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The Big Picture

• Computer Aided Cryptography 
• Formosa Crypto initiative 
• libjade project



• Take techniques from the study of programming languages such as: 

• Programming language design and compilation 

• Various approaches to program verification 

• Type systems for security 

• Interactive theorem provers 

• etc.

Different 
approaches 

tools 
technologies

Computer-Aided Cryptography



Computer-Aided Cryptography
• Apply them to (high-assurance) cryptography: 

• Domain-specific programming languages and compilers 
• Specification of crypto algorithms and protocols 
• Specification and analysis of security models 
• Formal verification of: 

• functional correctness 
• provable security 
• countermeasures against 

• side-channel attacks  
• micro-architectural attacks 

Different 
approaches 

tools 
technologies



Formosa Crypto
• Access to tools, examples and usage guides 

• Interact with developers and other users 

• Learn what has been done and ongoing work 

• Help understanding tools and solving problems 

• Ask for new features 

• Regular in person meetings: 

• Jasmin/EasyCrypt/libjade development 

• research projects around the tools 

• investigate new ideas, collaborations

formosa-crypto.org

Community 
around Jasmin, 

EasyCrypt and libjade

Interactively in a Zulip server

http://formosa-crypto.org


libjade
• Open-source high-assurance cryptographic library (SUPERCOP-like C API) 

• Current features: 

• High-speed implementations for AMD64 (aka x86_64 or x64) 

• Cryptographic hash functions and XOFs (SHA-2, SHA-3, SHAKE) 

• One-time authenticators and stream ciphers (poly1305, ChaCha, Salsa) 

• Authenticated encryption (XSalsa20Poly1305) 

• Curve 25519 

• Postquantum KEM and Signature (Kyber, Dilithium)
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Formal Verification Approach

• Formal verification goal 
• Jasmin language and compiler 
• EasyCrypt proof assistant
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Formal verification goal
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Formal verification goal
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Jasmin: Goals
• Empower programmers to deliver fast and formally verified assembly code 

• Efficiency & verification-friendly source language 

• Efficiency & provably property -checking/-preserving compiler  
(safety, functional correctness, protection against timing attacks) 

• Verification infrastructure (based on EasyCrypt):  

• functional correctness wrt high-level spec 

• provable security wrt to formal (computational) cryptographic model



Jasmin: Zero cost abstractions
• Things one wishes asm could offer: 

• Variable names instead of registers 

• Arrays: collections of variables 

• Automatic stack management 

• Readable loop structures 

• (inlineable) function calls 

• nice syntax and clever type checking



• Things one wishes asm could offer: 

• Variable names instead of registers 

• Arrays: collections of variables 

• Automatic stack management 

• Readable loop structures 

• (inlineable) function calls 

• nice syntax and clever type checking

Jasmin: Zero cost abstractions

Programmer knows what assembly is going  
to look like: one-to-one instruction translation 

We call this "asm in the head" 
(qhasm inspiration)



Jasmin: per arch instruction set
• Common instructions 

• nice syntax (same across architectures) 

• All instructions  

• available via instruction name 

• Support for all word sizes 

• No memory allocation 

• caller allocates memory



• Common instructions 

• nice syntax (same across architectures) 

• All instructions  

• available via instruction name 

• Support for all word sizes 

• No memory allocation 

• caller allocates memory

Jasmin: per arch instruction set

Programmer responsible for all spilling 

Compilation breaks if register  
assignment not found.



Jasmin: per arch instruction set
• Internal function calls: 

• arbitrary calling convention 

• global reg allocation 

• restricted pointers: stack regions 

• External entry points 

• standard ABI/calling convention



Jasmin: per arch instruction set
• Internal function calls: 

• arbitrary calling convention 

• global reg allocation 

• restricted pointers: stack regions 

• External entry points 

• standard ABI/calling convention

Good documentation and error msgs ...

... are work in progress.



Jasmin: per arch instruction set
• Internal function calls: 

• arbitrary calling convention 

• global reg allocation 

• restricted pointers: stack regions 

• External entry points 

• standard ABI/calling convention

Zulip server is a good friend!

Q&A log really helps other users/developers.



