# Building and Breaking Lattice-Based Post-Quantum Cryptosystem Hardware

## Aydin Aysu, Assistant Professor

Researchers: Dr. Seetal Potluri, Anuj Dubey, Furkan Aydin, Emre Karabulut, Priyank Kashyap, Gregor Haas, Faiz Alam, Ferhat Yaman



**Research Sponsors** 









## **Our Research**

Cybersecurity with a *hardware* focus

- Hardware acceleration for next-generation cryptography [DATE'20][TC'20][FPL'20][ICCAD'20][ESL'19][TC'15][TECS'15][ESL'14] [HOST'13]
- Hardware building blocks to combat supply-chain attacks [ICCAD'21] [HOST'18][HOST'17][ICISC'16][DATE'16][CHES'15][WESS'13]
- Mitigating hardware theft of untrusted foundries [TCAD'22][ISQED'20][ISCAS'20][TCAD'22]
- Implementation security: side-channel and fault attacks [DAC'22][HOST'22][TCHES'22][DAC'21][HOST'20][ICCAD'20][HOST'18][DATE'14]
- Training a cyber-aware STEM workforce [GLS-VLSI'22][GLS-VLSI'19]

# Why Quantum Computing?

- Better predicting tomorrow's weather?
- Efficient simulation of chemical reactions?
- Finding new electronic materials?
- Optimize traffic, logic simulations, or ticket prices?

• ...

## **Know This Machine?**











## **Emergence of Post-Quantum Cryptography**

- NIST's PQ standardization effort (2017–2024)
- Some industry/government adoptions already occurred



## **Emergence of Post-Quantum Cryptography**

- Key Encapsulation Mechanisms
   CRYSTALS-KYBER
- Digital Signatures
  - CRYSTALS-DILITHIUM
  - FALCON
  - SPHINCS+
- Alternates:

- FrodoKEM, NTRU, NTRU Prime, SABER, ...

## Moving to Quantum-Secure Cryptography



SECURITY GUIDANCE

## **Migration to Post-**Quantum Cryptography

The advent of quantum computing technology will compromise many of the current cryptographic algorithms, especially public-key cryptography, which is widely used to protect digital information. Most algorithms on which we depend are used worldwide in components of many different communications, processing, and storage systems. Once access to practical quantum computers becomes available, all public-key algorithms and associated protocols will be vulnerable to criminals, competitors, and other adversaries. It is critical to begin planning for the replacement of hardware, software, and services that use public-key algorithms now so that information is protected from future attacks.

Source: https://www.nccoe.nist.gov/

#### **Collaborating Vendors**

- Amazon Web Services, Inc. (AWS)
- Cisco Systems, Inc.
- Crypto4A Technologies, Inc.
- CryptoNext Security
- **Dell Technologies**
- DigiCert
- Entrust
- IBM
- InfoSec Global
- **ISARA** Corporation
- IPMorgan Chase Bank, N.A.
- Microsoft
- Samsung SDS Co., Ltd.
- SandboxAQ
- Thales DIS CPL USA, Inc.
- Thales Trusted Cyber Technologies
- VMware, Inc.
- wolfSSL



## **Category of Post-Quantum Cryptosystems**

| Category                   | Security<br>Assumption           | Features                          |
|----------------------------|----------------------------------|-----------------------------------|
| Code-based<br>cryptography | Decoding general<br>linear codes | Large keys,<br>complex operations |
| Hash-based<br>cryptography | One-way<br>hash functions        | Large keys, limited applications  |
| Lattice-based cryptography | Lattice problems                 | Small keys, efficient arithmetic, |

3 out of the 4 upcoming NIST standards use lattice cryptography

## **Lattices Have Other Uses...**

Homomorphic encryption allows computing on encrypted data <u>without</u> knowing the secret key or underlying plaintext



## Security of Lattice-Based Cryptography



Given a bad basis, can you find a good one?

