A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH

<u>Xiaorui Yu¹</u>, Fukang Liu², Gaoli Wang¹, Siwei Sun³, Willi Meier⁴

¹Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China ²Tokyo Institute of Technology, Tokyo, Japan ³School of Cryptology, University of Chinese Academy of Sciences, Beijing, China ⁴FHNW, Windisch, Switzerland

2023.6

Overview

1 Background

- ASCON-HASH
- Notations
- Basic Attack Strategy for Sponge-based Hash Functions

2 Our improvement

- General 3-step attack strategy
- Algebraic properties of the S-box
- Improve the Attack
- 4-Round Semi-free-start Attack
- 3 Conclusion and Future work

ASCON-HASH

- ASCON, a lightweight permutation-based primitive, NIST's lightweight cryptography standard.
- ASCON-HASH is one of the hash functions provided by ASCON.
- Sponge-based construction.
- 256-bit hash value.

Round Function of ASCON-HASH

Round function

 $S^{i+1} =$

$$S^{i} \stackrel{f_{C}}{\longrightarrow} S^{i,a} \stackrel{f_{S}}{\longrightarrow} S^{i,s} \stackrel{f_{L}}{\longrightarrow} S^{i+1}$$

 $\Sigma_0(S^{i,s}[0])||\Sigma_1(S^{i,s}[1])||\Sigma_2(S^{i,s}[2])||\Sigma_3(S^{i,s}[3])||\Sigma_4(S^{i,s}[4])|$

- $S^{i,a} = S^{i}[0]||S^{i}[1]||S^{i}[2] \oplus C_{i}||S^{i}[3]||S^{i}[4]|$
- $S^{i,s} = S-box(S^{i,a})$

S-box and Linear Diffusion of ASCON-HASH

■ 5-bit S-box for each 5-bit column.

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} y_0 = x_4 x_1 \oplus x_3 \oplus x_2 x_1 \oplus x_2 \oplus x_1 x_0 \oplus x_1 \oplus x_0, \\ y_1 = x_4 \oplus x_3 x_2 \oplus x_3 x_1 \oplus x_3 \oplus x_2 x_1 \oplus x_2 \oplus x_1 \oplus x_0, \\ y_2 = x_4 x_3 \oplus x_4 \oplus x_2 \oplus x_1 \oplus 1, \\ y_3 = x_4 x_0 \oplus x_4 \oplus x_3 x_0 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0, \\ y_4 = x_4 x_1 \oplus x_4 \oplus x_3 \oplus x_1 x_0 \oplus x_1. \end{array}$$

5 independent linear functions for each line (64-bit word).

$$\left\{\begin{array}{l}X_0 \leftarrow \Sigma_0(X_0) = X_0 \oplus (X_0 \Longrightarrow 19) \oplus (X_0 \ggg 28), \\X_1 \leftarrow \Sigma_1(X_1) = X_1 \oplus (X_1 \ggg 61) \oplus (X_1 \ggg 39), \\X_2 \leftarrow \Sigma_2(X_2) = X_2 \oplus (X_2 \ggg 1) \oplus (X_2 \ggg 6), \\X_3 \leftarrow \Sigma_3(X_3) = X_3 \oplus (X_3 \ggg 10) \oplus (X_3 \ggg 17), \\X_4 \leftarrow \Sigma_4(X_4) = X_4 \oplus (X_4 \ggg 7) \oplus (X_4 \ggg 41).\end{array}\right.$$

Notations

Table: Notations

r	the length of the rate part for ASCON-HASH, $r = 64$
с	the length of the capacity part for ASCON-HASH, $c = 256$
Sj S ⁱ [j]	the input state of round i when absorbing the message block M_j
$\vec{S}^{i}[j]$	the <i>j</i> -th word (64-bit) of S_i
$S^{i}[j][k]$	the k-th bit of $S^{i}[j]$, $k = 0$ means the least significant bit and k is within modulo 64
xi	the <i>i</i> -th bit of a 5-bit value x , x_0 represents the most significant bit
М	message
Mi	the <i>i</i> -th block of the padded message
	right rotation (circular right shift)
a%b	a mod b
0 ⁿ	a string of <i>n</i> zeroes

■Requirements for differential characteristic:

- For input difference, only non-zero difference in rate part.
- For output difference, the same as above.
- Active S-boxes should be as few as possible in the whole characteristic.

General 2-step attack framework.

Suppose that there are n_c bit conditions on the capacity part of S_k^0 and the remaining conditions hold with probability 2^{-n_k} .

- Step1: Find a solution of (*M*₁,...,*M*_{*k*-1}) such that the *n*_{*c*} bit conditions on the capacity part of *S*⁰_{*k*} can hold.
- Step2: Exhaust M_k and check whether remaining n_k bit conditions can hold. If there is a solution, a collision is found. Otherwise, return to Step 1.

