

2F - A New Method for Constructing Efficient Multivariate **Encryption Schemes**

Daniel Smith-Tone^{1,2}

¹University of Louisville ²National Institute of Standards and Technology

16 November, 2022

16 November, 2022

Daniel Smith-Tone

2F - A New Method for Efficient Multivariate Encryption

NIST Nov. 2022

1/24

Attacks on Multivariate Schemes SQUARE

< A

Given a multivariate quadratic system of equations

 $P(\mathbf{x}) = \mathbf{y},$

find x.

Attacks on Multivariate Schemes SQUARE

• Solve directly via F4 or XL.

(Consider the Macaulay matrix: rows = equations, columns = monomials.)

- Complexity related to homogeneous quadratic component.
- Field Equations $(x_i^q x_i)$
- With hybrid approach we consider the Hilbert series

$$\mathcal{H}(t) = rac{(1-t^2)^m(1-t^q)^{n-k}}{(1-t)^{n-k}}$$

16 November, 2022

NIST Nov. 2022

2F Construction

Attacks on Multivariate Schemes

K 4 E K 4 E K

Differential Attacks

Idea that broke SFLASH. (Also breaks, C^* , k-ary C^* , ℓ IC-, etc.) Discrete Differential $DP(\mathbf{a}, \mathbf{x}) = P(\mathbf{a} + \mathbf{x}) - P(\mathbf{a}) - P(\mathbf{x}) + P(\mathbf{0})$.

Introduction

2FSQUARE

 $DP(L\mathbf{a}, \mathbf{x}) + DP(\mathbf{a}, L\mathbf{x}) = \Lambda_I DP(\mathbf{a}, \mathbf{x})$

Attacks on Multivariate Schemes SQUARE

(日)

Minrank: Given K matrices $\mathbf{M}_1, \ldots, \mathbf{M}_K$ of dimension $s \times t$ over the field F, find nonzero coefficients $\lambda_1, \ldots, \lambda_k$ in the field E/F such that

$$\operatorname{rank}\left(\sum_{i=1}^{K}\lambda_{i}\mathbf{M}_{i}\right)\leq r.$$

16 November, 2022 Daniel Smith-Tone 2F - A New Method for Efficient Multivariate Encryption NIST Nov. 2022 5/24

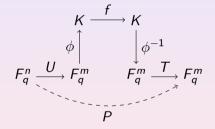
Attacks on Multivariate Schemes SQUARE

Multivariate Encryption Schemes

Scheme	PK	pt	ct	Enc.(ms)	Dec.(ms)
ABC(2 ⁸ ,384,760)	54863KB	384B	760B	502	545
PCBM(149,414)	743KB	149b	414b	13	743

NIST Nov. 2022

< 回 > < 三 > < 三 >


6/24

Attacks on Multivariate Schemes SQUARE

Definition of SQUARE

U is injective, $f(X) = X^2$, q odd prime-power.

Attacks on Multivariate Schemes SQUARE

- Direct Attack
- Differential Attack (Perturb Input recover in output)
- Differential Attack (Perturb Output recover in input)
- Rank Attack (Big field "traditional")
- Rank Attack (Big field, Tao et al. style)

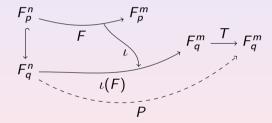
Attacks on Multivariate Schemes SQUARE

• • = • • = •

Linear Maps are Important

Something critical in all of these attacks (or their analyses) is the role of linear maps.

Question: Can we augment a quadratic map in a nonlinear way to disrupt these cryptanalyses?



