-P_{0,1} \\
C_{2}=P_{6}+P_{2,1}+P_{4,1} \\
C_{3}=P_{2,0}-P_{4,0}-P_{2,1}+P_{4,1} \\
C_{4}=-P_{0,0}-P_{2,0}-P_{4,0}+P_{6}-P_{2,1}-P_{4,1} \\
C_{5}=-P_{0,1}-P_{2,1}+P_{4,1} \\
C_{6}=P_{6}
\end{array}\right\}
$$

N1 4-way Split Algorithm

where,

$$
\left.\begin{array}{l}
P_{0}=P_{0,0}+\omega P_{0,1} \\
P_{1}=P_{1,0}+\omega P_{1,1} \\
P_{2}=P_{2,0}+\omega P_{2,1} \\
P_{3}=P_{3,0}+\omega P_{3,1} \\
P_{4}=P_{4,0}+\omega P_{4,1} \\
P_{5}=P_{5,0}+\omega P_{5,1}
\end{array}\right\}
$$

N1 4-way Split Algorithm

and observe that,

$$
\left.\begin{array}{rl}
P_{0,0} & =P_{1,0} \\
P_{0,1} & =-P_{1,1} \\
P_{2,0} & =P_{3,0} \\
P_{2,1} & =-P_{3,1} \\
P_{4,0} & =P_{5,0} \\
P_{4,1} & =-P_{5,1}
\end{array}\right\}
$$

which helps us avoiding the cost of three multiplications, i.e., instead of calculating the six P_{i} for $0 \leq i \leq 5$ multiplications, it will be sufficient to calculate P_{0}, P_{2}, and P_{4}. Thus, three multiplications in $\mathbb{F}_{9}[x]$ get cost-free.

Complexity of N1 Algorithm

By using the cost of multi-evaluation and reconstruction tables we get,

$$
\left.\begin{array}{rl}
M_{9}(4 n) & \leq 7 M_{9}(n)+144 n-52, M_{9}(1)=6 \\
M_{9, \otimes}(4 n) & \leq 7 M_{9, \otimes}(n), M_{9, \otimes}(1)=4 \\
M_{9, \oplus}(4 n) & \leq 7 M_{9, \oplus}(n)+144 n-52, M_{9, \oplus}(1)=2 \\
M_{3}(4 n) & \leq M_{3}(n)+3 M_{9}(n)+44 n-18, M_{3}(1)=1 \\
M_{3, \otimes}(4 n) & \leq M_{3, \otimes}(n)+3 M_{9, \otimes}(n), M_{3, \otimes}(1)=1 \\
M_{3, \oplus}(4 n) & \leq M_{3, \oplus}(n)+3 M_{9, \oplus}(n)+44 n-18, M_{3, \oplus}(1)=0
\end{array}\right\}
$$

then we get the explicit complexities as follows,

$$
\left.\begin{array}{rl}
M_{9}(n) & \leq 45.33 n^{\log _{4} 7}-48 n-8.66 \\
M_{9, \otimes}(n) & \leq 4 n^{\log _{4} 7} \\
M_{9, \oplus}(n) & \leq 41.33 n^{\log _{4} 7}-48 n-8.66 \\
M_{3}(n) & \leq 22.66 n^{\log _{4} 7}-33.33 n-44 \log _{4} n+11.66 \\
M_{3, \otimes}(n) & \leq 2 n^{\log _{4} 7}-1 \\
M_{3, \oplus}(n) & \leq 20.66 n^{\log _{4} 7}-33.33 n-44 \log _{4} n+12.66
\end{array}\right\}
$$

Complexity of N1 4-way Algorithm - Unbalanced Split Version

Moreover, assuming that $A(x)$ and $B(x)$ are degree $3 n+k-1$ polynomials where $1 \leq k \leq n$, i.e the size of the polynomials to be multiplied are not multiples of $4, A_{0}, A_{1}, A_{2}, B_{0}, B_{1}, B_{2}$ are degree $n-1$ polynomials and A_{3}, B_{3} are degree $k-1$ polynomials. Then, the cost analysis of the N1 4-way algorithm yields,

$$
\left.\begin{array}{r}
M_{3}(3 n+k) \leq M_{3}(k)+3 M_{9}(n)+36 n+8 k-18 \\
M_{9}(3 n+k) \leq 6 M_{9}(n)+M_{9}(k)+124 n+20 k-52
\end{array}\right\}
$$

Comparison of N1 Algorithm to Others

- N1 algorithm is less costly than KA2 for $n \geq 280$ in $\mathbb{F}_{3}[x]$ and for $n \geq 28$ in $\mathbb{F}_{9}[x]$.
- Also N1 is more efficient than A3 for $n \geq 1020$ in $\mathbb{F}_{3}[x]$ and for $n \geq 84$ in $\mathbb{F}_{9}[x]$.
- N1 is faster than than B1 for $n \geq 192$.

