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Overview

» Optimizing Boolean circuits

» Multiplicative Complexity (MC)

» Number of Boolean functions with MC k
» Open questions
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Boolean Circuits

A Boolean circuit with n inputs and m outputs is a directed
acyclic graph (DAG), where

N N
» the inputs and the gates are nodes, - D
» the edges correspond to Boolean-valued wires, X:
» fanin/fanout of a node is the number of wires going in/out D
the node, D
» the nodes with fanin zero are called input nodes, I_IT_D/\(D

» the nodes with fanout zero are called output nodes. o
Circuit for Keccak s-box

https://keccak.team/figures.html
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Straight Line Programs (SLPs)

An example SLP for the majority function:.

begin CIRCUIT MAJ3
# Description: The majority of x1,x2,x3
Inputs: x1:x3;
Outputs: yi;
GateSyntax: GateName Output Inputs
begin SLP
XO0R t1 x1 x2;
XO0R t2 x1 x3;
AND €3 t1 t2;
XOR y1 t3 x1
end SLP end CIRCUIT
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Optimizing Boolean Circuits

Problem: Given a set of Boolean gates (e.g., AND, NAND, XOR, NOR), construct a circuit
that computes a Boolean function that is optimal w.r.t. a target metric.

Target metric depends on the application.

» Number of gates: for lightweight cryptography applications running on constrained
devices.

» Number of nonlinear gates: for secure multi-party computation, zero-knowledge proofs
and side channel protection.

» AND-depth: for homomorphic encryption schemes.

> etc.
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Benchmarking

Example circuits: !

Circuit Gate count Depth
All AND XO0R XNOR NOT | Total AND
AES S-Box 113 32 77 4 0 27 6
AES S-Box™! 121 34 83 4 0 21 4
AES-128(k,m) 28 600 6400 21356 844 0 326 60
AES-128(0,m) 21392 5120 14652 1620 O 325 60
SHA-256(m) 115882 22385 89248 3894 355 | 5403 1604
SHA-256(cv,m) | 118 287 22632 92802 2840 13 | 5458 1607

INIST Circuit Complexity Team https://csrc.nist.gov/Projects /circuit-complexity

6/21


https://csrc.nist.gov/Projects/circuit-complexity

Multiplicative Complexity (MC)

Minimum number of nonlinear gates needed to implement f by a Boolean circuit
> Min. # of AND gates needed over the basis (AND, XOR, NOT).

Some known results:
» MC of a function with degree d is at least d — 1 (degree bound).
» Almost all f € B,, have MC at least 2/2 — n — 1 with high probability.
» MC of all Boolean functions with n < 6

» Results on special classes of Boolean functions: quadratic, cubic and symmetric
functions etc.
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Number of Boolean functions with MC £k

A(n, k) : the number of n variable Boolean functions with MC &
» useful to lower bound the MC of Boolean functions. e.g., 7-AND gates are not enough
to compute 8-variable Boolean functions.

Boyar et al. Bound: \(n,k) < 2k T2k+2kntnt1

Proof (sketch):The inputs of the ith AND gate, denoted a;, is a subset of
{xb sy T, A1, 02, -5 Aj—1, 1}7

with 22(*%) possible input choices. The bound is achieved by summing all possible inputs
to the AND gates, and adding all possible linear terms and a;'s to be final output.

k
grthtL T (2n+)2 —ontht1g2kngd Y | 2
i=1
—ok?+2k+2kn+n+1
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Affine Equivalence

Boolean functions f, g € B, are affine equivalent if there exists a transformation of the form
fx)=g(Az+a)+b-z+c

where A is a non-singular n X n matrix over Fo; a,b € F%, and ¢ € Fs.

» The set of affine equivalent functions constitute an equivalence class denoted by [f],
where f is an arbitrary function from the class.

» Sizes of equivalence classes

# affine transformations
# self mappings

(self mappings of f is an affine transformation that outputs f).

MC is affine invariant.
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Boolean functions with MC 1 and 2

Boolean functions with MC 1 [FP02]
» Functions with MC 1 are affine equivalent to z1xo.

» The number of n-variable Boolean functions with MC 1 is 2(2;).