Generic 2F Affect on Attacks

< 回 > < 三 > < 三 >

Modulus Switching

Generic 2F Affect on Attacks

イロト イヨト イヨト イヨト

Example

Let p = 7 n = m = 3 and q = 331.

$$\begin{split} v_1 &= 2x_1^2 - x_1x_2 - 2x_1x_3 + 0x_2^2 + 3x_2x_3 - x_3^2 \\ v_2 &= x_1^2 + 3x_1x_2 - x_1x_3 - 3x_2^2 + 0x_2x_3 - 2x_3^2 \\ v_3 &= -x_1^2 - 3x_1x_2 + x_1x_3 + 2x_2^2 - x_2x_3 + x_3^2 \end{split}$$

16 November, 2022 Daniel Smith-Tone 2F - A New Method for Efficient Multivariate Encryption NIST Nov. 2022 11/24

Generic 2F Affect on Attacks

イロト イヨト イヨト イヨト

Example

Let p = 7 n = m = 3 and q = 331.

$$\begin{split} v_1 &= 2(1)^2 - (1)(-2) - 2(1)(2) + 0(-2)^2 + 3(-2)(2) - (2)^2 \\ v_2 &= (1)^2 + 3(1)(-2) - (1)(2) - 3(-2)^2 + 0(-2)(2) - 2(2)^2 \\ v_3 &= -(1)^2 - 3(1)(-2) + (1)(2) + 2(-2)^2 - (-2)(2) + (2)^2 \end{split}$$

16 November, 2022 Daniel Smith-Tone 2F - A New Method for Efficient Multivariate Encryption NIST Nov. 2022 11/24

Generic 2F Affect on Attacks

э

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Example

Let p = 7 n = m = 3 and q = 331.

 $v_1 = -2$ $v_2 = 1$ $v_3 = 2$

Generic 2F Affect on Attacks

э

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Example

Let p = 7 n = m = 3 and q = 331.

 $v_1 = -16$ $v_2 = -27$ $v_3 = 23$

Generic 2F Affect on Attacks

Example

Let p = 7 n = m = 3 and q = 331.

 $v_1 = -16$ $v_2 = -27$ $v_3 = 23$

$$y_1 = -153$$

 $y_2 = -83$
 $y_3 = 109$

э

Generic 2F Affect on Attacks

・ロト ・四ト ・ヨト ・ヨト

lf

$$q>\frac{(p-1)^3}{4}\binom{n+1}{2},$$

then $\mathbf{y} = T \circ \iota(F)(\mathbf{x})$ if and only if $T^{-1}(\mathbf{y}) = F(\mathbf{x}) \pmod{p}$.

Generic 2F Affect on Attacks

K 4 E K 4 E K

Decryption Failures

$$q > rac{(p-1)^3}{4} {n+1 \choose 2} \Rightarrow$$
 no *new* decryption failures.

These quadratic distributions are rather tight, so much smaller q are possible. If we further restrict $x_i \in \{-1, 0, 1\}$, the distributions are even tighter. Can have much larger p < q.

Direct Attack

Introduction 2F Construction 2FSQUARE

Generic 2F Affect on Attacks

Instead of field equations, we have

$$g_i(x_i) = \prod_{j=\frac{1-p}{2}}^{\frac{p-1}{2}} (x_i - j).$$

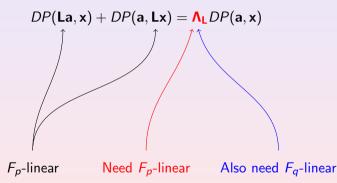
$$\mathcal{H}(t) = rac{(1-t^2)^m(1-t^p)^{n-k}}{(1-t)^{n-k}}$$

If $x_i \in \{-1, 0, 1\}$, then

$$\mathcal{H}(t) = rac{(1-t^2)^m(1-t^3)^{n-k}}{(1-t)^{n-k}}$$

16 November, 2022

< 回 > < 三 > < 三 >


Differential Attacks

Introduction 2F Construction 2FSQUARE

Generic 2F Affect on Attacks

< A

16 November, 2022 Daniel Smith-Tone 2F - A New Method for Efficient Multivariate Encryption NIST Nov. 2022 15/24

Generic 2F Affect on Attacks

For small field schemes, rank structure may be preserved. For big field schemes,

$$\left[\mathsf{H}_1 \; \mathsf{H}_2 \; \cdots \; \mathsf{H}_m\right] \left(\mathsf{M} \otimes \mathsf{I}_m\right) = \left[\mathsf{S}\mathsf{G}^{*0}\mathsf{S}^\top \; \cdots \; \mathsf{S}\mathsf{G}^{*(n-1)}\mathsf{S}^\top\right],$$

where \mathbf{H}_i is the *i*th quadratic form of the hidden quadratic map. The problem is

$$[P_1 \ P_2 \ \cdots \ P_m] = \left[\widetilde{\mathbf{H}}_1 \ \widetilde{\mathbf{H}}_2 \ \cdots \ \widetilde{\mathbf{H}}_m\right] (\mathbf{T} \otimes \mathbf{I}_m).$$