## Lattice-based Cryptography

A Lattice is a set of points
 L={a<sub>1</sub>v<sub>1</sub>+...+a<sub>n</sub>v<sub>n</sub> | a<sub>i</sub> integers}
 with v<sub>1</sub>,...,v<sub>n</sub> in R<sup>n</sup> linearly independent



- Approximate Shortest Vector Problem (SVP): Given basis v<sub>0</sub>,v<sub>1</sub> find a short vector λ<sub>1</sub>
- NP-Hard [Ajtai'96]
- Lattice basis reduction attack complexities
  - Classical: 2<sup>2n+o(n)</sup> [MV'10]
  - Quantum: 2<sup>1.799n+o(n)</sup> [LMP'13]

## **Trap-door one-way function**

## Learning With Errors: B=A·S+E, PUBLIC KEY=B and A, SECRET KEY=S



# Fundamental Computations in Lattice-Based Cryptography



Elements are defined over Galois Field (modular arithmetic with primes) Random sampling may require "discrete Gaussian" distributions

## **FALCON Specification – What to Implement?**

Algorithm 5 NTRUGen $(\phi, q)$ Require: A monic polynomial  $\phi \in \mathbb{Z}[x]$  of degree *n*, a modulus *q* Ensure: Polynomials f, g, F, G1:  $\sigma_{\{f,g\}} \leftarrow 1.17 \sqrt{q/2n}$  $\triangleright \sigma_{\{f,g\}}$  is chosen so that  $\mathbb{E}[||(f,g)||] = 1.17\sqrt{q}$ 2: for *i* from 0 to n - 1 do 3:  $f_i \leftarrow D_{\mathbb{Z},\sigma_{\{f,g\}},0}$  $\triangleright$  See also (3.29) 4:  $g_i \leftarrow D_{\mathbb{Z},\sigma_{\{f,g\}},0}$ 5:  $f \leftarrow \sum_i f_i x^i$  $\triangleright f \in \mathbb{Z}[x]/(\phi)$  $\triangleright g \in \mathbb{Z}[x]/(\phi)$ 6:  $q \leftarrow \sum_i q_i x^i$ 7: if NTT(f) contains 0 as a coefficient then  $\triangleright$  Check that *f* is invertible mod *q* restart 8: 9:  $\gamma \leftarrow \max\left\{ \left\| (g, -f) \right\|, \left\| \left( \frac{qf^{\star}}{ff^{\star} + aa^{\star}}, \frac{qg^{\star}}{ff^{\star} + aa^{\star}} \right) \right\| \right\}$  $\triangleright$  Using (3.9) with (3.8) or (3.10) 10: if  $\gamma > 1.17\sqrt{q}$  then  $\triangleright$  Check that  $\gamma = \|\mathbf{B}\|_{CS}$  is short 11: restart 12:  $F, G \leftarrow \mathsf{NTRUSolve}_{n,q}(f,g)$  $\triangleright$  Computing F, G such that  $fG - gF = q \mod \phi$ 13: if  $(F, G) = \bot$  then 14: restart 15: return f, q, F, G

## New IPs Needed for Lattice-Based Cryptography

- Building blocks for discrete Gaussian sampling
- Building blocks for Number Theoretic Transform
- Full system design working with new building blocks
- System-level trade-offs
- Optimizations for edge computers to cloud
- New custom instructions for ISA
- Implementation security!
- Hybrid designs

## **Number Theoretic Transform**



Reduces multiplication complexity from  $O(n^2)$  to O(n.logn)

## **Number Theoretic Transform**

## **Iterative NTT Algorithm**

Algorithm 2 Iterative NTT Algorithm [14] Input:  $A(x) \in \mathbb{Z}_q[x]/(x^n+1)$ **Input:** primitive *n*-th root of unity  $\omega \in \mathbb{Z}_q$ ,  $n = 2^l$ **Output:**  $\overline{A}(x) = \mathbf{NTT}(A) \in \mathbb{Z}_q[x]/(x^n + 1)$ 1: for i from 1 by 1 to l do  $m = 2^{l-i}$ 2: for j from 0 by 1 to  $2^{i-1} - 1$  do Read 3: for k from 0 by 1 to m-1 do 4: **Butterfly**  $U \leftarrow A[2 \cdot j \cdot m + k]$ 5: Write  $V \leftarrow A[2 \cdot j \cdot m + k + m]$ 6:  $A[2 \cdot j \cdot m + k] \leftarrow U + V$ 7:  $A[2 \cdot j \cdot m + k + m] \leftarrow \omega^{(2^{i-1} \cdot k)} \cdot (U - V)$ 8: end for 9: end for 10: 11: end for 12: return A