Boolean functions with MC 2 [FTT17]

» Functions with MC 2 are affine equivalent to one of these functions:
T1X2X3
L1223 + X124
T1x2 + X3%4

» The number of n-variable Boolean functions with MC 2 is

nremn n n 2 2»—-8 2" -8
22" = 1)(2" —2)(2" —4) (21+ D + 360 )
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ine Equivalence Classes with MC 3 [CTP19]

Dimension 4:

Dimension 5:

Dimension 6:

1234

T1T2 + T1T2X3T4

T2T3 + T1X4 + T1T2T3T4

T3T4 + T1X5 + T1T2T5 + T1T2T3T4

T3T4 + T1T3T4 + T1T2T5

T2X4 + T1T5 + T1T2T3

T4Ts5 + X1X2T3

T1T2X5 + T1T2T3%4

T1T3%4 + T1T2X5

T2T3%5 + T1T4T5 + T1XT2T3T4

T3T5 + X1T2T5 + T1X2T3T4

T1X3 + T1T2X5 + T1T2X3T4

T3T4 + T1T2T5 + T1T2T3T4

T1x5 + 1222324

T2X3 + X1T5 + T1X2X3T4

T2X3 + T2T3T5 + T1X4X5 + T1T2T3T4

T1T5 + T1XT2T5 + T1T2X3T4

T3T4 + T2X5 + T1T6

T1Te + T1X3T4 + T1T2X5

T3x4 + T1T6 + T1X3T4 + T1XT2T5

T4T5 + X1T6 + T1T2X3

T1X6 + T1T2X5 + T1T2X3T4

T5T6 + T3TaTs + T1T2X6 + T1T2X3X4

T3Ty + T12T6 + T1X2X5 + T1T2T324
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Number of Boolean functions with MC 3 [CTP19]

The number of n-variable Boolean functions with MC 3 is
6 dd—l on _ 91
A(n,3) = d; (2” H S 3))
where
B(4,3) = 32768,

B(5,3) = 775728128,
B(6,3) = 183894007808,
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Affine Equivalence Classes with MC 4 [CTP19]

The number of n-variable Boolean functions with MC 4 is

8 d—1 on _ 21’
A(n,4)=>" (2”—‘1 H S 4))

d=5 =0
where
B(5,4) = 3515396096,
B(6,4) = 7944313921970176,
B(7,4) = 8217135092528 316416,
B(8,4) = 5502415308673 798 144.
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Comparison of Boyar et al. bound and exact numbers NIST

MC | Bound | n=6 | n=7 | n=8 | n=9 | n=10 | n=11| n=12 | n=13 | n=14 | n=15 | n =16

1 Exact | 16.34 | 19.38 | 22.38 | 25.40 | 28.41 | 31.41 34.41 37.41 40.41 43.41 46.41
Bound 22 25 28 31 34 37 40 43 46 49 52

5 Exact | 26.13 | 31.30 | 36.38 | 41.42 | 46.44 | 51.45 56.45 61.45 66.46 71.46 76.46
Bound 39 44 49 54 59 64 69 74 79 84 89

3 Exact | 38.03 | 45.64 | 52.92 | 60.05 | 67.12 | 74.15 81.17 88.18 95.18 | 102.18 | 109.18
Bound 58 65 72 79 86 93 100 107 114 121 128

4 Exact | 52.81 | 63.15 | 71.94 | 80.29 | 88.46 | 96.56 | 104.63 | 112.70 | 120.82 | 129.02 | 137.35
Bound 79 88 97 106 115 124 133 142 151 160 169

Table: Number of Boolean functions with MC 1, 2, 3, and 4 compared to the Boyar et al. bound on
a log scale with base 2
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Observation 1 - Elimination of equivalent inputs

(f1, f2, f3
(f2, f1, f3
Ji+ fa, f2, f3+ f2
Jas 1+ fo, f3+ fa
Jufat i, f3+ 11
fat+ i, [, s+ f