16 November, 2022

NIST Nov. 2022

Generic 2F Affect on Attacks

K 4 E K 4 E K

Let **P** be the Macaulay matrix of the public key *P*. **P** is $m \times \binom{n+1}{2}$. Consider

$$\begin{bmatrix} \frac{p}{q} \mathbf{I}_m & \mathbf{P} \\ \mathbf{0} & q \mathbf{I}_{\binom{n+1}{2}} \end{bmatrix}.$$

Ray Perlner has a much better lattice-based attack. (Breaks parameters from paper.)

Recall that we can restrict $x_i \in \{-1, 0, 1\}$ and use much larger p and smaller q.

Generic 2F Affect on Attacks

Getting the Right Dimension

The Macaulay matrix ${\bf P}$ defines a lattice with a very large dimension, but a small rank.

Let $\boldsymbol{\mathsf{P}} = \begin{bmatrix} \boldsymbol{\mathsf{A}} & \boldsymbol{\mathsf{B}} & \boldsymbol{\mathsf{C}} \end{bmatrix},$

where \mathbf{B}, \mathbf{C} are $m \times m$.

$$\begin{bmatrix} \mathbf{I}_m & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & q\mathbf{I}_m \end{bmatrix}$$

Generic 2F Affect on Attacks

Making Long Vectors

By the Gaussian Heuristic, we expect the shortest vector to be of length

$$\mathsf{gh}(\mathcal{L}) = \sqrt{d/2\pi e} \mathsf{Vol}(\mathcal{L})^{1/d}$$

With d = 2m and $Vol(\mathcal{L}) = q^m$, we get

Length of shortest vector $\approx \sqrt{mq/\pi e}$.

Expected length of Macaulay vector is

$$\sqrt{\frac{8m}{(p-1)}}\sum_{i=0}^{(p-1)/2}i^{2}.$$

16 November, 2022 Daniel Smith-Tone

2F - A New Method for Efficient Multivariate Encryption

NIST Nov. 2022

K 4 E K 4 E K

19/24

Performance Characteristics of 2FSQUARE

< A

Most "standard" multivariate attacks can be used to break SQUARE. Goal: Create weakest possible target to test the 2F construction.

16 November, 2022 Daniel Smith-Tone 2F - A New Method for Efficient Multivariate Encryption NIST Nov. 2022 20/24

Performance Characteristics of 2FSQUARE

Parameters and Perfomance in Article

			\sim		
Scheme	PK	pt 🔨	ct	Enc.(ms)	Dec.(ms)
ABC(2 ⁸ ,384,760)	54863KB	384B	760B	502	545
PCBM(149,414)	743KB	149b	414b	13	743
2FSQ (3,6653,81)	417KB	162b	129B	1.5	0.4
2FSQ (3,8377,91)	606KB	182b	148B	1.2	0.5
2FSQ (7, 130411, 69)	346KB	207b	147B	1.0	2.6
2FSQ (7, 145861, 73)	413KB	219b	157B	1.1	2.8
	S)				

16 November, 2022

21/24

Performance Characteristics of 2FSQUARE

Parameters and Perfomance

Scheme	PK	pt	ct	Enc.(ms)	Dec.(ms)
ABC(2 ⁸ ,384,760)	54863KB	384B	760B	502	545
PCBM(149,414)	743KB	149b	414b	13	743
2FSQ (67, 6247, 93)	626KB	186b	147B	1.3	16.75

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
NIST Nov. 2022

2 22/24

Performance Characteristics of 2FSQUARE

< A

23/24

- Small ciphertexts
- Large public keys
- Fairly slow decryption

< A

24/24

1) More security analysis.

2) Examine 2F applied to other schemes.

16 November, 2022 Daniel Smith-Tone 2F - A New Method for Efficient Multivariate Encryption NIST Nov. 2022