EasyCrypt
• Two languages: functional (define operators), imperative (implement algorithms) 
•  Logics to reason about properties of  

•  real values (probabilities), distributions, etc. 
•  functional programs (operators) 
•  imperative programs (probabilistic Hoare logic or pHL) 
•  relations between two imperative programs (probabilistic pHL or pRHL) 

•These logics are interconnected:  
•  use logic A to discharge side-conditions of logic B proof steps 
•  prove claims in logic A using (a combination of) other logic(s)



Hoare logic

• Classical Hoare triple based on two predicates 

• Precondition: assumed in starting state 

• Postcondition: ensured in final state
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Hoare logic

• Your usual Hoare triple based on two predicates 

• Precondition: assumed in starting state 

• Postcondition: ensured in final state

e.g., Jasmin code implements inner product correctly

In this work: prove that  
procedures implement 

convenient functional specs



Relational Hoare logic

• Property that relates the behavior of two programs 

• Precondition: relation between starting states 

• Postcondition: relation between final states
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Relational Hoare logic

• Property that relates the behavior of two programs 

• Precondition: relation between starting states 

• Postcondition: relation between final states

In this work: used to prove  
that two programs are equivalent.

implementation vs  
optimized implementation



How does a proof in EC look like?
• Program/script 

• Convince tool that claim holds 

• Guiding it step by step to this 
conclusion 

• Using a set of rules/results  
that it knows are correct 

• Often relying on smt solver 
which EasyCrypt trusts



The Kyber Spec

• Kyber basics 
• Specification goals 
• Snippets/examples



Kyber Basics

https://pq-crystals.org/kyber/data/slides-nistpqc19-schwabe.pdf

 q = 3329 is a prime 
 Fq: field, integers modulo q, type of coefficients 
 Rq: ring of polynomials modulo (X256+1) over Fq 
 Bold lower caps: col vectors of size k over Rq 
 Bold upper caps: k x k matrix over Rq 

 s, e, r, e1, e2  small norm: each coeff. Binomial distr. 
 A coeffs. sampled uniformly from Fq 
 Multiplications in Rq done in NTT domain 
 Enc/Dec: encoding and decoding operations 

omitted ciphertext  
compression/decompression 

<latexit sha1_base64="EWL7pSm9kjZorDpOy2I6Tt3Rp3U=">AAADEXicdVJdb9MwFHXC1yhfHTzyYmgQrVRFyTQGgpeNUpgUIRWJbpPqrnJct7PqOJHtICorf4EX/govPIAQr7zxxr/BSbMJVriSpaN7z7n3+thxxpnSQfDLcS9cvHT5ysbVxrXrN27eam7ePlBpLgkdkpSn8ijGinIm6FAzzelRJilOYk4P40WvrB++o1KxVLzVy4yOEzwXbMYI1jY12XQeopjOmTAaxznHsjC8aKBcTKksWxoPJXH63iBFYLSMqSx8lGB9omam19uL+q/9viBFO1t0nnoFQg0vgWhOtZogDyITdENUHJutRzuFVxbbKMbSREVXdlY0+KptBXY/DdG9GuyX3ToVn8Ca9v8lBnuDqH+6RDd5JlfK6Ey44kUvXhan09cHktU8SXUuBfTapBt1vAaiYnpmS2PSbAV+UAVcB2ENWqCOwaT5E01TkidUaMKxUqMwyPTYYKkZ4bQ0WdEMkwWe05GFAidUjU31ogV8YDNTOEulPULDKvunwuBEqWUSW2Z1w/O1Mvmv2ijXsydjw0SWa2pNqwbNcg51CsvvAadMUqL50gJMJLO7QnKCJSbafqLShPD8ldfBwZYf7vjbb7Zbu89rOzbAXXAftEEIHoNdsA8GYAiI88H55Hxxvrof3c/uN/f7iuo6teYO+CvcH78Bfyrxeg==</latexit>

Kyber.CCAKEM.Enc(pk) :
m $ {0, 1}256
(K̄, r) G(m||H(pk))
c Kyber.CPAPKE.Enc(pk,m; r)
K  KDF(K̄||H(c))
return (c,K)



Specification goals
• Humans need to be able to check 

• Syntactically as close as possible to paper specification 

• Prove properties of various operations stated in paper specification: 

• NTT description is correct and commutes with ring multiplication 

• Compression and decompression have claimed properties 

• Sampling procedures generate claimed distributions



Specification non goals
• Executable spec: 

• generate test vectors 

• check the spec itself (?) 