An Improved 4-way Multiplication Algorithm (N2)

N 2 is an improved version of N 1 :
-The new 4-way algorithm N1 from the previous section can be improved if we choose different interpolation points.
-This time we use $\{0,1, \omega+1,-\omega+1,-\omega-1, \omega-1, \infty\}$ as the interpolation evaluation points.

N2 4-way Split Algorithm

More simplifications than N1 case as follows:

$$
\left.\begin{array}{rl}
P_{2,0} & =P_{3,0} \\
P_{2,1} & =-P_{3,1} \\
P_{4,0} & =P_{5,0} \\
P_{4,1} & =-P_{5,1}
\end{array}\right\}
$$

P_{3} and P_{5} can be derived out of P_{2} and P_{4} thus, it is sufficient to calculate the latter two multiplications only. In this way, we save two $\mathbb{F}_{9}[x]$ multiplications. Interpolation regarding the N 2 algorithm gives us the following results.

N2 4-way Split Algorithm

This time the coefficients of the multiplication polynomial becomes:

$$
\begin{aligned}
& C_{0}=P_{0} \\
& C_{1}=-P_{0}-P_{1}+P_{2,0}+P_{4,0}-P_{6}-P_{2,1} \\
& C_{2}=P_{6}+P_{2,1}+P_{4,1} \\
& C_{3}=P_{2,0}-P_{4,0}-P_{2,1}+P_{4,1} \\
& C_{4}=P_{0}+P_{2,0}+P_{4,0} \\
& C_{5}=-P_{0}-P_{1}-P_{4,0}-P_{6}+P_{2,1}+P_{4,1} \\
& C_{6}=P_{6}
\end{aligned}
$$

Complexity of N2 Algorithm

$$
\left.\begin{array}{rl}
M_{9}(4 n) & \leq 7 M_{9}(n)+132 n-48, M_{9}(1)=6 \\
M_{9, \otimes}(4 n) & \leq 7 M_{9, \otimes}(n), M_{9, \otimes}(1)=4 \\
M_{9, \oplus}(4 n) & \leq 7 M_{9, \oplus}(n)+132 n-48, M_{9, \oplus}(1)=2 \\
M_{3}(4 n) & \leq 3 M_{3}(n)+2 M_{9}(n)+50 n-20, M_{3}(1)=1 \\
M_{3, \otimes}(4 n) & \leq 3 M_{3, \otimes}(n)+2 M_{9, \otimes}(n), M_{3, \otimes}(1)=1 \\
M_{3, \oplus}(4 n) & \leq 3 M_{3, \oplus}(n)+2 M_{9, \oplus}(n)+50 n-20, M_{3, \oplus}(1)=0
\end{array}\right\}
$$

And we get the following asymptotic complexities:

$$
\left.\begin{array}{rl}
M_{9}(n) & \leq 42 n^{\log _{4} 7}-44 n-8 \\
M_{9, \otimes}(n) & \leq 4 n^{\log _{4} 7} \\
M_{9, \oplus}(n) & \leq 38 n^{\log _{4} 7}-44 n-8 \\
M_{3}(n) & \leq 21 n^{\log _{4} 7}-38 n+18 \\
M_{3, \otimes}(n) & \leq 2 n^{\log _{4} 7}-n^{\log _{4} 3} \\
M_{3, \oplus}(n) & \leq 19 n^{\log _{4} 7}+n^{\log _{4} 3}-38 n+18
\end{array}\right\}
$$

Complexity of N2 4-way Algorithm - Unbalanced Split Version

Moreover, assuming that $A(x)$ and $B(x)$ are degree $3 n+k-1$ polynomials where $1 \leq k \leq n, A_{0}, A_{1}, A_{2}, B_{0}, B_{1}, B_{2}$ are degree $n-1$ polynomials and A_{3}, B_{3} are degree $k-1$ polynomials. Then, the cost analysis of the N 2 4-way algorithm yields,

$$
\left.\begin{array}{r}
M_{3}(3 n+k) \leq 2 M_{3}(n)+M_{3}(k)+2 M_{9}(n)+38 n+12 k-20 \\
M_{9}(3 n+k) \leq 6 M_{9}(n)+M_{9}(k)+108 n+24 k-48
\end{array}\right\}
$$