8-point NTT



- N-point NTT operation has log<sub>2</sub>n stages
- At each stage, n/2 butterfly operation is performed
- Single NTT operation can be parallelized using multiple butterfly units

## **Number Theoretic Transform**



Aydin Aysu et al. "An extensive study of flexible design methods for the number theoretic transform." IEEE Transactions on Computers 71, no. 11 (2020): 2829-2843.

## **Number Theoretic Transform Results**



Aydin Aysu et al. "An extensive study of flexible design methods for the number theoretic transform." *IEEE Transactions on Computers* 71, no. 11 (2020): 2829-2843.

# **Number Theoretic Transform Results**

| Met. Work                    |                           | Platform                           | n              | K               | LUT / REG / DSP / BRAM                      | Clock           | Latency        |                      |
|------------------------------|---------------------------|------------------------------------|----------------|-----------------|---------------------------------------------|-----------------|----------------|----------------------|
|                              |                           | Thatform                           | 10             | - 11            |                                             | (MHz)           | CC             | $\mu s$              |
|                              |                           |                                    | 256            |                 | 250 / - / 3 / 2                             |                 | —              | 25                   |
|                              | $[20]^{a}$                | Spartan-6                          | 512            | 17              | 240 / - / 3 / 2                             | _               | —              | 50                   |
|                              |                           | -                                  | 1024           |                 | 250 / - / 3 / 2                             |                 | —              | 100                  |
| Γ                            | $[21]^{a,b}$              | Virtex-6                           | 256            | 13              | 4549 / 3624 / 1 / 12                        | 262             | —              | 8                    |
| Γ                            | [22] <sup>b</sup>         | Zynq US                            | 4096           | 30              | 64K / - / 200 / 400                         | 225             | —              | 73                   |
| Γ                            | [23] <sup>b</sup>         | Virtex-7                           | 32768          | 32              | 219K / – / 768 / 193                        | 250             | 7709           | 51                   |
| Γ                            | $[24]^{b}$                | Spartan-6                          | 1024           | 32              | 1208 / - / 14 / 14                          | 212             | _              | 12                   |
|                              |                           | Virtex-7                           | 1024           | 52              | 34K / 16K / 476 / 228                       | 200             | 80             | 0.4                  |
| Γ                            | [18] <sup>b</sup>         | Virtex-7                           | 1024           | 32              | 67K / – / 599 / 129                         | 200             | 140            | 0.7                  |
| [13]<br>[25]<br>[11]<br>[26] |                           | Viitex-7                           | 1024           | 52              | 77K / – / 952 / 325.5                       |                 | 80             | 0.4                  |
|                              | $[25]^{c}$                | Virtex-6                           | 256            | 13              | 1349 / 860 / 1 / 2                          | 313             | 1691           | 5.4                  |
|                              |                           |                                    | 512            | 14              | 1536 / 953 / 1 / 3                          | 278             | 3443           | 12.3                 |
|                              | 51130                     | 40nm CMOS<br>40nm CMOS<br>UMC 65nm | 256            | 13              |                                             | 72<br>300<br>25 | 1289           | 17                   |
|                              | [11] <sup>c</sup>         |                                    | 512            | 14              | 106K / - / - / -                            |                 | 2826           | 32                   |
|                              |                           |                                    | 1024           | 14              |                                             |                 | 6155           | 81                   |
|                              | $[26]^{c}$                |                                    | 256            | 13              | _/_/_/_                                     |                 | 160            | 0.5                  |
| lrd                          |                           |                                    | 512            | 14              | -/-/-/-                                     |                 | 492            | 1.6                  |
| Ηg                           | [27] <sup>c</sup>         |                                    | 256            | 13              |                                             |                 | 2056           | 82                   |
|                              |                           |                                    | 512            |                 | 14K / - / - / -                             |                 | 4616           | 184                  |
|                              | [ <b>1</b> 00] <i>a b</i> | A set in a 77                      | 1024           | 14              | 4802 / 0001 / 8 /                           | 150             | 10248          | 409                  |
|                              | [28] <sup>a,o</sup>       | Artix-7                            | 16284          | 14              | 4823 / 2901 / 8 / -                         | 153             | 1280           | _                    |
|                              | $[29]^{b}$                | Virtex-7                           | 10004          | 32              | 2.01K / 1.23K / 39 / 60                     | 166             | 20072          | _                    |
|                              | [20]b                     | Vintov                             | 52700<br>65526 | 32              | 2.00 K / 1.2 / K / 39 / 100                 | 100             | 01440<br>47705 | _                    |
|                              | [30]                      | Virtex-6                           | 1024           | $\frac{30}{14}$ | 72K / 03K / 230 / 04                        | 100             | 47793<br>5160  | -                    |
| _                            | <b>TW-</b> 1 PE           | Virtex-7                           | 1024           | 60              | 373 / - / 3 / 11                            | 125             | 24708          | $\frac{41.2}{107.6}$ |
|                              |                           |                                    | 1024           | 1/1             | 2720 / - / 31 / 100                         |                 | 680            | 5/                   |
|                              | <b>TW-</b> 8 PE           | Virtex-7                           | 4096           | 60              | 2304 / - / 24 / 10<br>23215 / - / 248 / 176 | 125             | 3276           | 26.2                 |
| ŀ                            | <b>TW</b> -32 PE          | Virtex-7                           | 1024           | 14              | 17188 / - / 96 / 48                         |                 | 200            | 1.6                  |
|                              |                           |                                    | 4096           | 60              | 99384 / - / 992 / 176                       | 125             | 972            | 7.7                  |

