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Our Research

Cybersecurity with a hardware focus

• Hardware acceleration for next-generation cryptography
[DATE’20][TC’20][FPL920][ICCAD920][ESL919][TC915][TECS915][ESL914] [HOST’13]

• Hardware building blocks to combat supply-chain attacks
[ICCAD921] [HOST918][HOST917][ICISC916][DATE916][CHES915][WESS913]

• Mitigating hardware theft of untrusted foundries
[TCAD922][ISQED920][ISCAS920][TCAD922]

• Implementation security: side-channel and fault attacks
[DAC922][HOST’22][TCHES’22][DAC921][HOST920][ICCAD920][HOST’18][DATE914]

• Training a cyber-aware STEM workforce
[GLS-VLSI922][GLS-VLSI919]



Public-Key Cryptography

Why Quantum Computing?

• Better predicting tomorrow9s weather?
• Efficient simulation of chemical reactions?

• Finding new electronic materials?

• Optimize traffic, logic simulations, or ticket prices?

• …
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Know This Machine?
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Quantum Computers Endanger Cryptography

Encryption for the web rely on hard mathematical problems

RSA-4096
[IBM-CAI’16]
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Emergence of Post-Quantum Cryptography

• NIST9s PQ standardization effort (2017–2024)

• Some industry/government adoptions already occurred 
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Emergence of Post-Quantum Cryptography

• Key Encapsulation Mechanisms

– CRYSTALS-KYBER

• Digital Signatures

– CRYSTALS-DILITHIUM

– FALCON

– SPHINCS+

• Alternates:

– FrodoKEM, NTRU, NTRU Prime, SABER, … 
10
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Moving to Quantum-Secure Cryptography

Source: https://www.nccoe.nist.gov/ 11
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Category of Post-Quantum Cryptosystems

Category Security 
Assumption

Features

Code-based
cryptography

Decoding general 
linear codes

Large keys, 
complex operations

Hash-based 
cryptography

One-way
hash functions

Large keys, limited
applications

Lattice-based 
cryptography

Lattice problems
Small keys, efficient 

arithmetic,

3 out of the 4 upcoming NIST standards use lattice cryptography
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Lattices Have Other Uses…
Homomorphic encryption allows computing on encrypted data 

without knowing the secret key or underlying plaintext

Enc(pk,m)

r=Dec(sk,c)

c
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Security of Lattice-Based Cryptography

Given a bad basis, can you find a good one?
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Lattice-based Cryptography
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Trap-door one-way function

A,S,E f(.)

f-1(.)

PUBLIC KEY

PRIVATE  KEY
S, E

A, B

Works with matrices and polynomials
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6

Matrix Multiplication Polynomial Multiplication

Elements are defined over Galois Field (modular arithmetic with primes)
Random sampling may require <discrete Gaussian= distributions
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FALCON Specification – What to Implement? 
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New IPs Needed for Lattice-Based Cryptography

• Building blocks for discrete Gaussian sampling

• Building blocks for Number Theoretic Transform

• Full system design working with new building blocks

• System-level trade-offs

• Optimizations for edge computers to cloud

• New custom instructions for ISA

• Implementation security!

• Hybrid designs
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Number Theoretic Transform
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Number Theoretic Transform

Iterative NTT Algorithm

Read
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❑ N-point NTT operation has log2n 

stages

❑ At each stage, n/2 butterfly 

operation is performed

❑ Single NTT operation can be 

parallelized using multiple butterfly 

units
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Number Theoretic Transform

Aydin Aysu et al. "An extensive study of flexible design methods for the number theoretic transform." IEEE Transactions on Computers 71, no. 11 (2020): 2829-2843.
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Number Theoretic Transform Results

Aydin Aysu et al. "An extensive study of flexible design methods for the number theoretic transform." IEEE Transactions on Computers 71, no. 11 (2020): 2829-2843.
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Number Theoretic Transform Results

Aydin Aysu et al. "An extensive study of flexible design methods for the number theoretic transform." IEEE Transactions on Computers 71, no. 11 (2020): 2829-2843.
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High Precision Discrete Gaussian Sampling

Sampling precision impacts cryptographic security level

0 1-1 8… …

p=0.241970724519143349…
0.241970724519143348

2128 → 256
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High Precision Discrete Gaussian Sampling

Many algorithmic options for implementing Gaussian sampling
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High Precision Discrete Gaussian Sampling

Aydin Aysu et al. "Efficient, flexible, and constant-time gaussian sampling hardware for lattice cryptography." IEEE Transactions on Computers 71, no. 8 (2021): 1810-1823.
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Results and Comparison

Aydin Aysu et al. "Efficient, flexible, and constant-time gaussian sampling hardware for lattice cryptography." IEEE Transactions on Computers 71, no. 8 (2021): 1810-1823.
28
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Implementation Security

New applications (e.g. IoT) expose hardware to direct 
physical attacks / tampering: breaks crypto / key stolen
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Physical Side-Channel Analysis

This talk: Power and EM

Fundamental property of CMOS:

+ More practical (low-cost) than optical leakage

+ More precise than thermal leakage
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Physical source: power, EM, acoustic, photonic, thermal, …
Digital source: time, micro-architectural state, memory 

patterns, …

CRYPTO’99*

*Omitting TEMPEST for simplicity

Side-Channel Security
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FALCON’s Side-Channel Vulnerability

Key generation sub-routine leaks secret key bit values 

00000000 FFFFFFFF



Public-Key Cryptography

NTRU and NTRU Prime Side-Channel Vulnerability

33

0x0000_0000 (0)

