Report on the Block Cipher Modes of Operation in the NIST SP 800-38 Series

Nicky Mouha Morris Dworkin

NIST Workshop on Block Cipher Modes of Operation 2023 Tuesday, October 3, 2023

- NIST commitment:
 - Periodical review of standards
- First review: AES (FIPS 197)
 NISTIR 8319: Review of the AES (July 2021)
- Next: Modes of operation (SP 800-38 Series)
 Draft NISTIR 8459: Modes Report (March 2023)

- Where is the standard used?
- What security properties are required there?
- Does failure of security properties lead to attacks?

- E.g., known/chosen plaintext attacks, but...
 - Purpose of encryption if attacker already knows the plaintext?
 - How can an attacker choose the plaintext?

- E.g., known/chosen plaintext attacks, but...
 - Purpose of encryption if attacker already knows the plaintext?
 - How can an attacker choose the plaintext?
- Again, focus on attacks...
 - Exhaustive search is infeasible, but...
 - ...side-channel attacks recover key in minutes?
 - Block cipher secure against related-key attacks, or... ...disallow generating keys with known relations?
 - Vulnerabilities (CVE numbers)?

• Guessing attack \rightarrow minimum plaintext size for FF1/FF3 (38G)

Domain Extension

Bit Flips (Encryption, Same IV)

Bit Flips (Decryption, No MAC)

• NIST SP 800-38A + Add: ECB, CBC, CFB, OFB, CTR

0

NIST SP 800-38B: CMAC

٥

NIST SP 800-38C: CCM

0

NIST SP 800-38D: GCM

۹

NIST SP 800-38E: XTS-AES

0

NIST SP 800-38F: KW, KWP, TKW

۲

NIST SP 800-38G: FF1, FF3

۲

- NIST SP 800-38A + Add: ECB, CBC, CFB, OFB, CTR
 - CPA security (except ECB)
- NIST SP 800-38B: CMAC
 - MAC security
- NIST SP 800-38C: CCM
 - CPA + MAC = CCA security
- NIST SP 800-38D: GCM
 - CPA + MAC = CCA security
- NIST SP 800-38E: XTS-AES
 - CCA up-to-block (without MAC)
- NIST SP 800-38F: KW, KWP, TKW
 - CCA (without MAC)
- NIST SP 800-38G: FF1, FF3
 - CCA (without MAC)

- NIST SP 800-38A + Add: ECB, CBC, CFB, OFB, CTR
 - CPA security (except ECB), IV (except ECB)
- NIST SP 800-38B: CMAC
 - MAC security
- NIST SP 800-38C: CCM
 - CPA + MAC = CCA security, nonce
- NIST SP 800-38D: GCM
 - CPA + MAC = CCA security, nonce
- NIST SP 800-38E: XTS-AES
 - CCA up-to-block (without MAC), tweak
- NIST SP 800-38F: KW, KWP, TKW
 - CCA (without MAC), no tweak
- NIST SP 800-38G: FF1, FF3
 - CCA (without MAC), tweak

- FISMA defines "information security" as:
 - Confidentiality
 - Integrity (incl. nonrepudiation and authenticity)
 - Availability

- FISMA defines "information security" as:
 - Confidentiality
 - Integrity (incl. nonrepudiation and authenticity)
 - Availability
- We need two additional terms:
 - Semantic security: "Can the attacker learn something by having the ciphertext that is not already known about the plaintext?"

- FISMA defines "information security" as:
 - Confidentiality
 - Integrity (incl. nonrepudiation and authenticity)
 - Availability
- We need two additional terms:
 - Semantic security: "Can the attacker learn something by having the ciphertext that is not already known about the plaintext?"
 - Non-malleability: "Can the attacker modify the ciphertext so that it decrypts to a related plaintext?"

- FISMA defines "information security" as:
 - Confidentiality
 - Integrity (incl. nonrepudiation and authenticity)
 - Availability
- We need two additional terms:
 - Semantic security: "Can the attacker learn something by having the ciphertext that is not already known about the plaintext?"
 - Non-malleability: "Can the attacker modify the ciphertext so that it decrypts to a related plaintext?"
- Implications:
 - $\bullet \ \mathsf{IND}\mathsf{-}\mathsf{CPA} \to \mathsf{semantic \ security} \to \mathsf{confidentiality}$
 - $\bullet \ \mathsf{IND}\mathsf{-}\mathsf{CCA} \to \mathsf{non-malleability} \to \mathsf{integrity}$

A Simple Challenge-Response Protocol

A Simple Challenge-Response Protocol

A Simple Challenge-Response Protocol

- Chosen Plaintext Attacks (CPA) are realistic!
- Used in SP 800-73-4 Part 2 for PIV cards (with ECB!)

