
Formally Verifying Kyber
Part I: Functional Correctness

Manuel Barbosa mbb@fc.up.pt
University of Porto (FCUP) and INESC TEC

mailto:mbb@fc.up.pt

Joint work with
• José Bacelar Almeida

• Gilles Barthe

• Benjamin Grégoire

• Vincent Laporte

• Jean-Christophe Léchenet

• Tiago Oliveira

• Hugo Pacheco

• Miguel Quaresma

• Peter Schwabe

• Antoine Séré

• Pierre-Yves Strub

https://eprint.iacr.org/2023/215 Accepted for publication at TCHES 2023

The Big Picture

• Computer Aided Cryptography
• Formosa Crypto initiative
• libjade project

• Take techniques from the study of programming languages such as:

• Programming language design and compilation

• Various approaches to program verification

• Type systems for security

• Interactive theorem provers

• etc.

Different
approaches

tools
technologies

Computer-Aided Cryptography

Computer-Aided Cryptography
• Apply them to (high-assurance) cryptography:

• Domain-specific programming languages and compilers
• Specification of crypto algorithms and protocols
• Specification and analysis of security models
• Formal verification of:

• functional correctness
• provable security
• countermeasures against

• side-channel attacks
• micro-architectural attacks

Different
approaches

tools
technologies

Formosa Crypto
• Access to tools, examples and usage guides

• Interact with developers and other users

• Learn what has been done and ongoing work

• Help understanding tools and solving problems

• Ask for new features

• Regular in person meetings:

• Jasmin/EasyCrypt/libjade development

• research projects around the tools

• investigate new ideas, collaborations

formosa-crypto.org

Community
around Jasmin,

EasyCrypt and libjade

Interactively in a Zulip server

http://formosa-crypto.org

libjade
• Open-source high-assurance cryptographic library (SUPERCOP-like C API)

• Current features:

• High-speed implementations for AMD64 (aka x86_64 or x64)

• Cryptographic hash functions and XOFs (SHA-2, SHA-3, SHAKE)

• One-time authenticators and stream ciphers (poly1305, ChaCha, Salsa)

• Authenticated encryption (XSalsa20Poly1305)

• Curve 25519

• Postquantum KEM and Signature (Kyber, Dilithium)

libjade
Jasmin code

(ref)

Jasmin code
(avx)

Jasmin code
(avx2)

Jasmin Compiler

Safety
check

CT
check

Spectre v1
check

certified
compilation

EasyCrypt
Algorithm

spec

Security
model

Functional
correctness

proof
Security

proof

asm code
(ref)

asm code
(avx)

asm code
(avx2)

EC code
(ref)

EC code
(avx)

EC code
(avx2) Claims

Use

Inspect

Under the hood

Formal Verification Approach

• Formal verification goal
• Jasmin language and compiler
• EasyCrypt proof assistant

Formal verification goal
Algorithm

spec

Security
model

crypto proof

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

Machine-
checked

in EasyCrypt

e.g., Kyber spec
is a correct IND-

CCA secure

e.g., Kyber asm
behaves like
Kyber jasmin

Functional
correctness I

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

Formal verification goal

implementation
security

compliance/
Interoperability

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

e.g., Kyber asm
behaves like
Kyber jasmin

Functional
correctness I

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

?
?

Algorithm
spec

Security
model

crypto proof

Machine-
checked

in EasyCrypt

e.g., Kyber spec
is a correct IND-

CCA secure

Formal verification goal

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

e.g., Kyber asm
behaves like
Kyber jasmin

Functional
correctness
(automatic)

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

Algorithm
spec

Security
model

crypto proof

Machine-
checked

in EasyCrypt

e.g., Kyber spec
is a correct IND-

CCA secure

implementation
security

compliance/
Interoperability

Functional
Correctness
(interactive)

?