— fife+ f3
— fifo+ f3
= fifetfotfotfs=fifat+ f3
— fofit+t fot+fot+ fa=fifo+ f3
= fohi+tfi+tfs+fi=fifo+ f3
= fh+th+B+h=hl+fs

fi f

fs

A~~~ I~ —~
~—_— — — — — —

All inputs generate the same output as f1f2 + f3, and counted separately in Boyar et al.
bound.
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Observation 2 - Elimination of the constant 1

(fi,f2, f3) = fifa+ /3
(fi+1 fosfs+fo) = fifet+ fo+ fa+ fo=fifo+ f3
(et st fi) = it A+ fst+fi=fifatf3
(fi+ L o+t fs+fitfo)= ohi+tfi+fot+tfat+fi+fo=Ffifo+ f3

All inputs generate the same output as f1f2 + f3, and counted separately in Boyar et al.
bound.
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Improved Bound

The number of n-variable Boolean functions that can be generated with k-AND gates is at
most

k
1 .
Y k) < 2n+k+1 I I 2n+1+1 2

2 _ _
< 2k +2nk+n k+13 k'

Proof (sketch): Let f1 and fy be the left and right inputs of an AND gate. For each AND:
» only count the lexicographically smallest among

(f1, f2), (f2, f1), (f1 + fo, f2), (fo, f1 + f2), (f1 + fo, f1), (f1, f1 + f2)

(improvement by a factor of 6)
» only consider fi and fs without the constant term (improvement by a factor of 4)
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Comparison of Boyar et al. and improved bound

MC Bound ‘ n =6 ‘ n=7 ‘ n =8 ‘ n =9 ‘ n=10 | n=11 | n=12 | n=13 | n=14 | n=15 | n =16
Exact 16.34 | 19.38 | 22.38 | 25.40 | 28.41 31.41 34.41 37.41 40.41 43.41 46.41
1 Bound 22 25 28 31 34 37 40 43 46 49 52
Improved | 17.42 | 20.42 | 23.42 | 26.42 | 29.42 32.42 35.42 38.42 41.42 44.42 47.42
Exact 26.13 | 31.30 | 36.38 | 41.42 | 46.44 51.45 56.45 61.45 66.46 71.46 76.46
2 Bound 39 44 49 54 59 64 69 74 79 84 89
Improved | 29.83 | 34.83 | 39.83 | 44.83 | 49.83 54.83 59.83 64.83 69.83 74.83 79.83
Exact 38.03 | 45.64 | 52.92 | 60.05 | 67.12 74.15 81.17 88.18 95.18 | 102.18 | 109.18
3 Bound 58 65 72 79 86 93 100 107 114 121 128
Improved | 44.25 | 51.25 | 58.25 | 65.25 | 72.25 79.25 86.25 93.25 | 100.25 | 107.25 | 114.25
Exact 52.81 | 63.15 | 71.94 | 80.29 | 88.46 96.56 | 104.63 | 112.70 | 120.82 | 129.02 | 137.35
4 Bound 79 88 97 106 115 124 133 142 151 160 169
Improved | 60.66 | 69.66 | 78.66 | 87.66 | 96.66 | 105.66 | 114.66 | 123.66 | 132.66 | 141.66 | 150.66

Table: The improved bound for the number of Boolean functions with MC 1, 2, 3, and 4 compared
to the Boyar et al. bound on a log scale with base 2
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Conclusion

» Studied the number of Boolean functions with a specific MC.
» Improved the Boyar et al. bound by a factor of 24 for each AND gate.

Open questions on the MC of Boolean functions:

» Generic heuristics to implement Boolean functions with n > 7 with small number of
AND gates — Best known upper bound on the MC of 7-variable Boolean functions is 13.

» Extending the results to vectorial Boolean functions — Exhaustive list of affine
equivalence classes for vectorial Boolean functions would be useful, e.g., 5-bit to 3-bit,
6-bit to 2-bits.
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Thanks! Questions?

» NIST Circuit Complexity Project Webpage:
https://csrc.nist.gov/Projects/Circuit- Complexity

» GitHubLink: https://github.com /usnistgov/Circuits/

» Contact emails:
meltem.turan@nist.gov
circuit_complexity@nist.gov
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https://csrc.nist.gov/Projects/Circuit-Complexity
https://github.com/usnistgov/Circuits/
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