Notions Explained

- Achieving CPA security is the basis
 - Requires block cipher (AES) and any IV-based mode of operation
 - Without IV: we know if plaintexts are equal (or much more!)
 - IV may require unpredictability, nonces just need to be unique!

Notions Explained

- Achieving CPA security is the basis
 - Requires block cipher (AES) and any IV-based mode of operation
 - Without IV: we know if plaintexts are equal (or much more!)
 - IV may require unpredictability, nonces just need to be unique!
- Achieving CCA security is usually done with a MAC
 - If a ciphertext is modified, it will not decrypt! (38C/38D)

Notions Explained

- Achieving CPA security is the basis
 - Requires block cipher (AES) and any IV-based mode of operation
 - Without IV: we know if plaintexts are equal (or much more!)
 - IV may require unpredictability, nonces just need to be unique!
- Achieving CCA security is usually done with a MAC
 If a ciphertext is modified, it will not decrypt! (38C/38D)
- But... repeated nonce or no space for MAC?
 - "Misuse resistance": nonce becomes tweak
 - Achieve CCA directly without MAC (38E/38F/38G)
 - If MAC is used: pad-then-encipher (38F/38G)

- Bit errors in ciphertext:
 - "the existence of such bit errors may be detected by their randomizing effect on their decryption" (NIST SP 800-38A)
- So: 128 random plaintext bits \rightarrow checksum failure?
 - "SSH insertion attack" CBC/CFB + CRC-32 (CVE-1999-1085)

• Length-preserving encryption

- XTS (38E): only for storage devices
 - (but 38A modes "continue to be approved for such devices")
- Applications exist where ciphertext cannot be expanded...
- Building block for AEAD
 - Authentication-only mode: CMAC (38B), HMAC (FIPS 198-1)
 - Generic AEAD: e.g., CBC + HMAC
 - CCM (38C) and GCM (38D): AEAD based on CTR!

- GCM (38C) and CCM (38D)
 Based on CTR
- Nonce reuse:
 - Deduce plaintext from ciphertext difference!
- Short tag / no tag:
 - Control plaintext through ciphertext difference!

- Nonce reuse: KW/KWP/TKW (38F) or FF1/FF3 (38G)
 - "Misuse resistant" AEAD
 - Most suitable for key wrapping (38F) or formatted data (38G)
 - Very slow for general use...
- No tag: XTS (38E)
 - ECB-like mode: independently encrypts every block...
 - Only for storage devices
 - CBC (38A): sometimes preferable?

- "Conventional" Authenticated Encryption
 - Use GCM or CCM
 - Secure in commonly-used protocols such as TLS

- "Conventional" Authenticated Encryption
 - Use GCM or CCM
 - Secure in commonly-used protocols such as TLS
- Other Encryption Applications?
 - Low-latency encryption?
 - Lightweight encryption?
 - SHA-3-based encryption?
 - Insecure uses of CBC, GCM, CCM?
 - Other?

- "Conventional" Authenticated Encryption
 - Use GCM or CCM
 - Secure in commonly-used protocols such as TLS
- Other Encryption Applications?
 - Low-latency encryption?
 - Lightweight encryption?
 - SHA-3-based encryption?
 - Insecure uses of CBC, GCM, CCM? \leftarrow This talk!
 - Other?

- "Conventional" Authenticated Encryption
 - Use GCM or CCM
 - Secure in commonly-used protocols such as TLS
- Other Encryption Applications?
 - Low-latency encryption?
 - Lightweight encryption?
 - SHA-3-based encryption?
 - Insecure uses of CBC, GCM, CCM? \leftarrow This talk!
 - Other?
- Why?
 - IV reuse, short or no tags, no key commitment, release of unverified plaintext,...
 - Many applications: disk encryption, packet encryption, message franking,...