Comparison of N2 with Others

- N2 becomes faster than KA2 for $n \geq 60$ in $\mathbb{F}_{3}[x]$ and for $n \geq 20$ in $\mathbb{F}_{9}[x]$.
- N2 is more efficient than $\mathbf{A} \mathbf{3}$ beginning from $n \geq 180$ in $\mathbb{F}_{3}[x]$ and for $n \geq 72$ in $\mathbb{F}_{9}[x]$.
- N2 is faster than than $\mathbf{B 1}$ for $n \geq 192$
- In general, N2 is more efficient than N1 for all input sizes.

Another Improved 4-way Polynomial Multiplication Algorithm (N3)

N3 is another improved 4-way split multiplication algorithm in
Char 3, with seven $1 / 4$ sized multiplications, using Lagrange interpolation in $\mathcal{R}=\mathbb{F}_{9}[x]$ with evaluation points $\{0,1,-1, x, \omega,-\omega, \infty\}$ we get,

$$
\begin{aligned}
& P_{0}=A_{0} B_{0}=C(0) \\
& P_{1}=\left(A_{0}+A_{1}+A_{2}+A_{3}\right)\left(B_{0}+B_{1}+B_{2}+B_{3}\right)=C(1) \\
& P_{2}=\left(A_{0}-A_{1}+A_{2}-A_{3}\right)\left(B_{0}-B_{1}+B_{2}-B_{3}\right)=C(-1) \\
& P_{3}=\left(A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}\right)\left(B_{0}+B_{1} x+B_{2} x^{2}+B_{3} x^{3}\right)=C(x) \\
& P_{4}=\left[\left(A_{0}-A_{2}\right)+\omega\left(A_{1}-A_{3}\right)\right]\left[\left(B_{0}-B_{2}\right)+\omega\left(B_{1}-B_{3}\right)\right]=C(\omega) \\
& P_{5}=\left[\left(A_{0}-A_{2}\right)-\omega\left(A_{1}-A_{3}\right)\right]\left[\left(B_{0}-B_{2}\right)-\omega\left(B_{1}-B_{3}\right)\right]=C(-\omega) \\
& P_{6}=A_{3} B_{3}=C_{6}
\end{aligned}
$$

New 4-way Split Algorithm (N3)

Let,

$$
\left.\begin{array}{l}
P_{4}=P_{4,0}+\omega P_{4,1} \\
P_{5}=P_{5,0}+\omega P_{5,1}
\end{array}\right\}
$$

then one can observe that,

$$
\left.\begin{array}{l}
P_{4,0}=P_{5,0} \\
P_{4,1}=-P_{5,1}
\end{array}\right\}
$$

By the above two equations, the product P_{4} can be calculated from the product P_{5}. Thus, one multiplication gets cost-free. We get the formula for $C(x)$ as follows:

$$
\begin{aligned}
C(x)= & P_{0}+x^{n} \cdot\left[x^{2}\left(\frac{\left(P_{1}-P_{2}\right)}{x^{2}-1}-\frac{\omega\left(P_{4}-P_{5}\right)}{x^{2}+1}\right)-U\right] \\
& +x^{2 n} \cdot\left[\left(P_{1}+P_{2}\right)-\left(P_{4}+P_{5}\right)-P_{6}\right] \\
& +x^{3 n} \cdot\left[\left(P_{1}-P_{2}\right)+\omega\left(P_{4}-P_{5}\right)\right]+x^{4 n} \cdot\left[-P_{0}+\left(P_{1}+P_{2}\right)+\left(P_{4}+P_{5}\right)\right] \\
& +x^{5 n} \cdot\left[\left(-\frac{\left(P_{1}-P_{2}\right)}{x^{2}-1}-\frac{\omega\left(P_{4}-P_{5}\right)}{x^{2}+1}\right)+U\right]+x^{6 n} \cdot P_{6}
\end{aligned}
$$

where, $U=\frac{P_{0}}{x}+\frac{P_{3} / x}{x^{4}-1}-x\left(\frac{P_{4}+P_{5}}{x^{2}+1}+\frac{P_{1}+P_{2}}{x^{2}-1}\right)-P_{6} x$

New 4-way Split Algorithm (N3)