Aydin Aysu et al. "An extensive study of flexible design methods for the number theoretic transform." IEEE Transactions on Computers 71, no. 11 (2020): 2829-2843.

## **<u>High Precision</u>** Discrete Gaussian Sampling



Sampling precision impacts cryptographic security level

## **High Precision** Discrete Gaussian Sampling

| Sampler   | Speed    | FP exp() | Table Size                      | Table Lookup                 | Entropy                    | Features                                                                                                      |
|-----------|----------|----------|---------------------------------|------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------|
| Rejection | slow     | 10       | 0                               | 0                            | $45+10log_2\sigma$         | Suitable for constrained devices                                                                              |
| Ziggurat  | flexible | flexible | flexible                        | flexible                     | flexible                   | Suitable for encryption<br>requires high-precision<br>FP arithmetic; not<br>suitable for HW<br>implementation |
| CDT       | fast     | 0        | στλ                             | $log_2(\tau\sigma)$          | $2.1 + log_2\sigma$        | Suitable for digital signature easy to implement                                                              |
| Knuth-Yao | fastest  | 0        | $1/2\sigma\tau\lambda$          | $log_2(\sqrt{2\pi e}\sigma)$ | $2.1+log_2\sigma$          | Not suitable for digital signature                                                                            |
| Bernoulli | fast     | 0        | $\lambda log_2(2.4	au\sigma^2)$ | $pprox log_2\sigma$          | $\approx 6 + 3log_2\sigma$ | Suitable for all schemes                                                                                      |
| Binomial  | fast     | 0        | 0                               | 0                            | $4\sigma^2$                | Not suitable for digital signature                                                                            |

#### Many algorithmic options for implementing Gaussian sampling

27

## **High Precision** Discrete Gaussian Sampling



(a) The Proposed Gaussian Sampler Hardware's Top Level Block Diagram



Aydin Aysu et al. "Efficient, flexible, and constant-time gaussian sampling hardware for lattice cryptography." IEEE Transactions on Computers 71, no. 8 (2021): 1810-1823.