■ Main idea: Further convert the n_c conditions on the capacity part of S_k^0 into some n_c^1 conditions on the capacity part of S_{k-1}^0 .

General 3-step attack strategy

- Step 1: Find a solution of (M₁,..., M_{k-2}) such that the n¹_c bit conditions on the capacity part of S⁰_{k-1} can hold.
- Step 2: Enumerate all the solutions of *M*_{*k*-1} such that the conditions on the capacity part of *S*⁰_{*k*} can hold.
- Step 3: Exhaust M_k and check whether remaining n_k bit conditions can hold. If there is a solution, a collision is found. Otherwise, return to Step 1.

Time complexity estimation

- The time complexity of Step 1, 2 and 3 is denoted by T_{pre1} , T_{k-1} and T_k .
 - The general complexity estimation:

$$T_{\texttt{total}} = (k-2) \cdot 2^{n_k + n_c - 2r} \cdot T_{\texttt{pre1}} + 2^{n_k + n_c - 2r} \cdot T_{\texttt{k-1}} + 2^{n_k - r} \cdot T_{\texttt{k}}.$$

■ To optimize T_{pre1} as $T_{pre1} = 2^{n'_c}$, we can significantly improve this complexity as below, where n'_c refers to the number of a part of conditions on S^0_{k-1} .

$$T_{\texttt{total}} = (k-2) \cdot 2^{n_k + n_c + n_c' - 2r} + 2^{n_k + n_c - 2r} \cdot T_{\texttt{k-1}} + 2^{n_k - r} \cdot T_{\texttt{k}}.$$

■ With special input and output differences, we can get some linear conditions from the ANF of the S-box.

$$\begin{cases} y_0 = x_4 x_1 \oplus x_3 \oplus x_2 x_1 \oplus x_2 \oplus x_1 x_0 \oplus x_1 \oplus x_0, \\ y_1 = x_4 \oplus x_3 x_2 \oplus x_3 x_1 \oplus x_3 \oplus x_2 x_1 \oplus x_2 \oplus x_1 \oplus x_0, \\ y_2 = x_4 x_3 \oplus x_4 \oplus x_2 \oplus x_1 \oplus 1, \\ y_3 = x_4 x_0 \oplus x_4 \oplus x_3 x_0 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0, \\ y_4 = x_4 x_1 \oplus x_4 \oplus x_3 \oplus x_1 x_0 \oplus x_1. \end{cases}$$

Algebraic properties of the S-box

Property 1 For an input difference $(\Delta_0, \ldots, \Delta_4)$ satisfying $\Delta x_1 = \Delta x_2 = \Delta x_3 = \Delta x_4 = 0$ and $\Delta x_0 = 1$, the following constraints hold:

For the output difference:

$$\begin{cases} \Delta y_0 \oplus \Delta y_4 = 1, \\ \Delta y_1 = \Delta x_0, \\ \Delta y_2 = 0. \end{cases}$$
(1)

For the input value:

$$x_1 = \Delta y_0 \oplus 1, x_3 \oplus x_4 = \Delta y_3 \oplus 1.$$
(2)

Table: The 2-round differential characteristic.

$\Delta S^0 \; (2^{-54})$	$\Delta S^1 \; (2^{-102})$	ΔS^2
0xbb450325d90b1581	0x2201080000011080	0xbaf571d85e1153d7
0x0	0x2adf0c201225338a	0x0
0x0	0x0	0x0
0x0	0x0000000100408000	0x0
0x0	0x2adf0c211265b38a	0x0

Note:

- S^0 :27 bit conditions on $S^0[1]$ and 27 on $S^0[3] \oplus S^0[4]$.
- $S^1:21$ bit conditions on $S^1[2]$.

■ Carefully, after the capacity part of S_3^0 is fixed, $S^1[2]$ is independent to $S^0[0]$ since

 $y_2 = x_4 x_3 \oplus x_4 \oplus x_2 \oplus x_1 \oplus 1.$

- After calculation, there are 21 such conditions on $S^{[2]}$.
- So apart from the 54 linear conditions on the capacity part of S⁰, it needs to add 21 nonlinear conditions on it.
- As a result, the linear conditions on S^2 reduced to 81.

Now we don't need to exhaust message pairs (M_3, M'_3) . With 81 linear conditions, we can establish 81 linear equations for M_3 .

Property 2

For $(y_0, \ldots, y_4) = SB(x_0, \ldots, x_4)$, if $x_3 \oplus x_4 = 1$, y_3 will be independent to x_0 .

Proof.

