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Overview

▶ Optimizing Boolean circuits
▶ Multiplicative Complexity (MC)
▶ Number of Boolean functions with MC k

▶ Open questions
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Boolean Circuits

A Boolean circuit with n inputs and m outputs is a directed
acyclic graph (DAG), where
▶ the inputs and the gates are nodes,
▶ the edges correspond to Boolean-valued wires,
▶ fanin/fanout of a node is the number of wires going in/out

the node,
▶ the nodes with fanin zero are called input nodes,
▶ the nodes with fanout zero are called output nodes.

Circuit for Keccak s-box
https://keccak.team/figures.html
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Straight Line Programs (SLPs)

An example SLP for the majority function:.

begin CIRCUIT MAJ3
# Description: The majority of x1,x2,x3
Inputs: x1:x3;
Outputs: y1;
GateSyntax: GateName Output Inputs
begin SLP

XOR t1 x1 x2;
XOR t2 x1 x3;
AND t3 t1 t2;
XOR y1 t3 x1

end SLP end CIRCUIT
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Optimizing Boolean Circuits

Problem: Given a set of Boolean gates (e.g., AND, NAND, XOR, NOR), construct a circuit
that computes a Boolean function that is optimal w.r.t. a target metric.

Target metric depends on the application.

▶ Number of gates: for lightweight cryptography applications running on constrained
devices.

▶ Number of nonlinear gates: for secure multi-party computation, zero-knowledge proofs
and side channel protection.

▶ AND-depth: for homomorphic encryption schemes.
▶ etc.
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Benchmarking

Example circuits: 1

Circuit Gate count Depth
All AND XOR XNOR NOT Total AND

AES S-Box 113 32 77 4 0 27 6
AES S-Box−1 121 34 83 4 0 21 4
AES-128(k,m) 28 600 6400 21 356 844 0 326 60
AES-128(0,m) 21 392 5120 14 652 1620 0 325 60
SHA-256(m) 115 882 22 385 89 248 3894 355 5403 1604
SHA-256(cv,m) 118 287 22 632 92 802 2840 13 5458 1607

1NIST Circuit Complexity Team https://csrc.nist.gov/Projects/circuit-complexity
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Multiplicative Complexity (MC)

Minimum number of nonlinear gates needed to implement f by a Boolean circuit
▶ Min. # of AND gates needed over the basis (AND, XOR, NOT).

Some known results:
▶ MC of a function with degree d is at least d − 1 (degree bound).
▶ Almost all f ∈ Bn have MC at least 2n/2 − n − 1 with high probability.
▶ MC of all Boolean functions with n ≤ 6
▶ Results on special classes of Boolean functions: quadratic, cubic and symmetric

functions etc.
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Number of Boolean functions with MC k

λ(n, k) : the number of n variable Boolean functions with MC k
▶ useful to lower bound the MC of Boolean functions. e.g., 7-AND gates are not enough

to compute 8-variable Boolean functions.

Boyar et al. Bound: λ(n, k) ≤ 2k2+2k+2kn+n+1

Proof (sketch):The inputs of the ith AND gate, denoted ai, is a subset of
{x1, . . . , xn, a1, a2, . . . , ai−1, 1},

with 22(n+i) possible input choices. The bound is achieved by summing all possible inputs
to the AND gates, and adding all possible linear terms and ai’s to be final output.

2n+k+1
k∏

i=1
(2n+i)2 =2n+k+122kn2

∑k

i=1 2i

=2k2+2k+2kn+n+1
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Affine Equivalence

Boolean functions f, g ∈ Bn are affine equivalent if there exists a transformation of the form

f(x) = g(Ax + a) + b · x + c,

where A is a non-singular n × n matrix over F2; a, b ∈ Fn
2 , and c ∈ F2.

▶ The set of affine equivalent functions constitute an equivalence class denoted by [f ],
where f is an arbitrary function from the class.

▶ Sizes of equivalence classes

# affine transformations
# self mappings

(self mappings of f is an affine transformation that outputs f).

MC is affine invariant.
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Boolean functions with MC 1 and 2

Boolean functions with MC 1 [FP02]
▶ Functions with MC 1 are affine equivalent to x1x2.
▶ The number of n-variable Boolean functions with MC 1 is 2

(2n

3
)
.

