A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH

Xiaorui Yu ${ }^{1}$, Fukang Liu ${ }^{2}$, Gaoli Wang ${ }^{1}$, Siwei Sun ${ }^{3}$, Willi Meier ${ }^{4}$
${ }^{1}$ Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
${ }^{2}$ Tokyo Institute of Technology, Tokyo, Japan
${ }^{3}$ School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
${ }^{4}$ FHNW, Windisch, Switzerland

Overview

1 Background

- ASCON-HASH
- Notations

■ Basic Attack Strategy for Sponge-based Hash Functions
2 Our improvement
■ General 3-step attack strategy

- Algebraic properties of the S-box
- Improve the Attack

■ 4-Round Semi-free-start Attack

3 Conclusion and Future work

ASCON-HASH

■ ASCON, a lightweight permutation-based primitive, NIST's lightweight cryptography standard.

- ASCON-HASH is one of the hash functions provided by ASCON.
- Sponge-based construction.
- 256-bit hash value.

Round Function of ASCON-HASH

- Round function

$$
S^{i} \xrightarrow{f_{C}} S^{i, a} \xrightarrow{f_{S}} S^{i, s} \xrightarrow{f_{L}} S^{i+1}
$$

$S^{\text {i }}[0]$	$\xrightarrow{f_{C}}$	${ }^{\text {S,a }}[0]$	$\xrightarrow{f_{S}}$	$S^{2, s,[0]}$	$\xrightarrow{f_{L}}$		${ }^{+1}[0]$
$S^{2}[1]$		${ }^{\text {S,a, }}[1]$		$S^{2, s,}[1]$			${ }^{+1}[1]$
$S^{2}[2]$		$S^{\text {i,a, }}$ [2]		$S^{\text {i, }, ~[2] ~}$			${ }^{+1}[2]$
$S^{2}[3]$		${ }^{\text {S }, \text {, }[3]}$		$S^{\text {i, }, \text { [}}[3]$			
$S^{i}[4]$		$S^{\text {i,a }, ~[4] ~}$		$S^{2, s, 5}[4]$			

- $S^{i, a}=S^{i}[0]\left\|S^{i}[1]\right\| S^{i}[2] \oplus C_{i}\left\|S^{i}[3]\right\| S^{i}[4]$
- $S^{i, s}=\operatorname{S-box}\left(S^{i, a}\right)$
- $S^{i+1}=$
$\Sigma_{0}\left(S^{i, s}[0]\right)\left\|\Sigma_{1}\left(S^{i, s}[1]\right)\right\| \Sigma_{2}\left(S^{i, s}[2]\right)\left\|\Sigma_{3}\left(S^{i, s}[3]\right)\right\| \Sigma_{4}\left(S^{i, s}[4]\right)$

S-box and Linear Diffusion of ASCON-HASH

- 5-bit S-box for each 5-bit column.

$$
\left\{\begin{array}{l}
y_{0}=x_{4} x_{1} \oplus x_{3} \oplus x_{2} x_{1} \oplus x_{2} \oplus x_{1} x_{0} \oplus x_{1} \oplus x_{0} \\
y_{1}=x_{4} \oplus x_{3} x_{2} \oplus x_{3} x_{1} \oplus x_{3} \oplus x_{2} x_{1} \oplus x_{2} \oplus x_{1} \oplus x_{0} \\
y_{2}=x_{4} x_{3} \oplus x_{4} \oplus x_{2} \oplus x_{1} \oplus 1, \\
y_{3}=x_{4} x_{0} \oplus x_{4} \oplus x_{3} x_{0} \oplus x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{0}, \\
y_{4}=x_{4} x_{1} \oplus x_{4} \oplus x_{3} \oplus x_{1} x_{0} \oplus x_{1} .
\end{array}\right.
$$

■ 5 independent linear functions for each line (64-bit word).

$$
\left\{\begin{array}{l}
X_{0} \leftarrow \Sigma_{0}\left(X_{0}\right)=X_{0} \oplus\left(X_{0} \ggg 19\right) \oplus\left(X_{0} \ggg 28\right), \\
X_{1} \leftarrow \Sigma_{1}\left(X_{1}\right)=X_{1} \oplus\left(X_{1} \gg 61\right) \oplus\left(X_{1} \ggg 39\right), \\
X_{2} \leftarrow \Sigma_{2}\left(X_{2}\right)=X_{2} \oplus\left(X_{2} \ggg 1\right) \oplus\left(X_{2} \gg 6\right), \\
X_{3} \leftarrow \Sigma_{3}\left(X_{3}\right)=X_{3} \oplus\left(X_{3} \gg 10\right) \oplus\left(X_{3} \ggg 17\right), \\
X_{4} \leftarrow \Sigma_{4}\left(X_{4}\right)=X_{4} \oplus\left(X_{4} \ggg 7\right) \oplus\left(X_{4} \ggg 41\right) .
\end{array}\right.
$$