## **Results and Comparison**



| Work                   | Supported     | $\sigma / \lambda / Denth$ | Platform  | Slice/LUTs/          | $\mathbf{F}_{Max}$ | Cyc | Area-         |  |
|------------------------|---------------|----------------------------|-----------|----------------------|--------------------|-----|---------------|--|
| WOIK                   | Algorithms    |                            |           | FFs/BRAM             | (MHz)              | Cnt | Delay         |  |
| HW [15]                | aTESIADI      | 8.5/64/77                  | Artix-7   | -/907/812/3          | 115                | 111 | 235.88×       |  |
| This Work <sup>a</sup> | qilola p-i    | 8.5/64/80                  | Virtex-7  | 169/554/306/0        | 232                | 3   | -             |  |
| HW [15]                | aTESI A p-III | 8.5/125/110                | Artix-7   | -/820/837/3          | 119                | 49  | 35.26×        |  |
| This Work <sup>a</sup> | qresex p-m    | 8.5/128/112                | Virtex-7  | 324/1049/566/0       | 162                | 3   | -             |  |
| HW [11]                |               | 3.33/64/31                 | Virtex-6  | 43/112/19/0          | 297                | 5   | 0.16×         |  |
| HW [10]                | IP            | 3.33/90/37                 | Virtex-5  | 17/43/33/1           | 259                | 3   | 0.36×         |  |
| HW [8]                 | LI            | 3.33/80/35                 | Virtex-6  | 231/863/6/0          | 61                 | 1   | $1.06 \times$ |  |
|                        |               | 3.33/64/33                 |           | 360/1278/306/0       | 218                | 2   |               |  |
| This Work              | LP            | 3.33/90/37                 | Virtex-7  | 442/1418/306/0       | 198                | 2   | -             |  |
| I HIS WORK             |               | 3.33/80/35                 | VII (CX-7 | 425/1341/8/0         | 205                | 2   |               |  |
|                        |               | 3.33/100/39                |           | 539/1960/446/0       | 173                | 2   |               |  |
| $HW^{a}[11]$           |               | 215/64/184                 | Spartan-6 | 179/577/64/0         | 130                | 8   | $1.67 \times$ |  |
| HW <sup>a</sup> [13]   | BLISS         | 215/128/184                | Spartan-6 | 299/928/1121/0       | 129                | 8   | 2.85×         |  |
| This Work <sup>a</sup> |               | 215/128/184                | Virtex-7  | 305/1001/558/0       | 245                | 5   | -             |  |
|                        | FrodoKEM-640  | 2.8/16/12                  |           | 71/203/106/0         | 292                | 1   |               |  |
| This Work              | FrodoKEM-976  | 2.3/16/10                  | Virtex-7  | 65/179/92/0          | 318                | 1   | -             |  |
|                        | FrodoKEM-1344 | XEM-1344 1.4/15/6          |           | 41/109/80/0          | 351                | 3   |               |  |
|                        | SEAL-128      | 3.19/128/41                |           | 654/2347/581/0       | 152                | 2   |               |  |
| This Work              | SEAL-192      | 3.19/192/51                | Virtex-7  | 993/3620/843/0       | 122                | 2   | -             |  |
|                        | SEAL-256      | 3.19/256/60                |           | 845/4845/1103/0      | 102                | 2   |               |  |
| This Work              | FALCON-I      | 2/53/18                    | Virtey-7  | 184/627/248/0        | 227                | 2   | _             |  |
|                        | FALCON-II     | $\sqrt{5}/200/37$          | VII CX /  | 626 / 2142 / 849 / 0 | 116                | 2   |               |  |
| HW [17]                | -             | 4.41/112/55                | Spartan-6 | 122/426/123/1        | 102                | 8   | $5.01 \times$ |  |
| HW [18]                | -             | 4.41/112/55                | Spartan-6 | 150/463/45/0         | 80                 | 30  | 15.69×        |  |
| This Work <sup>a</sup> | -             | 4 41 / 112 / 55            | Virtex-7  | 298/970/549/0        | 263                | 3   | -             |  |

Aydin Aysu et al. "Efficient, flexible, and constant-time gaussian sampling hardware for lattice cryptography." IEEE Transactions on Computers 71, no. 8 (2021): 1810-1823.