• Two solutions 

• Prove spec equivalent to HACSpec executable spec (ongoing) 

• Add an execution engine to EasyCrypt (future work)



Examples



Examples

Idealize PRF.f and prove procedure  
produces correct distribution over Rq:  
each coeff. independently sampled 
from binomial distribution.



Examples



Jasmin Implementation

• Structure of the code 
• Performance 
• Snippets/examples
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poly.jinc
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consts.jinc fips202.jinc

SHA-3 code
reduce.jinc

reference
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Performance
• Reference implementation: 

• easier proof → slow 

• non-optimizing compiler 

• AVX implementation (fully verified) 

• leave out one challenging routine ⏳ 

• 100% penalty  

• AVX implementation (fully optimized) 

• essentially matches unverified code 

• non-trivial parallelization



Jasmin needed to evolve
• First version of code: fully inlined: too large for compiler 

• New features and extended proof for compiler (highlights): 

• local functions: new function call mechanism, smaller code 

• sub-arrays and implicit pointers to stack: 

• new stack management 

• sub-arrays: (slices of) stack can be passed "by reference" 

• random sampling: randombytes



Correctness Proof

• High-level view and top-level results 
• Different approaches for ref and avx2 
• Zoom-in on examples



High-level view
• Reference implementation: 

• Proof done first (along with security proof ⏳) 

• Most interesting challenges handled here: 

• Algebraic structure vs low-level implementations 

• NTT formalization and properties 

• Characterizing/validating SHA-3 usage 

• Correctness of sampling procedures 

• AVX implementation  

• Unexpectedly challenging: hard to reuse proof above 

• A lot of effort for small additional scientific gain (?) 

• Huge practical gain (cf. benchmarks)



Top-level statements
Example Lemma: Kyber encapsulation is correctly implemented

<latexit sha1_base64="KZspKjR3G/JyfqcecE5ROXVC310=">AAACmnicbVHbahsxENVuL0m3N7d56EP7IGoX+lDMbglpCQRCCr35xaVxYrCM0cqztrCkVSVtwCz6qP5K3/o31W5dk0sHBGfOmZFGZ3ItuHVp+juKb92+c3dn915y/8HDR487T56e2bIyDEasFKUZ59SC4ApGjjsBY22AylzAeb760OjnF2AsL9WpW2uYSrpQvOCMukDNOj9JDguuakfzSlDja+GTHilKQ4XARFK3tEWtV9q/2WbMXc6uSMOBP+wRkhC9pMqVsh773j8NflT8wuPDbfHXAcg+KOYxsVxu6cE6B/NdA2u19jZQ8+2AyazTTftpG/gmyDagizYxnHV+kXnJKgnKMUGtnWSpdtOaGseZAJ+QyoKmbEUXMAlQUQl2WrfWevwqMHMc/AhHOdyylztqKq1dyzxUtvNf1xryf9qkcsX7ac2VrlzrQfNQUQnsStzsCc+5AebEOgDKDA+zYrakhjIXttmYkF3/8k1w9rafHfT3v+13j082duyi5+gleo0y9A4do89oiEaIRc+io+hj9Cl+EZ/EX+LB39I42vTsoSsRn/4BgRTN0w==</latexit>

8pkp, ctp, kp,PK :
equiv : JKem.enc ⇠ KyberSpec.enc

Jasmin  
Enc

Spec  
Enc

PK, coinsMemory, coins

K, cMemory

<latexit sha1_base64="uuvqnf1WWpIqrDqKjUb5j8VBhxg=">AAADqnicpVJbb9MwFHYTYCPcOnjkxaJB8DBVKZoYjxO8II1J5dJ2qKkqxzlJTR07sp2NKsp/4zfwxr/BSQNruz3BkSx9OpfvOxdHOWfaBMGvjuPeun1nb/+ud+/+g4ePugePx1oWisKISi7VeUQ0cCZgZJjhcJ4rIFnEYRIt39XxyQUozaT4YlY5zDKSCpYwSox1zQ86P8IIUiZKQ6KCE1WVvPL8MCNmoZMyX+aVj3PJhNHYSHxBOItxBplUK6xsnRTYDy8hTsEPw6s6av6t7r/kiIjxDUw1Ucz0twZvcWm8yfbZEGWYSPFC8lhfMQ1Pq7XYBylSxdKFzVPysvadrdkKQRdEpBBj+E4hN5gJvN3b4U5jf/Q35FuuHfHT3blo5XshiPjvvbx5txf0g8bwdTBoQQ+1Npx3f4axpEUGwlBOtJ4OgtzMynp6yqHywkJDTuiSpDC1UJAM9KxsvlqFn1tPjBOp7LP7bLybFSXJtF5lkc1sOt6N1c6bYtPCJG9mJRN5YUDQtVBS8Pp69b+1J1RADV9ZQKhitldst64INfZ310sY7I58HYxf9Qev+0cfj3onb9t17KOn6Bl6iQboGJ2g92iIRog6L5wzZ+xM3EP3k/vVna5TnU5b8wRtmRv/Bqk1Lhc=</latexit>