Notations

Table: Notations

r	the length of the rate part for ASCON-HASH, $r=64$
c	the length of the capacity part for ASCON-HASH, $c=256$
S_{j}^{i}	the input state of round i when absorbing the message block M_{j}
$S^{i}[j]$	the j-th word $\left(64\right.$-bit) of S_{i}
$S^{i}[j][k]$	the k-th bit of $S^{i}[j], k=0$ means the least significant bit and k is within modulo 64
x_{i}	the i-th bit of a 5 -bit value x, x_{0} represents the most significant bit
M	message
M_{i}	the i-th block of the padded message \ggright rotation (circular right shift) $a \% b$ a mod b 0^{n} a string of n zeroes

Basic Attack Strategy for Sponge-based Hash Functions

\square Requirements for differential characteristic:
■ For input difference, only non-zero difference in rate part.

- For output difference, the same as above.

■ Active S-boxes should be as few as possible in the whole characteristic.

General 2-step attack framework.

■Suppose that there are n_{c} bit conditions on the capacity part of S_{k}^{0} and the remaining conditions hold with probability $2^{-n_{k}}$.

■ Step1: Find a solution of $\left(M_{1}, \ldots, M_{k-1}\right)$ such that the n_{c} bit conditions on the capacity part of S_{k}^{0} can hold.
■ Step2: Exhaust M_{k} and check whether remaining n_{k} bit conditions can hold. If there is a solution, a collision is found. Otherwise, return to Step 1.

General 3-step attack strategy

- Main idea: Further convert the n_{c} conditions on the capacity part of S_{k}^{0} into some n_{c}^{1} conditions on the capacity part of S_{k-1}^{0}.

General 3-step attack strategy

- Step 1: Find a solution of $\left(M_{1}, \ldots, M_{k-2}\right)$ such that the n_{c}^{1} bit conditions on the capacity part of S_{k-1}^{0} can hold.
■ Step 2: Enumerate all the solutions of M_{k-1} such that the conditions on the capacity part of S_{k}^{0} can hold.
- Step 3: Exhaust M_{k} and check whether remaining n_{k} bit conditions can hold. If there is a solution, a collision is found. Otherwise, return to Step 1.

Time complexity estimation

The time complexity of Step 1,2 and 3 is denoted by $T_{\text {pre1 }}$, $T_{\mathrm{k}-1}$ and T_{k}.

- The general complexity estimation:

$$
T_{\text {total }}=(k-2) \cdot 2^{n_{k}+n_{c}-2 r} \cdot T_{\text {pre1 }}+2^{n_{k}+n_{c}-2 r} \cdot T_{\mathrm{k}-1}+2^{n_{k}-r} \cdot T_{\mathrm{k}}
$$

- To optimize $T_{\text {pre1 }}$ as $T_{\text {pre1 }}=2^{n_{c}^{\prime}}$, we can significantly improve this complexity as below, where n_{c}^{\prime} refers to the number of a part of conditions on S_{k-1}^{0}.

$$
T_{\text {total }}=(k-2) \cdot 2^{n_{k}+n_{c}+n_{c}^{\prime}-2 r}+2^{n_{k}+n_{c}-2 r} \cdot T_{\mathrm{k}-1}+2^{n_{k}-r} \cdot T_{\mathrm{k}}
$$

Algebraic properties of the S-box

- With special input and output differences, we can get some linear conditions from the ANF of the S-box.

$$
\left\{\begin{array}{l}
y_{0}=x_{4} x_{1} \oplus x_{3} \oplus x_{2} x_{1} \oplus x_{2} \oplus x_{1} x_{0} \oplus x_{1} \oplus x_{0}, \\
y_{1}=x_{4} \oplus x_{3} x_{2} \oplus x_{3} x_{1} \oplus x_{3} \oplus x_{2} x_{1} \oplus x_{2} \oplus x_{1} \oplus x_{0}, \\
y_{2}=x_{4} x_{3} \oplus x_{4} \oplus x_{2} \oplus x_{1} \oplus 1, \\
y_{3}=x_{4} x_{0} \oplus x_{4} \oplus x_{3} x_{0} \oplus x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{0}, \\
y_{4}=x_{4} x_{1} \oplus x_{4} \oplus x_{3} \oplus x_{1} x_{0} \oplus x_{1} .
\end{array}\right.
$$