N3 is not recursive and can only be applied once at a time since the six products $P_{0}, P_{1}, P_{2}, P_{4}$, P_{5}, and P_{6} involve polynomials of degree $n-1$, but P_{3} involves polynomials of degree $n+2$.

$$
\left.\begin{array}{rl}
M_{3}(n+3) & =M_{3}(n)+12 n+12 \\
M_{3, \otimes}(n+3) & =M_{3, \otimes}(n)+6 n+9 \\
M_{3, \oplus}(n+3) & =M_{3, \oplus}(n)+6 n+3 \\
M_{9}(n+3) & =M_{9}(n)+48 n+60 \\
M_{9, \otimes}(n+3) & =M_{9, \otimes}(n)+24 n+36 \\
M_{9, \oplus}(n+3) & =M_{9, \oplus}(n)+24 n+24
\end{array}\right\}
$$

To get a fully recursive version of N3, we express the product of degree $n+2$ polynomials in terms of one product of degree $n-1$ polynomials plus some additional non-recursive terms and then we expand the multiplication using schoolbook method, compute each product of the expansion separately and add them up to get the final result. The result indicates the following equalities.

Complexity of N3 Algorithm

Then we get the complexity of the N3 algorithm as follows:

$$
\left.\begin{array}{rl}
M_{9}(4 n) & \leq 7 M_{9}(n)+196 n-40, M_{9}(1)=6 \\
M_{9, \otimes}(4 n) & \leq 7 M_{9, \oplus}(n)+24 n+36, M_{9, \otimes}(1)=4 \\
M_{9, \oplus}(4 n) & \leq 7 M_{9, \otimes}(n)+172 n-76, M_{9, \oplus}(1)=2 \\
M_{3}(4 n) & \leq 5 M_{3}(n)+M_{9}(n)+78 n-36, M_{3}(1)=1 \\
M_{3, \otimes}(4 n) & \leq 5 M_{3, \otimes}(n)+M_{9, \otimes}(n)+6 n+9, M_{3, \otimes}(1)=1 \\
M_{3, \oplus}(4 n) & \leq 5 M_{3, \oplus}(n)+M_{9, \oplus}(n)+72 n-45, M_{3, \oplus}(1)=0 \\
M_{9}(n) & \leq 64.66 n^{\log _{4} 7}-65.33 n-6.66 \\
M_{9, \otimes}(n) & \leq 18 n^{\log _{4} 7}-8 n+6 \\
M_{9, \oplus}(n) & \leq 46.66 n^{\log _{4} 7}-57.33 n-12.66 \\
M_{3}(n) & \leq 32.33 n^{\log _{4} 7}-29.33 n^{\log _{4} 5}-12.66 n+10.66 \\
M_{3, \otimes}(n) & \leq 9 n^{\log _{4} 7}-6.25 n^{\log _{4} 5}+2 n-3.75 \\
M_{3, \oplus}(n) & \leq 23.33 n^{\log _{4} 7}-23.08 n^{\log _{4} 5}-14.66 n+14.41
\end{array}\right\}
$$

Complexity of N3 Algorithm - Unbalanced Split Version

Moreover, assuming that $A(x)$ and $B(x)$ are degree $3 n+k-1$ polynomials where $1 \leq k \leq(n-1), A_{0}, A_{1}, A_{2}, B_{0}, B_{1}, B_{2}$ are degree $n-1$ polynomials and A_{3}, B_{3} are degree $k-1$ polynomials for $(n+1) / 2 \leq k$. Then, the cost analysis of the N3 4-way algorithm yields,

$$
\left.\begin{array}{r}
M_{3}(3 n+k) \leq 4 M_{3}(n)+M_{3}(k)+M_{9}(n)+68 n+10 k-38 \\
M_{9}(3 n+k) \leq 6 M_{9}(n)+M_{9}(k)+176 n+20 k-44
\end{array}\right\}
$$

Comparison of N3 Algorithm to Others

In terms of arithmetic complexity,

- N3 4-way algorithm is better than the N1 and N2 4-way algorithms [5] for $n \geq 64$.
- Also note that, all of N1, N2, and N3 4-way methods are faster than Bernstein's 3-way algorithm B1 [6] for $n \geq 192$ in the implementation run-times.