We can rewrite y_3 as follows:

$$y_3 = (x_4 \oplus x_3 \oplus 1)x_0 \oplus (x_4 \oplus x_3 \oplus x_2 \oplus x_1).$$

Hence, if $x_3 \oplus x_4 = 1$, y_3 is irrelevant to x_0 .

Property 3

Let

$$(S^{1}[0], \dots, S^{1}[4]) = f(S^{0}[0], \dots, S^{0}[4]),$$

 $(S^{2}[0], \dots, S^{2}[4]) = f(S^{1}[0], \dots, S^{1}[4]),$

where $(S^0[1], S^0[2], S^0[3], S^0[4])$ are constants and $S^0[0]$ is the only variable. Then, it is always possible to make u bits of $S^2[1]$ linear in $S^0[0]$ by adding at most 9u bit conditions on $S^0[3] \oplus S^0[4]$.

Property 4

Let

$$(S^{1}[0], \dots, S^{1}[4]) = f(S^{0}[0], \dots, S^{0}[4]),$$

 $(S^{2}[0], \dots, S^{2}[4]) = f(S^{1}[0], \dots, S^{1}[4]),$

where $(S^0[1], S^0[2], S^0[3], S^0[4])$ are constants and $S^0[0]$ is the only variable. Then, it is always possible to make *u* bits of $S^2[1]$ linear in $S^0[0]$ by guessing 3u linear equations in $S^0[0]$.

The Framework of Improving the Attack

Assume that the capacity part of S_2^0 is known.

- 1 Add $9u_1$ conditions on the capacity part of $S_2^0 \implies u_1$ bits of $S_3^0[1]$ can be linear in M_2 .
- 2 Guess $3u_2$ linear equations in $M_2 \implies u_2$ bits of $S_3^0[1]$ can be linear in M_2 .
- 3 Set up $u_1 + 4u_2$ linear equations in 64 variables to satisfy $u_1 + u_2$ out of 27 bit conditions.
- Apply Gaussian elimination on these $u_1 + 4u_2$ linear equations and obtain

$$u_3 = 64 - u_1 - 4u_2$$

free variables.

Improve Exhausting M_2

- **I** Guess $3u_2 = 42$ bits of M_2 and construct $4u_2 + u_1$ linear equations.
- 2 Apply the Gaussian elimination to the system and obtain $u_3 = 64 u_1 4u_2$ free variables.
- 3 Construct $54 u_1 u_2$ quadratic equations in these u_3 variables and solve the equations.
- 4 Check whether the remaining 21 quadratic conditions on the capacity part of S_3^0 can hold for each obtained solution.

The Optimal Guessing Strategy

- Assume that one round of the ASCON permutation takes about $15 \times 64 \approx 2^{10}$ bit operations
- The optimal choice of (u_1, u_2, u_3) is as follows:

$$u_1 = 3$$
, $u_2 = 13$ $u_3 = 9$.

The total time complexity can be estimated as

$$T_{\texttt{total}} = 2^{28} \times 2^{27} + 2^{28} \times 2^{56.6-11} + 2^{17} \times 2^{19-11} \approx 2^{73.6}$$

calls to the 2-round ASCON permutation.

■ The core problem is to make

```
(S_2^1[3][i], S_2^1[3][i+61], S_2^1[3][i+39])
```

constant by either guessing their values or adding bit conditions on $S_2^0[3]\oplus S_2^0[4].$

So for the same conditional bit, we can use a hybrid guessing strategy.

Further Improving

- Add u_4 conditions on $S_2^0[3] \oplus S_2^0[4]$ and guess u_5 bits of $S_2^1[3]$.
- Set up u_6 linear equations for u_6 conditional bits of $S_2^2[1]$.
- We have in total $u_5 + u_6$ linear equations.
- After the Gaussian elimination, we can set up $54 u_6$ quadratic equations in $u_7 = 64 u_5 u_6$ free variables.

Result: We propose to choose

$$u_4 = 31, \quad u_5 = 28, \quad u_6 = 27$$

The new total time complexity is

$$T_{\texttt{total}} = 2^{28} \times 2^{31} + 2^{28} \times 2^{28} \times (2^{17.6} + 2^{15.3}) \times 2^{-11} + 2^{17} \times 2^{19-11} \approx 2^{62.6}$$

hash function calls.

4-Round Semi-free-start Attack

- Using the same analysis method to find the conditions of the 4-round differential characteristic.
- Add all linear conditions into STP solver.
- Find a result in 2 minutes.

Conclusion and Future work

- The attack complexity is reduced from 2¹⁰³ to 2^{62.6} hash function calls.
- The complexity of the attack is greatly related to the differential characteristic.
- Finding the better characteristic and make the time complexity more practical will be token as our future work.