Algebraic properties of the S-box

Property 1 For an input difference $\left(\Delta_{0}, \ldots, \Delta_{4}\right)$ satisfying $\Delta x_{1}=\Delta x_{2}=\Delta x_{3}=\Delta x_{4}=0$ and $\Delta x_{0}=1$, the following constraints hold:

- For the output difference:

$$
\left\{\begin{array}{l}
\Delta y_{0} \oplus \Delta y_{4}=1, \tag{1}\\
\Delta y_{1}=\Delta x_{0}, \\
\Delta y_{2}=0 .
\end{array}\right.
$$

- For the input value:

$$
\begin{align*}
& x_{1}=\Delta y_{0} \oplus 1, \tag{2}\\
& x_{3} \oplus x_{4}=\Delta y_{3} \oplus 1 .
\end{align*}
$$

Algebraic properties of the S-box

Table: The 2-round differential characteristic.

$\Delta S^{0}\left(2^{-54}\right)$	$\Delta S^{1}\left(2^{-102}\right)$	ΔS^{2}
0xbb450325d90b1581	0x2201080000011080	0xbaf571d85e1153d7
0 x 0	0x2adf0c201225338a	0x0
0 x 0	0x0	0x0
0 x 0	0x0000000100408000	0x0
0x0	0x2adf0c211265b38a	0x0

■ Note:

- $S^{0}: 27$ bit conditions on $S^{0}[1]$ and 27 on $S^{0}[3] \oplus S^{0}[4]$.
- $S^{1}: 21$ bit conditions on $S^{1}[2]$.

Algebraic properties of the S-box

- Carefully, after the capacity part of S_{3}^{0} is fixed, $S^{1}[2]$ is independent to $S^{0}[0]$ since

$$
y_{2}=x_{4} x_{3} \oplus x_{4} \oplus x_{2} \oplus x_{1} \oplus 1 .
$$

- After calculation, there are 21 such conditions on $S^{[2]}$.
- So apart from the 54 linear conditions on the capacity part of S^{0}, it needs to add 21 nonlinear conditions on it.
- As a result, the linear conditions on S^{2} reduced to 81 .

Optimize Ehausting M_{3}

Now we don't need to exhaust message pairs $\left(M_{3}, M_{3}^{\prime}\right)$. With 81 linear conditions, we can establish 81 linear equations for M_{3}.

Property 2

For $\left(y_{0}, \ldots, y_{4}\right)=\operatorname{SB}\left(x_{0}, \ldots, x_{4}\right)$, if $x_{3} \oplus x_{4}=1, y_{3}$ will be independent to x_{0}.

Proof.
We can rewrite y_{3} as follows:

$$
y_{3}=\left(x_{4} \oplus x_{3} \oplus 1\right) x_{0} \oplus\left(x_{4} \oplus x_{3} \oplus x_{2} \oplus x_{1}\right) .
$$

Hence, if $x_{3} \oplus x_{4}=1, y_{3}$ is irrelevant to x_{0}.

Property 3

Let

$$
\begin{aligned}
& \left(S^{1}[0], \ldots, S^{1}[4]\right)=f\left(S^{0}[0], \ldots, S^{0}[4]\right), \\
& \left(S^{2}[0], \ldots, S^{2}[4]\right)=f\left(S^{1}[0], \ldots, S^{1}[4]\right),
\end{aligned}
$$

where $\left(S^{0}[1], S^{0}[2], S^{0}[3], S^{0}[4]\right)$ are constants and $S^{0}[0]$ is the only variable. Then, it is always possible to make u bits of $S^{2}[1]$ linear in $S^{0}[0]$ by adding at most $9 u$ bit conditions on $S^{0}[3] \oplus S^{0}[4]$.

linear
quadratic
constant
conditional bit
constant after adding conditions on $S^{0}[3] \oplus S^{0}[4]$
linear in $S^{0}[0]$

Property 4

Let

$$
\begin{aligned}
& \left(S^{1}[0], \ldots, S^{1}[4]\right)=f\left(S^{0}[0], \ldots, S^{0}[4]\right), \\
& \left(S^{2}[0], \ldots, S^{2}[4]\right)=f\left(S^{1}[0], \ldots, S^{1}[4]\right),
\end{aligned}
$$

where $\left(S^{0}[1], S^{0}[2], S^{0}[3], S^{0}[4]\right)$ are constants and $S^{0}[0]$ is the only variable. Then, it is always possible to make u bits of $S^{2}[1]$ linear in $S^{0}[0]$ by guessing $3 u$ linear equations in $S^{0}[0]$.