Boolean functions with MC 2 [FTT17]
▶ Functions with MC 2 are affine equivalent to one of these functions:

x1x2x3
x1x2x3 + x1x4
x1x2 + x3x4

▶ The number of n-variable Boolean functions with MC 2 is

2n(2n − 1)(2n − 2)(2n − 4)
( 2

21 + 2n − 8
12 + 2n − 8

360

)
.
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Affine Equivalence Classes with MC 3 [CTP19]

Dimension 4:
x1x2x3x4

x1x2 + x1x2x3x4

x2x3 + x1x4 + x1x2x3x4

Dimension 5:

x3x4 + x1x5 + x1x2x5 + x1x2x3x4 x3x4 + x1x3x4 + x1x2x5

x2x4 + x1x5 + x1x2x3 x4x5 + x1x2x3

x1x2x5 + x1x2x3x4 x1x3x4 + x1x2x5

x2x3x5 + x1x4x5 + x1x2x3x4 x3x5 + x1x2x5 + x1x2x3x4

x1x3 + x1x2x5 + x1x2x3x4 x3x4 + x1x2x5 + x1x2x3x4

x1x5 + x1x2x3x4 x2x3 + x1x5 + x1x2x3x4

x2x3 + x2x3x5 + x1x4x5 + x1x2x3x4 x1x5 + x1x2x5 + x1x2x3x4

Dimension 6:

x3x4 + x2x5 + x1x6 x1x6 + x1x3x4 + x1x2x5

x3x4 + x1x6 + x1x3x4 + x1x2x5 x4x5 + x1x6 + x1x2x3

x1x6 + x1x2x5 + x1x2x3x4 x5x6 + x3x4x5 + x1x2x6 + x1x2x3x4

x3x4 + x1x6 + x1x2x5 + x1x2x3x4
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Number of Boolean functions with MC 3 [CTP19]

The number of n-variable Boolean functions with MC 3 is

λ(n, 3) =
6∑

d=4

(
2n−d

d−1∏
i=0

2n − 2i

2d − 2i
β(d, 3)

)

where

β(4, 3) = 32 768,

β(5, 3) = 775 728 128,

β(6, 3) = 183 894 007 808.
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Affine Equivalence Classes with MC 4 [CTP19]

The number of n-variable Boolean functions with MC 4 is

λ(n, 4) =
8∑

d=5

(
2n−d

d−1∏
i=0

2n − 2i

2d − 2i
β(d, 4)

)

where

β(5, 4) = 3 515 396 096,

β(6, 4) = 7 944 313 921 970 176,

β(7, 4) = 8 217 135 092 528 316 416,

β(8, 4) = 5 502 415 308 673 798 144.
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Comparison of Boyar et al. bound and exact numbers

MC Bound n =6 n = 7 n =8 n =9 n =10 n =11 n =12 n =13 n =14 n =15 n =16

1 Exact 16.34 19.38 22.38 25.40 28.41 31.41 34.41 37.41 40.41 43.41 46.41
Bound 22 25 28 31 34 37 40 43 46 49 52

2 Exact 26.13 31.30 36.38 41.42 46.44 51.45 56.45 61.45 66.46 71.46 76.46
Bound 39 44 49 54 59 64 69 74 79 84 89

3 Exact 38.03 45.64 52.92 60.05 67.12 74.15 81.17 88.18 95.18 102.18 109.18
Bound 58 65 72 79 86 93 100 107 114 121 128

4 Exact 52.81 63.15 71.94 80.29 88.46 96.56 104.63 112.70 120.82 129.02 137.35
Bound 79 88 97 106 115 124 133 142 151 160 169

Table: Number of Boolean functions with MC 1, 2, 3, and 4 compared to the Boyar et al. bound on
a log scale with base 2
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Observation 1 - Elimination of equivalent inputs

