
Cataloguing Software Ecosystems
with swid-reg
Alex J. Nelson, Ph.D.
Computer Scientist
NIST

Software Supply Chain Assurance Forum
2023-09-13

The views and opinions expressed in this presentation are those of
the authors and do not necessarily reflect the official policy or
position of any agency of the U.S. government. Any mention of a
vendor or product is not an endorsement or recommendation.
Logos and trademarks are copyright their respective owners.

Disclaimer

whoami

Ph.D., Computer Science, 2016
Emphases: File Systems, Digital
Forensics, and Information Retrieval

Computer Scientist

UCO Ontology Committee Chair

Ontology Engineer

An ontology engineer’s perspective
on supply chain

The chart on the right is the Cyber
Domain Ontology’s (CDO) “Release
Flow” diagram.

Each teal node is a public GitHub
repository, providing an ontology,
software, or example data.

Each arrow shows how updates
propagate between repositories.

Experience has encouraged keeping
update procedures small in human
effort, including from external
dependencies (e.g. Python code
formatters pinned to latest versions).

https://cyberdomainontology.org/resources/project_release_flow.html

https://cyberdomainontology.org/resources/project_release_flow.html

• Background: NVD and CPE
• Package managers and swid-reg
• A light touch of ontology, tailored to software supply chain

Outline

NVD and CPE

From “dependency_parser, all versions <0.5.1”, NVD enumerates affected versions.

Problem:
CPEs are a significant labor point in NVD.

From “dependency_parser, all versions <0.5.1”, NVD enumerates affected versions.
Step 1: Enumerate all versions, or most in range’s ballpark.
Step 2: Identify affected subset and define CPEs.

Problem:
CPEs are a significant labor point in NVD.

…why not crawl?

For open source software…

SWID, swid-reg, and CPE mapping
SWID is a metadata format for software.

A SWID Tag, XML, can map to CPE.

For example, this CPE …

cpe:2.3:a:alex_nelson:case-prov:0.8.0:*:*:*:*:*:*:*

… generates from that:

SWID and CPE differ in precision
One SWID tag can induce many CPEs.

E.g. 1 per involved entity (aside from tagCreator). Each “CPE Vendor” variant could assist with
finding distributor-modified software.

cpe:2.3:a:alex_nelson:case-prov:0.8.0:*:*:*:*:*:*:*

cpe:2.3:a:python_software_foundation:case-prov:0.8.0:*:*:*:*:*:*:*

Could be more helpful to consider as classes. These CPEs describe all software named case-prov,
versioned 0.8.0, vended by Alex Nelson (or separately, vended by the Python Software Foundation).

Treat classes synonymous with sets.

A key ITAM objective: Knowledge of assets.
“How big is the set of computers in my org?”
“How big is the set of software licenses in use right now?
“…Versus how many we’ve paid for?”

CPE describes sets of software.
CPE name serializes the set description.
CPE URI identifies the set. E.g. all software: <cpe:/a>
SWID describes smaller sets.

“Never underestimate the power of a theorem that counts something.”

Classes…?

Crawling package managers with swid-reg

Package managers provide:

• Authorship information

• Package update discovery

• Dependency graphs

• Payload files

• Project pages
https://pypi.org/project/case-prov/

swid-reg calls package managers ecosystems,

and crawls them to produce SWID tags.

(And from SWID tags, CPEs will be generated.)

Package managers

https://pypi.org/project/case-prov/

Package managers provide:

• Authorship information

• Package update discovery

• Dependency graphs

• Payload files

• Metadata feeds
https://pypi.org/pypi/case-prov/0.9.0/json

swid-reg calls package managers ecosystems,

and crawls them to produce SWID tags.

(And from SWID tags, CPEs will be generated.)

Package managers and swid-reg

https://pypi.org/pypi/case-prov/0.9.0/json

What does one download from a package manager?
– A distribution.

What bears the version?
– A versioned package.