## **Implementation Security**

New applications (e.g. IoT) expose hardware to direct physical attacks / tampering: breaks crypto / key stolen



# **Physical Side-Channel Analysis**

## This talk: Power and EM



Fundamental property of CMOS:

- + More practical (low-cost) than optical leakage
- + More precise than thermal leakage

# **Side-Channel Security**

**Physical source:** power, EM, acoustic, photonic, thermal, ... **Digital source:** time, micro-architectural state, memory patterns, ...

**Differential Power Analysis** 

Paul Kocher, Joshua Jaffe, and Benjamin Jun

Cryptography Research, Inc. 607 Market Street, 5th Floor San Francisco, CA 94105, USA. http://www.cryptography.com E-mail: {paul,josh,ben}@cryptography.com.

Abstract. Cryptosystem designers frequently assume that secrets will be manipulated in closed, reliable computing environments. Unfortunately, actual computers and microchips leak information about the operations they process. This paper examines specific methods for analyzing power consumption measurements to find secret keys from tamper resistant devices. We also discuss approaches for building cryptosystems that can operate securely in existing hardware that leaks information.

Keywords: differential power analysis, DPA, SPA, cryptanalysis, DES

#### CRYPTO'99\*



\*Omitting TEMPEST for simplicity

# **FALCON's Side-Channel Vulnerability**

Key generation sub-routine leaks secret key bit values



## **NTRU and NTRU Prime Side-Channel Vulnerability**





Karabulut, Emre, Erdem Alkim, and Aydin Aysu. "Single-trace side-channel attacks on ω-small polynomial sampling: with applications to NTRU, NTRU prime, and crystals-dilithium." In 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 35-45. IEEE, 2021.

#### **NC STATE UNIVERSITY**

## **SamplePerm Full Power Trace and Extraction**



Karabulut, Emre, Erdem Alkim, and Aydin Aysu. "Single-trace side-channel attacks on ω-small polynomial sampling: with applications to NTRU, NTRU prime, and crystals-dilithium." In *2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)*, pp. 35-45. IEEE, 2021.

**Dilithium Coefficient Sign-bit Assignment** 

## **Dilithium Sampling Leakage**

Listing 3. Dilithium Polynomial Generation Reference Implementation



Karabulut, Emre, Erdem Alkim, and Aydin Aysu. "Single-trace side-channel attacks on ω-small polynomial sampling: with applications to NTRU, NTRU prime, and crystals-dilithium." In 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 35-45. IEEE, 2021.

## Requirements For A <u>Differential</u> Side-Channel Attack

An intermediate computation:

1) that combines a known value and a secret key and

**Key Hypothesis** 

2) the known value varies (*i.e.*, not fixed)



|                      | Key:  | -00            | Key= <mark>01</mark> |                               | Key       |                    | Power      |
|----------------------|-------|----------------|----------------------|-------------------------------|-----------|--------------------|------------|
| Input                | state | P <sub>m</sub> | state                | $\left \mathbf{P}_{m}\right $ | <br>state | $ \mathbf{P}_{m} $ | (μW)       |
| I <sub>1</sub> =01   | 01    | 1              | 00                   | 0                             | fe        | 7                  | $\searrow$ |
| l <sub>2</sub> =0f   | Of    | 4              | 0e                   | 3                             | <br>fO    | 4                  | $\sim$     |
|                      |       |                |                      |                               |           |                    |            |
| <sub>10000</sub> =f1 | f1    | 5              | fO                   | 4                             | <br>0e    | 3                  | $\sim$     |