This talk!

depends on Spec

Formal verification goal

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

e.g., Kyber asm
behaves like
Kyber jasmin

Functional
correctness
(automatic)

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

Algorithm
spec

Security
model

crypto proof

Machine-
checked

in EasyCrypt

e.g., Kyber spec
is a correct IND-

CCA secure

implementation
security

compliance/
Interoperability

Functional
Correctness
(interactive)

Standard?

Other specs?
(e.g. HACSpec)

Jasmin: Goals
• Empower programmers to deliver fast and formally verified assembly code

• Efficiency & verification-friendly source language

• Efficiency & provably property -checking/-preserving compiler
(safety, functional correctness, protection against timing attacks)

• Verification infrastructure (based on EasyCrypt):

• functional correctness wrt high-level spec

• provable security wrt to formal (computational) cryptographic model

Jasmin: Zero cost abstractions
• Things one wishes asm could offer:

• Variable names instead of registers

• Arrays: collections of variables

• Automatic stack management

• Readable loop structures

• (inlineable) function calls

• nice syntax and clever type checking

• Things one wishes asm could offer:

• Variable names instead of registers

• Arrays: collections of variables

• Automatic stack management

• Readable loop structures

• (inlineable) function calls

• nice syntax and clever type checking

Jasmin: Zero cost abstractions

Programmer knows what assembly is going
to look like: one-to-one instruction translation

We call this "asm in the head"
(qhasm inspiration)

Jasmin: per arch instruction set
• Common instructions

• nice syntax (same across architectures)

• All instructions

• available via instruction name

• Support for all word sizes

• No memory allocation

• caller allocates memory

• Common instructions

• nice syntax (same across architectures)

• All instructions

• available via instruction name

• Support for all word sizes

• No memory allocation

• caller allocates memory

Jasmin: per arch instruction set

Programmer responsible for all spilling

Compilation breaks if register
assignment not found.

Jasmin: per arch instruction set
• Internal function calls:

• arbitrary calling convention

• global reg allocation

• restricted pointers: stack regions

• External entry points

• standard ABI/calling convention

Jasmin: per arch instruction set
• Internal function calls:

• arbitrary calling convention

• global reg allocation

• restricted pointers: stack regions

• External entry points

• standard ABI/calling convention

Good documentation and error msgs ...

... are work in progress.

Jasmin: per arch instruction set
• Internal function calls:

• arbitrary calling convention

• global reg allocation

• restricted pointers: stack regions

• External entry points

• standard ABI/calling convention

Zulip server is a good friend!

Q&A log really helps other users/developers.

EasyCrypt
• Two languages: functional (define operators), imperative (implement algorithms)
• Logics to reason about properties of

• real values (probabilities), distributions, etc.
• functional programs (operators)
• imperative programs (probabilistic Hoare logic or pHL)
• relations between two imperative programs (probabilistic pHL or pRHL)

•These logics are interconnected:
• use logic A to discharge side-conditions of logic B proof steps
• prove claims in logic A using (a combination of) other logic(s)

Hoare logic

• Classical Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

• Classical Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

Hoare logic

In this work: prove that
procedures implement

convenient functional specs

Hoare logic

• Your usual Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

e.g., Jasmin code implements inner product correctly

In this work: prove that
procedures implement

convenient functional specs

Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

In this work: used to prove
that two programs are equivalent.

Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

In this work: used to prove
that two programs are equivalent.

spec vs implementation

Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

In this work: used to prove
that two programs are equivalent.