pkp points to valid memory region ^
ctp points to valid memory region ^
kp points to valid memory region ^
ctp and kp point to disjoint memory regions ^
Starting holds PK
=)
Memory unchanged except in ctp, kp regions ^
Memory holds K and c



Verifying reference implementation
• Building results bottom up: field operations using Hoare logic

Spec in functional form comes with semantics and range properties.



Verifying reference implementation
• Building results bottom up: ring operations using relational logic

Writing the spec in imperative form as an intermediate step makes proof easier



Verifying reference implementation
• One extreme case of imperative vs functional was NTT

• Huge semantic gap: mathematical view (properties) vs code 

• Different loop structures and in-place computations 

• Ref implementation completely different from avx2 implementation



At top level, equivalence follows  
from two types of results.

Equivalence between 
procedures: spec is imperative.



At top level, equivalence follows  
from two types of results.

Jasmin procedures correctly 
implement math



AVX2 Implementation
• Different instruction sequences to compute same result (e.g., compression) 

• no alternative to proving additional results for lower-level routines 

• Computations done in different order (unrelated control flow) 

• very little high-level structure (e.g., NTT computation) 

• no alternative to proving additional results for NTT procedures 

• Totally different approach to some procedures (e.g., rejection sampling matrix A) 

• aggressive optimisations: different reasoning about sampling semantics



AVX2 Implementation
• Different instruction sequences to computing same result (e.g., compression) 

• no alternative to proving additional results for lower-level routines 

• Computations done in different order (unrelated control flow) 

• very little high-level structure (e.g., NTT computation) 

• no alternative to proving additional results for complex procedures 

• Totally different approach to some procedures (e.g., rejection sampling) 

• aggressive optimisations: different reasoning about sampling semantics

Once we have intermediate results that 
match AVX2 procedures to ref procedures

High-level equivalence proofs  
can be reused: 

𝖠𝖵𝖷𝟤 ≡ 𝖱𝖾𝖿 ⇒ 𝖱𝖾𝖿 ≡ 𝖲𝗉𝖾𝖼 ⇒ 𝖠𝖵𝖷𝟤 ≡ 𝖲𝗉𝖾𝖼



EasyCrypt needed extending
• A lot of extensions to standard library 

• polynomial arithmetic, ring quotients, bit-vector 
manipulations, etc. 

• Automatic inference of functional specs 

• no need to prove imperative code implements operator 

• Library for dealing with nested loops



Conclusions and Future Work

• Lessons Learned 
• Ongoing work 
• Long(er)-term goals



Lessons learned
• Three years! 

• Improve tools 

• Train people 

• Availability/coordination 

• Still if we started now 

• Significant investment



Lessons learned
• Three years! 

• Improve tools 

• Train people 

• Availability/coordination 

• Still if we started now 

• Significant investment

We need more automation!

And a stable team of developers!



Investment returns
• Non-ambiguous specification: we can formally reason about a future standard 

• Prove properties of spec: does paper proof apply? 

• Implementation inherits properties 

• Connection to security proof, e.g.: 

• SHA-3, SHAKE usage 

• Assumed security properties 

• E.g., model as independent RO? 

• E.g. model as PRF, PRG?



Investment returns
• Bugs might not be caught by testing:  

• Timing attacks 

• Spectre v1 

• Rare algebraic errors 

• Sampling from incorrect distributions 

• Proof requires deep insights: 

• Can (has) lead to additional speed-ups



Future/Ongoing work
• Increase automation in verification framework 

• libjade: 

• Proofs for other (post-quantum) schemes (and Kyber avx2) 

• Other architectures, namely ARM (is proof effort amortized?) 

• Getting code out there:  
libraries, bindings to other languages, real-world applications  

• Move to low-level protocols (key exchange, authentication, etc.)