\square linear
quadratic
guessed bits
\square constant
linear in $S^{0}[0]$

The Framework of Improving the Attack

- Assume that the capacity part of S_{2}^{0} is known.

1 Add $9 u_{1}$ conditions on the capacity part of $S_{2}^{0} \Longrightarrow u_{1}$ bits of $S_{3}^{0}[1]$ can be linear in M_{2}.
2 Guess $3 u_{2}$ linear equations in $M_{2} \Longrightarrow u_{2}$ bits of $S_{3}^{0}[1]$ can be linear in M_{2}.
3 Set up $u_{1}+4 u_{2}$ linear equations in 64 variables to satisfy $u_{1}+u_{2}$ out of 27 bit conditions.

4 Apply Gaussian elimination on these $u_{1}+4 u_{2}$ linear equations and obtain

$$
u_{3}=64-u_{1}-4 u_{2}
$$

free variables.

Improve Exhausting M_{2}

1 Guess $3 u_{2}=42$ bits of M_{2} and construct $4 u_{2}+u_{1}$ linear equations.
2 Apply the Gaussian elimination to the system and obtain $u_{3}=64-u_{1}-4 u_{2}$ free variables.
3 Construct $54-u_{1}-u_{2}$ quadratic equations in these u_{3} variables and solve the equations.
4 Check whether the remaining 21 quadratic conditions on the capacity part of S_{3}^{0} can hold for each obtained solution.

The Optimal Guessing Strategy

- Assume that one round of the ASCON permutation takes about $15 \times 64 \approx 2^{10}$ bit operations
- The optimal choice of $\left(u_{1}, u_{2}, u_{3}\right)$ is as follows:

$$
u_{1}=3, \quad u_{2}=13 \quad u_{3}=9 .
$$

- The total time complexity can be estimated as

$$
T_{\text {total }}=2^{28} \times 2^{27}+2^{28} \times 2^{56.6-11}+2^{17} \times 2^{19-11} \approx 2^{73.6}
$$

calls to the 2-round ASCON permutation.

Further Improving.

- The core problem is to make

$$
\left(S_{2}^{1}[3][i], S_{2}^{1}[3][i+61], S_{2}^{1}[3][i+39]\right)
$$

constant by either guessing their values or adding bit conditions on $S_{2}^{0}[3] \oplus S_{2}^{0}[4]$.

So for the same conditional bit, we can use a hybrid guessing strategy.

Further Improving

- Add u_{4} conditions on $S_{2}^{0}[3] \oplus S_{2}^{0}[4]$ and guess u_{5} bits of S_{2}^{1} [3].
- Set up u_{6} linear equations for u_{6} conditional bits of $S_{2}^{2}[1]$.
- We have in total $u_{5}+u_{6}$ linear equations.
- After the Gaussian elimination, we can set up $54-u_{6}$ quadratic equations in $u_{7}=64-u_{5}-u_{6}$ free variables.
Result: We propose to choose

$$
u_{4}=31, \quad u_{5}=28, \quad u_{6}=27
$$

The new total time complexity is
$T_{\text {total }}=2^{28} \times 2^{31}+2^{28} \times 2^{28} \times\left(2^{17.6}+2^{15.3}\right) \times 2^{-11}+2^{17} \times 2^{19-11} \approx 2^{62.6}$
hash function calls.

4-Round Semi-free-start Attack

- Using the same analysis method to find the conditions of the 4-round differential characteristic.
- Add all linear conditions into STP solver.
- Find a result in 2 minutes.

Conclusion and Future work

- The attack complexity is reduced from 2^{103} to $2^{62.6}$ hash function calls.
- The complexity of the attack is greatly related to the differential characteristic.
- Finding the better characteristic and make the time complexity more practical will be token as our future work.