implementation vs
optimized implementation

How does a proof in EC look like?
• Program/script

• Convince tool that claim holds

• Guiding it step by step to this
conclusion

• Using a set of rules/results
that it knows are correct

• Often relying on smt solver
which EasyCrypt trusts

The Kyber Spec

• Kyber basics
• Specification goals
• Snippets/examples

Kyber Basics

https://pq-crystals.org/kyber/data/slides-nistpqc19-schwabe.pdf

 q = 3329 is a prime
 Fq: field, integers modulo q, type of coefficients
 Rq: ring of polynomials modulo (X256+1) over Fq
 Bold lower caps: col vectors of size k over Rq
 Bold upper caps: k x k matrix over Rq

 s, e, r, e1, e2 small norm: each coeff. Binomial distr.
 A coeffs. sampled uniformly from Fq
 Multiplications in Rq done in NTT domain
 Enc/Dec: encoding and decoding operations

omitted ciphertext
compression/decompression

<latexit sha1_base64="EWL7pSm9kjZorDpOy2I6Tt3Rp3U=">AAADEXicdVJdb9MwFHXC1yhfHTzyYmgQrVRFyTQGgpeNUpgUIRWJbpPqrnJct7PqOJHtICorf4EX/govPIAQr7zxxr/BSbMJVriSpaN7z7n3+thxxpnSQfDLcS9cvHT5ysbVxrXrN27eam7ePlBpLgkdkpSn8ijGinIm6FAzzelRJilOYk4P40WvrB++o1KxVLzVy4yOEzwXbMYI1jY12XQeopjOmTAaxznHsjC8aKBcTKksWxoPJXH63iBFYLSMqSx8lGB9omam19uL+q/9viBFO1t0nnoFQg0vgWhOtZogDyITdENUHJutRzuFVxbbKMbSREVXdlY0+KptBXY/DdG9GuyX3ToVn8Ca9v8lBnuDqH+6RDd5JlfK6Ey44kUvXhan09cHktU8SXUuBfTapBt1vAaiYnpmS2PSbAV+UAVcB2ENWqCOwaT5E01TkidUaMKxUqMwyPTYYKkZ4bQ0WdEMkwWe05GFAidUjU31ogV8YDNTOEulPULDKvunwuBEqWUSW2Z1w/O1Mvmv2ijXsydjw0SWa2pNqwbNcg51CsvvAadMUqL50gJMJLO7QnKCJSbafqLShPD8ldfBwZYf7vjbb7Zbu89rOzbAXXAftEEIHoNdsA8GYAiI88H55Hxxvrof3c/uN/f7iuo6teYO+CvcH78Bfyrxeg==</latexit>

Kyber.CCAKEM.Enc(pk) :
m $ {0, 1}256
(K̄, r) G(m||H(pk))
c Kyber.CPAPKE.Enc(pk,m; r)
K KDF(K̄||H(c))
return (c,K)

Specification goals
• Humans need to be able to check

• Syntactically as close as possible to paper specification

• Prove properties of various operations stated in paper specification:

• NTT description is correct and commutes with ring multiplication

• Compression and decompression have claimed properties

• Sampling procedures generate claimed distributions

Specification non goals
• Executable spec:

• generate test vectors

• check the spec itself (?)

• Two solutions

• Prove spec equivalent to HACSpec executable spec (ongoing)

• Add an execution engine to EasyCrypt (future work)

Examples

Examples

Idealize PRF.f and prove procedure
produces correct distribution over Rq:
each coeff. independently sampled
from binomial distribution.

Examples

Jasmin Implementation

• Structure of the code
• Performance
• Snippets/examples

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

reference

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

C jasmin avx2

jasmin ref

C ref

Easycrypt ref

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

jasmin ref

jasmin avx2

C ref

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

jasmin ref

jasmin avx2

jasmin avx2

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

Structure of Jasmin code
kem.jinc

indcpa.jinc verify.jincparams.jinc

polyvec.jinc

poly.jinc

gen_matrix.jinc

consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

shuffle.jinc

fips202_4x.jinc

SHA-3 code

reference

extra in avx2

jasmin ref

jasmin avx2

C ref

Performance
• Reference implementation:

• easier proof → slow

• non-optimizing compiler

• AVX implementation (fully verified)

• leave out one challenging routine ⏳

• 100% penalty

• AVX implementation (fully optimized)

• essentially matches unverified code

• non-trivial parallelization

Jasmin needed to evolve
• First version of code: fully inlined: too large for compiler