A New 5-way Multiplication Algorithm (V1)

Let,

$$
\left.\begin{array}{l}
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{5 n-1} x^{5 n-1} \\
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{5 n-1} x^{5 n-1}
\end{array}\right\}
$$

are two polynomials of degree $5 n-1$ and $n=5^{k}$ for some $k \geq 1$. Let $y=x^{n}$ and also we assume that $C(x)=A(x) B(x)$. Given,

$$
\left.\begin{array}{l}
A_{0}=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \\
A_{1}=a_{n}+a_{n+1} x+\ldots+a_{2 n-1} x^{n-1} \\
A_{2}=a_{2 n}+a_{2 n+1} x+\ldots+a_{3 n-1} x^{n-1} \\
A_{3}=a_{3 n}+a_{3 n+1} x+\ldots+a_{4 n-1} x^{n-1} \\
A_{4}=a_{4 n}+a_{4 n+1} x+\ldots+a_{5 n-1} x^{n-1}
\end{array}\right\}
$$

V1 5-way Split Algorithm

$$
\left.\begin{array}{l}
A(x)=A_{0}+y A_{1}+y^{2} A_{2}+y^{3} A_{3}+y^{4} A_{4} \\
B(x)=B_{0}+y B_{1}+y^{2} B_{2}+y^{3} B_{3}+y^{4} B_{4}
\end{array}\right\}
$$

and the multiplication has the following form,

$$
C(x)=C_{0}+C_{1} y+C_{2} y^{2}+C_{3} y^{3}+C_{4} y^{4}+C_{5} y^{5}+C_{6} y^{6}+C_{7} y^{7}+C_{8} y^{8}
$$

V1 5-way Split Algorithm

To get the least expensive $1 / 5$ sized products, we try each possible combination of \mathbb{F}_{9} points for the interpolation evaluation, points $\{0,1, \omega,-\omega, \omega+1,-\omega+1,-\omega-1, \omega-1, \infty\}$ yield the most efficient 5 -way algorithm.

$$
\begin{aligned}
& C_{0}=P_{0} \\
& C_{1}=-P_{0}+P_{1}+P_{2,0}-P_{6,0}-P_{8}+P_{2,1}-P_{4,1}+P_{6,1} \\
& C_{2}=P_{0}+P_{2,0}-P_{4,0}-P_{6,0}+P_{8}-P_{4,1}-P_{6,1} \\
& C_{3}=-P_{0}+P_{1}+P_{2,0}-P_{6,0}-P_{8}-P_{2,1}+P_{4,1}-P_{6,1} \\
& C_{4}=P_{0}+P_{4,0}+P_{6,0}+P_{8} \\
& C_{5}=-P_{0}+P_{1}+P_{2,0}-P_{4,0}-P_{8}+P_{2,1}+P_{4,1}-P_{6,1} \\
& C_{6}=P_{0}+P_{2,0}-P_{4,0}-P_{6,0}+P_{8}+P_{4,1}+P_{6,1} \\
& C_{7}=-P_{0}+P_{1}+P_{2,0}-P_{4,0}-P_{8}-P_{2,1}-P_{4,1}+P_{6,1} \\
& C_{8}=P_{8}
\end{aligned}
$$

Complexity of V1 Algorithm

$$
\left.\begin{array}{rl}
M_{9}(5 n) & \leq 9 M_{9}(n)+196 n-72, M_{9}(1)=6 \\
M_{9, \otimes}(5 n) & \leq 9 M_{9, \otimes}(n), M_{9, \otimes}(1)=4 \\
M_{9, \oplus}(5 n) & \leq 9 M_{9, \oplus}(n)+196 n-72, M_{9, \oplus}(1)=2 \\
M_{3}(5 n) & \leq 3 M_{3}(n)+3 M_{9}(n)+72 n-29, M_{3}(1)=1 \\
M_{3, \otimes}(5 n) & \leq 3 M_{3, \otimes}(n)+3 M_{9, \otimes}(n), M_{3, \otimes}(1)=1 \\
M_{3, \oplus}(5 n) & \leq 3 M_{3, \oplus}(n)+3 M_{9, \oplus}(n)+72 n-29, M_{3, \oplus}(1)=0
\end{array}\right\}
$$

by Remark 1 we get,

$$
\left.\begin{array}{rl}
M_{9}(n) & \leq 47 n^{\log _{5} 9}-49 n-9 \\
M_{9, \otimes}(n) & \leq 4 n^{\log _{5} 9} \\
M_{9, \oplus}(n) & \leq 43 n^{\log _{5} 9}-49 n-9 \\
M_{3}(n) & \leq 23.5 n^{\log _{5} 9}-13 n^{\log _{5} 3}-37.5 n+28 \\
M_{3, \otimes}(n) & \leq 2 n^{\log _{5} 9}-n^{\log _{5} 3} \\
M_{3, \oplus}(n) & \leq 21.5 n^{\log _{5} 9}-12 . n^{\log _{5} 3}-37.5 n+28
\end{array}\right\}
$$