(f1, f2, f3) → f1f2 + f3

(f2, f1, f3) → f1f2 + f3

(f1 + f2, f2, f3 + f2) → f1f2 + f2 + f2 + f3 = f1f2 + f3

(f2, f1 + f2, f3 + f2) → f2f1 + f2 + f2 + f3 = f1f2 + f3

(f1, f2 + f1, f3 + f1) → f2f1 + f1 + f3 + f1 = f1f2 + f3

(f2 + f1, f1, f3 + f1) → f2f1 + f1 + f3 + f1 = f1f2 + f3

All inputs generate the same output as f1f2 + f3, and counted separately in Boyar et al.
bound.
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Observation 2 - Elimination of the constant 1

(f1, f2, f3) → f1f2 + f3

(f1 + 1, f2, f3 + f2) → f1f2 + f2 + f3 + f2 = f1f2 + f3

(f1, f2 + 1, f3 + f1) → f1f2 + f1 + f3 + f1 = f1f2 + f3

(f1 + 1, f2 + 1, f3 + f1 + f2) → f2f1 + f1 + f2 + f3 + f1 + f2 = f1f2 + f3

All inputs generate the same output as f1f2 + f3, and counted separately in Boyar et al.
bound.
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Improved Bound
The number of n-variable Boolean functions that can be generated with k-AND gates is at
most

λ(n, k) ≤ 2n+k+1
k∏

i=1

1
24(2n+i+1)2,

≤ 2k2+2nk+n−k+13−k.

Proof (sketch): Let f1 and f2 be the left and right inputs of an AND gate. For each AND:
▶ only count the lexicographically smallest among

(f1, f2), (f2, f1), (f1 + f2, f2), (f2, f1 + f2), (f1 + f2, f1), (f1, f1 + f2)

(improvement by a factor of 6)
▶ only consider f1 and f2 without the constant term (improvement by a factor of 4)

17 / 21



Comparison of Boyar et al. and improved bound

MC Bound n =6 n = 7 n =8 n =9 n =10 n =11 n =12 n =13 n =14 n =15 n =16

1
Exact 16.34 19.38 22.38 25.40 28.41 31.41 34.41 37.41 40.41 43.41 46.41
Bound 22 25 28 31 34 37 40 43 46 49 52

Improved 17.42 20.42 23.42 26.42 29.42 32.42 35.42 38.42 41.42 44.42 47.42

2
Exact 26.13 31.30 36.38 41.42 46.44 51.45 56.45 61.45 66.46 71.46 76.46
Bound 39 44 49 54 59 64 69 74 79 84 89

Improved 29.83 34.83 39.83 44.83 49.83 54.83 59.83 64.83 69.83 74.83 79.83

3
Exact 38.03 45.64 52.92 60.05 67.12 74.15 81.17 88.18 95.18 102.18 109.18
Bound 58 65 72 79 86 93 100 107 114 121 128

Improved 44.25 51.25 58.25 65.25 72.25 79.25 86.25 93.25 100.25 107.25 114.25

4
Exact 52.81 63.15 71.94 80.29 88.46 96.56 104.63 112.70 120.82 129.02 137.35
Bound 79 88 97 106 115 124 133 142 151 160 169

Improved 60.66 69.66 78.66 87.66 96.66 105.66 114.66 123.66 132.66 141.66 150.66

Table: The improved bound for the number of Boolean functions with MC 1, 2, 3, and 4 compared
to the Boyar et al. bound on a log scale with base 2
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Conclusion

▶ Studied the number of Boolean functions with a specific MC.
▶ Improved the Boyar et al. bound by a factor of 24 for each AND gate.

Open questions on the MC of Boolean functions:

▶ Generic heuristics to implement Boolean functions with n ≥ 7 with small number of
AND gates – Best known upper bound on the MC of 7-variable Boolean functions is 13.

▶ Extending the results to vectorial Boolean functions – Exhaustive list of affine
equivalence classes for vectorial Boolean functions would be useful, e.g., 5-bit to 3-bit,
6-bit to 2-bits.
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Thanks! Questions?

▶ NIST Circuit Complexity Project Webpage:
https://csrc.nist.gov/Projects/Circuit-Complexity

▶ GitHubLink: https://github.com/usnistgov/Circuits/

▶ Contact emails:
meltem.turan@nist.gov
circuit complexity@nist.gov
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