• New features and extended proof for compiler (highlights):

• local functions: new function call mechanism, smaller code

• sub-arrays and implicit pointers to stack:

• new stack management

• sub-arrays: (slices of) stack can be passed "by reference"

• random sampling: randombytes

Correctness Proof

• High-level view and top-level results
• Different approaches for ref and avx2
• Zoom-in on examples

High-level view
• Reference implementation:

• Proof done first (along with security proof ⏳)

• Most interesting challenges handled here:

• Algebraic structure vs low-level implementations

• NTT formalization and properties

• Characterizing/validating SHA-3 usage

• Correctness of sampling procedures

• AVX implementation

• Unexpectedly challenging: hard to reuse proof above

• A lot of effort for small additional scientific gain (?)

• Huge practical gain (cf. benchmarks)

Top-level statements
Example Lemma: Kyber encapsulation is correctly implemented

<latexit sha1_base64="KZspKjR3G/JyfqcecE5ROXVC310=">AAACmnicbVHbahsxENVuL0m3N7d56EP7IGoX+lDMbglpCQRCCr35xaVxYrCM0cqztrCkVSVtwCz6qP5K3/o31W5dk0sHBGfOmZFGZ3ItuHVp+juKb92+c3dn915y/8HDR487T56e2bIyDEasFKUZ59SC4ApGjjsBY22AylzAeb760OjnF2AsL9WpW2uYSrpQvOCMukDNOj9JDguuakfzSlDja+GTHilKQ4XARFK3tEWtV9q/2WbMXc6uSMOBP+wRkhC9pMqVsh773j8NflT8wuPDbfHXAcg+KOYxsVxu6cE6B/NdA2u19jZQ8+2AyazTTftpG/gmyDagizYxnHV+kXnJKgnKMUGtnWSpdtOaGseZAJ+QyoKmbEUXMAlQUQl2WrfWevwqMHMc/AhHOdyylztqKq1dyzxUtvNf1xryf9qkcsX7ac2VrlzrQfNQUQnsStzsCc+5AebEOgDKDA+zYrakhjIXttmYkF3/8k1w9rafHfT3v+13j082duyi5+gleo0y9A4do89oiEaIRc+io+hj9Cl+EZ/EX+LB39I42vTsoSsRn/4BgRTN0w==</latexit>

8pkp, ctp, kp,PK :
equiv : JKem.enc ⇠ KyberSpec.enc

Jasmin
Enc

Spec
Enc

PK, coinsMemory, coins

K, cMemory

<latexit sha1_base64="uuvqnf1WWpIqrDqKjUb5j8VBhxg=">AAADqnicpVJbb9MwFHYTYCPcOnjkxaJB8DBVKZoYjxO8II1J5dJ2qKkqxzlJTR07sp2NKsp/4zfwxr/BSQNruz3BkSx9OpfvOxdHOWfaBMGvjuPeun1nb/+ud+/+g4ePugePx1oWisKISi7VeUQ0cCZgZJjhcJ4rIFnEYRIt39XxyQUozaT4YlY5zDKSCpYwSox1zQ86P8IIUiZKQ6KCE1WVvPL8MCNmoZMyX+aVj3PJhNHYSHxBOItxBplUK6xsnRTYDy8hTsEPw6s6av6t7r/kiIjxDUw1Ucz0twZvcWm8yfbZEGWYSPFC8lhfMQ1Pq7XYBylSxdKFzVPysvadrdkKQRdEpBBj+E4hN5gJvN3b4U5jf/Q35FuuHfHT3blo5XshiPjvvbx5txf0g8bwdTBoQQ+1Npx3f4axpEUGwlBOtJ4OgtzMynp6yqHywkJDTuiSpDC1UJAM9KxsvlqFn1tPjBOp7LP7bLybFSXJtF5lkc1sOt6N1c6bYtPCJG9mJRN5YUDQtVBS8Pp69b+1J1RADV9ZQKhitldst64INfZ310sY7I58HYxf9Qev+0cfj3onb9t17KOn6Bl6iQboGJ2g92iIRog6L5wzZ+xM3EP3k/vVna5TnU5b8wRtmRv/Bqk1Lhc=</latexit>

pkp points to valid memory region ^
ctp points to valid memory region ^
kp points to valid memory region ^
ctp and kp point to disjoint memory regions ^
Starting holds PK
=)
Memory unchanged except in ctp, kp regions ^
Memory holds K and c