What do swidtags describe in swid-reg?
– A distribution.

swid-reg data model:
From ecosystem to SWID tag

What does one download from a package manager?
– A distribution.

What bears the version?
– A versioned package.

What do swidtags describe in swid-reg?
– A distribution.

swid-reg data model:
From ecosystem to SWID tag

But…

What does one download from a package manager?
– A distribution.

What bears the version?
– A versioned package.

What do swidtags describe in swid-reg?
– A distribution.

Difference between Projects and Packages:
Packages are in ecosystems.

But…
What are vulnerabilities reported against?
– A release, bearing a version of a project.
 (Not depicted.)

Difference between Projects and Packages:
Packages are easier to crawl.

But…
What are vulnerabilities reported against?
– A release, bearing a version of a project.

What does one download from a package manager?
– A distribution.

What bears the version?
– A versioned package.

What do swidtags describe in swid-reg?
– A distribution.

Bridging Projects and Packages:
A challenge.

These links require much customization to populate.

• CPAN

• RubyGems

• NPM

Crawlers have been designed for:

Planned open-source ecosystems

• PyPI (activating)

• Maven

• Debian

…did he say CPAN?

https://xkcd.com/2347/

https://xkcd.com/2347/

…did he say CPAN?

https://xkcd.com/2347/

GitHub
Git

Perl 5.34
 term-readkey

https://xkcd.com/2347/

…did he say CPAN?

https://xkcd.com/2347/

GitHub
Git

Perl 5.34
 term-readkey

Per: https://ports.macports.org/port/git/details/

https://xkcd.com/2347/
https://ports.macports.org/port/git/details/

Linking,
Time,
Provenance,
and the Supply Chain

A light touch of ontology

Package managers provide:

• Authorship information

• Package update discovery

• Dependency graphs

• Payload files

• Metadata feeds
https://pypi.org/pypi/case-prov/0.9.0/json

Supply chain review is relationship analysis.

https://pypi.org/pypi/case-prov/0.9.0/json

Two versions of the project parked
at “mypy” on PyPI: The first (0.1),
and today’s (1.5.1), 14 years apart.

• Summary is different.

• Home page now recorded.

• Author-role now held by
someone else.

• Was never yanked (retracted).

Absent deep review of home page’s
blog, we instead consider:

What are properties?

What are qualities?

What are independent and related
objects?

Are these the same project?

Three ways to relate two objects, O1 and O2, are properties, qualities, and
relationships.
(In some cases, O2 is a literal-data value, like a string or integer.)
• Property – The linked thing is fundamental to the identity of O1.

E.g. A package in an ecosystem has a name as an identifier. Changing the
name creates a new package.

• Quality – The linked thing is mutable.
E.g. A package’s download count does not change the identity of the
package when it ticks up.

• Relationship – Neither O1 nor O2 need each other to exist. A
relationship ties them together.
E.g. a package’s maintainer can change from release to release.
• The relationship can end without inducing O1 or O2 to also end.

Graphs link objects in several ways.

Two versions of the project parked at
“mypy” on PyPI: The first (0.1), and
today’s (1.5.1), 14 years apart.

• Summary is different.

• Home page now recorded.

• Author-role now held by
someone else.

• Was never yanked (retracted).

Are these the same project?

Two versions of the project parked at
“mypy” on PyPI: The first (0.1), and
today’s (1.5.1), 14 years apart.

• Summary is different.

• Home page now recorded.

• Author-role now held by
someone else.

• Was never yanked (retracted).

What are properties?

• Name

Are these the same project?

Two versions of the project parked at
“mypy” on PyPI: The first (0.1), and
today’s (1.5.1), 14 years apart.

• Summary is different.

• Home page now recorded.

• Author-role now held by
someone else.

• Was never yanked (retracted).

What are properties?

• Name

What are qualities?

• Version

• Summary

Are these the same project?

Two versions of the project parked at
“mypy” on PyPI: The first (0.1), and
today’s (1.5.1), 14 years apart.

• Summary is different.