Complexity of V1 Algorithm - Unbalanced Split Version

Moreover, assuming that $A(x)$ and $B(x)$ are degree $4 n+k-1$ polynomials where $1 \leq k \leq n, A_{0}, A_{1}, A_{2}, A_{3}, B_{0}, B_{1}, B_{2}, B_{3}$ are degree $n-1$ polynomials and A_{4}, B_{4} are degree $k-1$ polynomials. Then, the cost analysis of the V15-way algorithm yields,

$$
\left.\begin{array}{r}
M_{3}(4 n+k) \leq 2 M_{3}(n)+M_{3}(k)+3 M_{9}(n)+66 n+6 k-29 \\
M_{9}(4 n+k) \leq 8 M_{9}(n)+M_{9}(k)+168 n+28 k-72
\end{array}\right\}
$$

Comparison of V1 with Others

- V1 becomes more efficient than KA2 for $n \geq 100$ in $\mathbb{F}_{3}[x]$ and for $n \geq 20$ in $\mathbb{F}_{9}[x]$..
- V1 is better than $\mathbf{A} 3$ for $n \geq 60$ in $\mathbb{F}_{3}[x]$ and for $n \geq 15$ in $\mathbb{F}_{9}[x]$.
- In general, V1 is the most efficient among all algorithms including B1, N1, N2, and N3 for all input sizes.

Unbalanced 5-way Split Multiplication Algorithm (U1)

- Assume that $A(x)$ and $B(x)$ degree $5 n-k-1$ polynomials, $n \in \mathbb{Z}^{+}$and $n \geq 5$.
- Let $k \in\{0,1,2,3,4\}$. If $5 n-k$ is not a multiple of 5 , then we divide A and B into five smaller size polynomials so that,
- The first four of them have $(5 n-k+k) / 5=n$ elements and the last one has $(5 n-k-4 k) / 5=n-k$ elements.
- By this means, we get an unbalanced 5-way division method for any polynomial with size $n \geq 5$.

Unbalanced 5-way Split Multiplication Algorithm (U1)

Let $y=x^{n}$ and $C(x)=A(x) B(x)$ then $A(x)$ and $B(x)$ are divided into five parts as follows:

$$
\left.\begin{array}{l}
A_{0}=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \\
A_{1}=a_{n}+a_{n+1} x+\ldots+a_{2 n-1} x^{n-1} \\
A_{2}=a_{2 n}+a_{2 n+1+1} x+\ldots+a_{3 n-1} x^{n-1} \\
A_{3}=a_{3 n}+a_{3 n+1} x+\ldots+a_{4 n-1} x^{n-1} \\
A_{4}=a_{4 n}+a_{4 n+1} x+\ldots+a_{5 n-k-1} x^{n-k-1}
\end{array}\right\}
$$

Similarly, we divide $B(x)$ into five pieces just as we do to $A(x)$ above.

Complexity of U1 Algorithm

COMPLEXITY:

- By using the cost of multi-evaluation and reconstruction tables, the complexity of U1 can be calculated as below:

$$
\left.\begin{array}{l}
M_{9}(5 n-k) \leq 8 M_{9}(n)+M_{9}(n-k)+196 n-24 k-72, M_{9}(1)=6 \\
M_{3}(5 n-k) \leq 2 M_{3}(n)+M_{3}(n-k)+3 M_{9}(n)+72 n-6 k-29, M_{3}(1)=1
\end{array}\right\}
$$

- Observe that, for $k=0$, the $\mathbf{U 1}$ algorithm yields the $\mathbf{V} 1$ algorithm, so we can think of $\mathbf{V} 1$ as a special case of the $\mathbf{U 1}$ algorithm.

COMPARISON TO OTHER ALGORITHMS:

- According to the arithmetic costs and the implementation run-times, the use of U1 algorithm yields fastest run-time of all algorithms.

New Hybrid Algorithms for NTRU Prime Decapsulation

- The decapsulation phase of the Streamlined NTRU Prime Key Encapsulation Mechanism (KEM) conducts a polynomial multiplication operation for multiplying the elements of $\mathbb{Z}_{3}[x] /\left(x^{p}-x-1\right)$ for parameters $p=653,761$.
- Thus, we can apply the proposed 4-way and 5-way polynomial multiplication algorithms N1, N2, N3, and V1 to it.
- Bernstein uses 2 different methods. First method is Hybrid-1 [2] and the second method is B1-Hyrid [6].