## Single-Trace Differential Attacks on FrodoKEM Matrix Multiplication

- Attacker limited to a single power measurement trace
- Matrix multiplication has "multiple" intermediate computations on the same secret
  - □ Up to 1344 distinct computations on the same secret (S) coefficient
  - □ Attack splits measurements into "sub-traces" for profiling and test



#### **NC STATE UNIVERSITY**

# Attacking the FALCON Signatures with Differential Power Analysis

Algorithm 2 FALCON Signature Generation Algorithm [5] **Input:** a message m, a secret key sk, a bound  $\beta^2$ **Output:** a signature sig of m1:  $r \leftarrow \{0,1\}^{320}$  uniformly 2:  $c \leftarrow$  HashToPoint (r||m)3:  $t \leftarrow (\underline{=}_{q}^{1} FFT(c) \odot FFT(F), \underline{}_{q}^{1} FFT(c) \odot FFT(f))$  $\triangleright \odot$  represents FFT multiplication 4: do do 5.  $z \leftarrow \text{ffSampling}(t,T)$ 6: 
$$\begin{split} \mathbf{s} \leftarrow (t-z) \begin{bmatrix} \widetilde{F}\widetilde{F}T(g) & -FFT(f) \\ FFT(G) & -FFT(F) \end{bmatrix} \\ \mathbf{while} \ s^2 > [\beta^2] \end{split}$$
7: 8:  $(s_1, s_2) \leftarrow invFFT(s)$ 9:  $s \leftarrow \text{Compress}(s_2, 8 \cdot sbytelen - 328)$ 10: 11: while  $s = \perp$ 12: return siq = (r, s)

- NTRU equation: fG - gF = q
- Public Key:
   *h= gf<sup>-1</sup>*
- If we know either polynomial
   'g' or 'f', we can recover the other <u>secret</u> polynomial
- Attack target: Multiplication of known polynomial 'c' and secret polynomial 'f'

# **FALCON FFT and Multiplication**

#### Secret coefficients of f can be recovered by targeting the FFT-domain multiplication



## **Challenge of Attacking Multiplication**



#### **NC STATE UNIVERSITY**

**Public-Key Cryptography** 

## **Evaluation Results**

1k measurements can extract sign, 100 traces can extract exponent and mantissa



## **Side-Channel Security**



- + Provably secure
- Needs tuning for each **f** -

Patented\* and may leak -

#### **NC STATE UNIVERSITY**

## Masking Cryptographic Hardware Is Hard!



Fritzmann, Tim, et al. "Masked accelerators and instruction set extensions for post-quantum cryptography." *IACR Transactions on Cryptographic* Hardware and Embedded Systems 2022.1 (2021): 414-460.

# **Three Takeaways**

1. Quantum-secure cryptography is unavoidable

2. (Lattice-based) quantum-secure cryptography is <u>fundamentally different</u>

- 3. Need new hardware designs:
  - Optimize components
  - Design full system and explore trade-offs & design space
  - Support hybrid schemes
  - Add "implementation" security

SR

**Research Sponsors** 

Semiconductor

of Naval Ro

cience & Techno

Google

riscure

Research Corporation

## Questions

#### Attack Setups





### Interested? Email: aaysu@ncsu.edu

\$

## **ChatGPT Answers**

When should we start using post-quantum cryptography?

It is recommended to start using post-quantum cryptography as soon as possible, even though the immediate threat of a quantum computer breaking current encryption methods is low. The reason for this is that it can take a long time to phase in a new cryptosystem and make sure it is secure and properly implemented. Additionally, as quantum computers continue to improve, the threat of them breaking current encryption methods will increase, so it is better to start preparing for this eventuality now.

It is important to note that post-quantum cryptography should not be used alone, but should be used in conjunction with currently used cryptographic methods. This will provide an extra layer of security, making it more difficult for an attacker to break the encryption even if they have access to a quantum computer.

It is also important to use post-quantum cryptography for sensitive information that needs to be protected for a long period of time, such as financial information, personal identification, and classified data. ሰ ጥ