• Home page now recorded.

• Author-role now held by
someone else.

• Was never yanked (retracted).

What are properties?

• Name

What are qualities?

• Version

• Summary

What are independent and related?

• Person in author role

• Home page

Are these the same project?

Flat (implemented with Property) Reified (implemented with Relationship)

How are these maintained when faced with new facts? (E.g. Person-1 no longer in org.)

Remove the outdated statement. Declare there exists an end of the Membership.

What is the influence of time on the questions you can ask?

Is Person-1 in the org? (Implicit: Right now.) Was Person-1 ever in the org?
Was Person-1 in the org last year?

Compare:

Example:
W3C ORG demonstrates two linking styles

When reviewing deployed software configurations, time information is essential.

The W3C’s OWL-Time is an OWL-based ontology.

Defines Intervals, Instants, interval-relating
algebra (right), plus more.

Timeline consistency review can use interval
predicates, such as time:intervalDuring.

Example: All actions requiring a PKI signature
SHOULD take place during the certificate’s
interval of validity.

Else, the knowledge base is inconsistent.

Some predicates make strong implications: “i
before j” means i has a definite end, even if the
specific timestamp is not known.

A detour on time,
for consistency review

Figure source: http://dx.doi.org/10.1007/978-0-585-28322-7_7 ,
via Figure 2 of https://www.w3.org/TR/owl-time/

http://dx.doi.org/10.1007/978-0-585-28322-7_7
https://www.w3.org/TR/owl-time/

https://www.w3.org/TR/prov-o/

A detour on provenance,
for history description

https://www.w3.org/TR/prov-o/

Figure source: case-prov’s README

PROV concepts can align with OWL-Time

(Start) (Generation)

(End) (Invalidation)

(Instant)

(Instant)

OWL-Time defines instants and intervals. PROV-O specializes these.

Provenance analysis uses links and/or time
(Left and right displays only toggle time object visibility.)

Figure source: case-prov’s README

Provenance example: History of swid-reg generated
tag for case-prov@0.9.0

Provenance graphs show
interwoven chains of:

• Derivation:
entities from entities
(yellow)

• Communication:
Activities sharing
entities
(blue)

• Delegation:
Agents acting on
behalf of agents
(orange)

Time flows downward.

Swid-reg separates ecosystem’s posting history from
crawler’s observation provenance.

Upper-right:
History of case-prov,
scoped to PyPI and the
project’s author.

Lower-left:
swid-reg actions
observing,
downloading, hashing
artifacts.

Bottom:
The SWID tag for
case-prov@0.9.0.

Swid-reg separates ecosystem’s posting history from
crawler’s observation provenance.

Upper-right:
History of case-prov,
scoped to PyPI and the
project’s author.

Lower-left:
swid-reg actions
observing,
downloading, hashing
artifacts.

Bottom:
The SWID tag for
case-prov@0.9.0.

Compare PyPI’s JSON feed to Maven’s detached signature
files.

swid-reg confirms provided file measurements (size,
hashes), records as “attestation” from ecosystem.

Time of signatures’ observation is recorded, in case of
later change.

Then, augments hashes to include:

• MD5*, SHA-1*

• SHA2-256 and -512

• SHA3-256 and -512

• File size

• Modification time of distribution file (if appears
stable)

Provenance-oriented model enables flexible
swid-reg augmentation of hashes.

• Augmentation of NVD vulnerability feeds with more than CPE

• Setting up feed for NIST-produced SWID tags

• Accepting submissions of SBOMs from partnering organizations to expand
software knowledge base beyond open source ecosystems

• Researching “at-scale” association of Packages with Projects

• Better versioning:
Using Git-based Projects’ histories to establish stronger partial-order
package version graphs, improving “Affected versions” vulnerability
associations

Future work

Questions?

https://github.com/usnistgov/swid-reg/

alexander.nelson@nist.gov

https://github.com/usnistgov/swid-reg/
mailto:alexander.nelson@nist.gov