Bernstein's Hybrid-1 Algorithm for NTRU Prime Decapsulation

Hybrid-1 Multiplication Algorithm: 5 KA2 then SB ($\mathrm{n}=768$):

Figure: Hybrid-1 Algorithm requires a total \# of 303600 arithmetic operations

Bernstein et al. use a combination of five layers of KA2 and then SB for multiplying the input size $n=768$ (zero-padded from 761 coefficient inputs) polynomials in the Streamlined NTRU Prime decapsulation phase.

Our Alternative Approaches for Hybrid-1: Hybrid-2 Multiplication Algorithm

First Alternative Method for Hybrid-1:
(i) Hybrid-2 Multiplication Algorithm: 8 KA2 then SB ($\mathrm{n}=768$):

Figure: Hybrid-2 Algorithm requires a total \# of 207858 arithmetic operations

N1-Hybrid Algorithm for NTRU Prime Decapsulation

Second Alternative Method for Hybrid-1:
(ii) N1-Hybrid Algorithm: The new N1 algorithm is used in:

Figure: N1-Hybrid Algorithm requires a total \# of 187152 arithmetic operations

N2-Hybrid Algorithm for NTRU Prime Decapsulation

Third Alternative Method for Hybrid-1:
(iii) N2-Hybrid Multiplication Algorithm ($\mathrm{n}=768$)

Figure: N2-Hybrid Algorithm requires a total \# of 180878 arithmetic operations

V1-Hybrid Algorithm for NTRU Prime Decapsulation

(iv) V1-Hybrid Multiplication Algorithm ($\mathrm{n}=765$):

Figure: V1-Hybrid Algorithm requires a total \# of 182647 arithmetic operations

A3-Hybrid for NTRU Prime Decapsulation

(v) A3-Hybrid Multiplication Algorithm ($\mathrm{n}=768$):

Figure: A3-Hybrid Algorithm requires a total \# of 189115 arithmetic operations

LT-Hybrid for NTRU Prime Decapsulation

(vi) LT-Hybrid Multiplication Algorithm ($\mathrm{n}=761$):

Figure: LT-Hybrid Algorithm requires a total \# of 186914 arithmetic operations

Comparison of the Arithmetical Complexities of the New Hybrid Algorithms Including N1, N2, and V1

Table: Comparison of the Arithmetical Complexities of the New Hybrid Algorithms Including N1, N2, and V1 / Candidates for the Streamlined NTRU Prime KEM

\mathbf{n}	Algorithm	Arithmetic Cost	Improvement	Source
768	Hybrid-1	303600	Reference	method used in [2] for sntrup761
768	Hybrid-2	207858	31.53%	min. cost: before this study [5]
768	A3-Hybrid	189115	37.70%	this work [5]
768	N1-Hybrid	187152	38.35%	this work [5]
761	LT-Hybrid	186914	38.43%	this work [5]
765	V1-Hybrid	182647	39.83%	this work [5]
768	N2-Hybrid	180878	40.42%	min. cost: after this study [5]

Implementation Results of the New Hybrid Algorithms Including N1, N2, and V1

Table: Implementation Results of the New Hybrid Algorithms Including N1, N2, and V1 / Candidates for the Streamlined NTRU Prime KEM (without AVX/AVX2)

Algorithm	\mathbf{n}	Cycle Count	Time (s)	Improvement
Hybrid-1	768	481688	0.000186	method used in [2] for sntrup761
Hybrid-2	768	2028918	0.000783	-
LT-Hybrid	761	1312231	0.000506	-
N2-Hybrid	768	758611	0.000293	-
V1-Hybrid	765	561386	0.000217	-
A3-Hybrid	768	469257	0.000181	2.58%
N1-Hybrid	768	456071	0.000176	5.31%
A3-Hybrid2	768	317692	0.000123	34.04%
N1-Hybrid2	768	301571	0.000116	37.39%

Comparison Results to Bernstein's Hybrid-1 Method

\checkmark N1-Hybrid2 37.39\% faster than Hybrid-1.
\checkmark A3-Hybrid2 34.04\% faster than Hybrid-1.
\checkmark Therefore N1-Hybrid2 can be a better alternative for Char 3 polynomial multiplication in NTRU Prime decapsulation.