Verifying reference implementation
• Building results bottom up: field operations using Hoare logic

Spec in functional form comes with semantics and range properties.

Verifying reference implementation
• Building results bottom up: ring operations using relational logic

Writing the spec in imperative form as an intermediate step makes proof easier

Verifying reference implementation
• One extreme case of imperative vs functional was NTT

• Huge semantic gap: mathematical view (properties) vs code

• Different loop structures and in-place computations

• Ref implementation completely different from avx2 implementation

At top level, equivalence follows
from two types of results.

Equivalence between
procedures: spec is imperative.

At top level, equivalence follows
from two types of results.

Jasmin procedures correctly
implement math

AVX2 Implementation
• Different instruction sequences to compute same result (e.g., compression)

• no alternative to proving additional results for lower-level routines

• Computations done in different order (unrelated control flow)

• very little high-level structure (e.g., NTT computation)

• no alternative to proving additional results for NTT procedures

• Totally different approach to some procedures (e.g., rejection sampling matrix A)

• aggressive optimisations: different reasoning about sampling semantics

AVX2 Implementation
• Different instruction sequences to computing same result (e.g., compression)

• no alternative to proving additional results for lower-level routines

• Computations done in different order (unrelated control flow)

• very little high-level structure (e.g., NTT computation)

• no alternative to proving additional results for complex procedures

• Totally different approach to some procedures (e.g., rejection sampling)

• aggressive optimisations: different reasoning about sampling semantics

Once we have intermediate results that
match AVX2 procedures to ref procedures

High-level equivalence proofs
can be reused:

𝖠𝖵𝖷𝟤 ≡ 𝖱𝖾𝖿 ⇒ 𝖱𝖾𝖿 ≡ 𝖲𝗉𝖾𝖼 ⇒ 𝖠𝖵𝖷𝟤 ≡ 𝖲𝗉𝖾𝖼

EasyCrypt needed extending
• A lot of extensions to standard library

• polynomial arithmetic, ring quotients, bit-vector
manipulations, etc.

• Automatic inference of functional specs

• no need to prove imperative code implements operator

• Library for dealing with nested loops

Conclusions and Future Work

• Lessons Learned
• Ongoing work
• Long(er)-term goals

Lessons learned
• Three years!

• Improve tools

• Train people

• Availability/coordination

• Still if we started now

• Significant investment

Lessons learned
• Three years!

• Improve tools

• Train people

• Availability/coordination

• Still if we started now

• Significant investment

We need more automation!

And a stable team of developers!

Investment returns
• Non-ambiguous specification: we can formally reason about a future standard

• Prove properties of spec: does paper proof apply?

• Implementation inherits properties

• Connection to security proof, e.g.:

• SHA-3, SHAKE usage

• Assumed security properties

• E.g., model as independent RO?

• E.g. model as PRF, PRG?

Investment returns
• Bugs might not be caught by testing:

• Timing attacks

• Spectre v1

• Rare algebraic errors

• Sampling from incorrect distributions

• Proof requires deep insights:

• Can (has) lead to additional speed-ups

Future/Ongoing work
• Increase automation in verification framework

• libjade:

• Proofs for other (post-quantum) schemes (and Kyber avx2)

• Other architectures, namely ARM (is proof effort amortized?)

• Getting code out there:
libraries, bindings to other languages, real-world applications

• Move to low-level protocols (key exchange, authentication, etc.)