0xFFFF_FFFF (-1)

Karabulut, Emre, Erdem Alkim, and Aydin Aysu. "Single-trace side-channel attacks on ω-small polynomial sampling: with applications to NTRU, NTRU 

prime, and crystals-dilithium." In 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 35-45. IEEE, 2021.
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SamplePerm Full Power Trace and Extraction
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0x0000_0000 (0)

0xFFFF_FFFF (-1)

Karabulut, Emre, Erdem Alkim, and Aydin Aysu. "Single-trace side-channel attacks on ω-small polynomial sampling: with applications to NTRU, NTRU 

prime, and crystals-dilithium." In 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 35-45. IEEE, 2021.
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Dilithium Sampling Leakage

35

Karabulut, Emre, Erdem Alkim, and Aydin Aysu. "Single-trace side-channel attacks on ω-small polynomial sampling: with applications to NTRU, NTRU 

prime, and crystals-dilithium." In 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 35-45. IEEE, 2021.
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Requirements For A Differential

Side-Channel Attack

An intermediate computation:

1) that combines a known value and a secret key and

2) the known value varies (i.e., not fixed)  
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Single-Trace Differential Attacks on 

FrodoKEM Matrix Multiplication

37

❑ Attacker limited to a single power measurement trace

❑ Matrix multiplication has <multiple= intermediate computations 
on the same secret

❑ Up to 1344 distinct computations on the same secret (S) coefficient

❑ Attack splits measurements into <sub-traces= for profiling and test

Power

time
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Attacking the FALCON Signatures 

with Differential Power Analysis 

• NTRU equation:

fG - gF = q

• Public Key:

h= gf-1

• If we know either polynomial 
8g’ or 8f’, we can recover the 
other secret polynomial

• Attack target: Multiplication of  
known polynomial 8c’ and 
secret polynomial 8f’ 

38
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FALCON FFT and Multiplication

Secret coefficients of f can be recovered by targeting the FFT-domain multiplication

39
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Challenge of Attacking Multiplication

B (known) 

D (guessed) 
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4
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.
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Same Hamming Weight

Different Hamming Weights

Additions remove false positives: apply extend-and-prune!
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Evaluation Results

1k measurements can extract sign, 100 traces can extract exponent and mantissa

41
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Side-Channel Security

f

In

key

Out

f

In

key

Out

random

Masking Hiding

Design constant power circuits
+ Automation friendly
- Patented* and may leak

Randomize <intermediate= computations
+ Provably secure
- Needs tuning for each f
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Masking Cryptographic Hardware Is Hard!

Fritzmann, Tim, et al. "Masked accelerators and instruction set extensions for post-quantum cryptography." IACR Transactions on Cryptographic 
Hardware and Embedded Systems 2022.1 (2021): 414-460.
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Three Takeaways

1. Quantum-secure cryptography is unavoidable

2. (Lattice-based) quantum-secure cryptography is

fundamentally different

3. Need new hardware designs:

- Optimize components

- Design full system and explore trade-offs & design space

- Support hybrid schemes

- Add <implementation= security
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Questions

Interested?  Email: aaysu@ncsu.edu

Research Sponsors
Attack Setups
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ChatGPT Answers

46


	Slide 1: Building and Breaking Lattice-Based Post-Quantum Cryptosystem Hardware   Aydin Aysu, Assistant Professor     Researchers: Dr. Seetal Potluri, Anuj Dubey, Furkan Aydin, Emre Karabulut, Priyank Kashyap, Gregor Haas, Faiz Alam, Ferhat Yaman  aaysu@n
	Slide 2: Our Research
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Category of Post-Quantum Cryptosystems
	㐹〠〠潢樊㰼 呩瑬攨卬楤攠ㄴ㨠卥捵物瑹映䱡瑴楣攭䉡獥搠䍲祰瑯杲慰桹
	Slide 15
	Slide 16
	Slide 17
	㐹㔠〠潢樊㰼 呩瑬攨卬楤攠ㄹ㨠乥眠䥐猠乥敤敤潲⁌慴瑩捥ⵂ慳敤⁃特灴潧牡灨�
	Slide 20: Number Theoretic Transform
	Slide 21: Number Theoretic Transform
	Slide 22: Number Theoretic Transform
	Slide 23: Number Theoretic Transform Results
	Slide 24: Number Theoretic Transform Results
	Slide 25: High Precision Discrete Gaussian Sampling
	Slide 26: High Precision Discrete Gaussian Sampling
	Slide 27: High Precision Discrete Gaussian Sampling
	Slide 28: Results and Comparison
	Slide 29: Implementation Security
	Slide 30: Physical Side-Channel Analysis
	Slide 31
	㔰㤠〠潢樊㰼 呩瑬攨卬楤攠㌳㨠乔剕湤⁎呒唠偲業攠卩摥ⵃ桡湮敬⁖畬湥牡扩汩瑹
	Slide 34: SamplePerm Full Power Trace and Extraction
	Slide 35: Dilithium Sampling Leakage
	Slide 36: Requirements For A Differential  Side-Channel Attack
	Slide 37: Single-Trace Differential Attacks on FrodoKEM Matrix Multiplication
	Slide 38: Attacking the FALCON Signatures  with Differential Power Analysis 
	Slide 39: FALCON FFT and Multiplication
	Slide 40: Challenge of Attacking Multiplication
	Slide 41: Evaluation Results
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Questions
	Slide 46: ChatGPT Answers