Bernstein's Approach: B1-Hybrid1 for $n=653$

B1-Hybrid1 Algorithm for $n=653$

Figure: B1-Hybrid1 Algorithm cycles/time is $758.027 / 0.000329$

Bernstein's Approach: B1-Hybrid2 for $n=761$

B1-Hybrid2 Algorithm for $n=761$

Figure: B1-Hybrid2 Algorithm cycles/time is 944.139/0.000410

Our Alternative Approach for B1-Hybrid1: U1-Hybrid1 for $n=653$

U1-Hybrid1 Algorithm for $n=653$

Figure: U1-Hybrid1 Algorithm cycle/time is 531.692/0.000231

Our Alternative Approach to B1-Hybrid2: U1-Hybrid2 for $n=761$

U1-Hybrid2 Algorithm for $n=761$

Figure: U1-Hybrid2 Algorithm cycle/time is 608.694/0.0000265

Implementation Results for New Hybrid Algorithms

Table: Implementation Results for Polynomial Multiplication over \mathbb{F}_{3} in Streamlined NTRU Prime Decapsulation

Parameter	Algorithm	Cycles/Time	Improvement
sntrup653	B1-Hybrid1 (Bernstein's B1 [6])	$758,027 / 0.000329$	Ref. Value
	U1-Hybrid1 (this work [9])	$531,692 / 0.000231$	29.85%
sntrup761	B1-Hybrid2 (Bernstein's B1 [6])	$944,139 / 0.000410$	Ref. Value
	Hybrid-1 (Bernstein's prev. [2])	$1,054,828 / 0.000458$	-10.49%
	U1-Hybrid2 (this work [9])	$608,694 / 0.0000265$	35.52%
	N1-Hybrid2 (this work [5])	$665,729 / 0.0000289$	29.48%

https://github.com/cryptoarith/F3Mul
https://github.com/cryptoarith/NTRUPrimePolyMultF3

- The use of new algorithms N1, N2, N3, V1, and U1 provides improved in arithmetical complexities in Char 3 polynomial multiplication:
- For instance, 48.6% reduction in arithmetic complexity for polynomial multiplication in $\mathbb{F}_{9}[x]$ and a 26.8% reduction for polynomial multiplication in $\mathbb{F}_{3}[x]$ for $n=1280$.
- The proposed U1-Hybrid1 is 29.85\% faster than the Bernstein's B1-Hybrid1 algorithm for $n=653$.
- The proposed U1-Hybrid2 is 35.52% faster than the Bernstein's B1-Hybrid2 algorithm for $n=761$.
- Therefore U1-Hybrid1 for U1-Hybrid2 can be better alternatives for Char 3 polynomial multiplication in NTRU Prime decapsulation.
[1] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. Ntru prime. NIST Post-Quantum Cryptography Standardization Process-Round-3, 2019.
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf.
[2] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. Ntru prime. Reducing the attack surface at low cost, International Conference on Selected Areas in Cryptography, 24, pp, 235-260, August 2017. 2019. https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf.
[3] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tonel. Status report on the second round of the nist post-quantum cryptography standardization process, july 2020. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf.
[4] NIST Post Quantum Cryptography PQC Standardization 2016-2020. https://csrc.nist.gov/projects/post-quantum-cryptography.
[5] E. Yeniaras and M. Cenk Faster Characteristic Three Polynomial Multiplication and Its Application to NTRU Prime Decapsulation,Journal of Cryptographic Engineering, 1-20, 2022. https://eprint.iacr.org/2020/1336.pdf
[6] D. Bernstein, B.B. Brumley, M. Chen, N. Tuveri OpenSSLNTRU: Faster post-quantum TLS key exchange, IACR Cryptol. ePrint Arch., 826, 2021. https://eprint.iacr.org/2021/826.pdf
[7] M. Cenk, F. H. Zadeh, and M. A. Hasan New Efficient Algorithms for Multiplication Over Fields of Characteristic Three. J. Sign. Process Syst., 90(3):285-294, march 2018.
[8] D.J. Bernstein. Batch Binary Edwards. In Advances in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages 317-336, 2009.
[9] E. Yeniaras. and M. Cenk Improved polynomial multiplication algorithms over characteristic three fields and applications to NTRU Prime. Innovative Security Solutions for Information Technology and Communications, SecITC 2021, LNCS 13195.

References II

[10] A. Weimerskirchs. and C. Paar Generalizations of the Karatsuba Algorithm for Efficient Implementations. IACR Cryptol. ePrint Arch., p. 224, 2006.

Thank You For Listening!

