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▶ In order to encrypt variable sized messages, we need a mode of operation

▶ These modes require a nonce
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▶ Plaintext P encrypted to ciphertext C with secret key K 

▶ Fixed block size 
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▶ Every part of the output (ideally) depends on every part of the input

Wide block cipher 
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▶ Alternatively, we can design a wide block cipher 

▶ A wide block cipher is a block cipher with a variable block size 
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▶ Useful for e.g. disk encryption, where every sector gets its own tweak

Tweakable wide block cipher 
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▶ A tweakable wide block cipher additionally has a tweak 

▶ Tweak W public, ciphertext completely changes with a diferent tweak 
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▶ Doubly-extendable cryptographic keyed (deck) functions:
▶ Input: any size
▶ Output: arbitrarily long

▶ Stream ciphers:
▶ Input: fxed size
▶ Output: arbitrarily long

▶ Keyed hashes:
▶ Input: any size
▶ Output: fxed size

In contrast to block ciphers, these primitives are not invertible and do not need to be,
which allows for a more fexible design

Our contribution 

We build two tweakable wide block ciphers based on three primitives: 
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▶ Generalization of
Farfalle-WBC by Bertoni et al. (2017)

▶ Feistel-like structure

▶ Two keyed hashes H on the outside,
two deck functions F on the inside

▶ Outer lanes of fxed size

▶ Inner lanes of variable size

Double-decker 
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▶ Variant of double-decker

▶ One lane less

▶ Outer lanes of fxed size

▶ Inner lane of variable size

▶ Deck functions F get fxed sized input, so
they conceptually become stream ciphers

Docked-double-decker 
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▶ This conventional property only considers the XOR-diference between a single
query pair

▶ For q queries the bound becomes
�q
2

�
ε

▶ However:
▶ ε is the worst-case bound on all possible x ̸= x ′

▶ For some functions not all query pairs have similar probabilities

XOR-universality 

′▶ A keyed hash H is ε-XOR-universal if for all x ̸= x and y 

P[HK (x) ⊕ HK (x ′ ) = y ] ⩽ ε 
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▶ The keyed hash function H is bkh secure if it is indistinguishable in the following
setup

RO1 RO2HKX
X
∆

∆

Blinded keyed hash 

▶ We consider blinded keyed hash (bkh) security to achieve a more 
accurate estimate when multiple queries are taken into account 
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▶ We show that the two double-deckers are secure when:
▶ The keyed hash H is bkh secure
▶ The deck function F is prf secure

▶ Furthermore, by applying the tweak to the deck functions the bound of H
becomes tweak-separated
▶ Deck functions behave independently for diferent tweaks
▶ Signifcantly improves security bound for certain settings

Security results 

▶ We cannot apply the bkh model directly to our construction 
▶ The real difculty is to reduce to the bkh model 
▶ For XOR-universality this was trivial 
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Power of tweak-separation 

▶ Consider a ε-XOR-universal keyed hash function H 

▶ Consider q queries and qW queries with tweak W 

loss on H 

general bound 

one tweak 

no tweak repetitions 

naive actual � � q ε2 � � q ε2 � � q ε2 
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▶ The sectors in SSDs have a limited lifetime as they get damaged every time data
is written

▶ The Kingston UV500 960 GB has N = 228 sectors, where every sector can be
written at most ≈ 500 times

▶ Without tweak-separation secure when 2
�500N

2

�
ε ≈ 274ε≪ 1

▶ With tweak-separation this improves to 2N
�500

2

�
ε ≈ 246ε≪ 1

Application to disk encryption on SSDs 

▶ Double-decker is very suitable for disk encryption 
▶ Disks are separated in sectors 
▶ Block size is equal to the sector size 
▶ Physical sector number used as tweak 
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Comparison with Adiantum 
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▶ We also introduced the security model bkh for keyed hashes
as a generalization of XOR-universality

▶ Using this model we were able to prove better bounds

▶ Our usage of the tweak improves security when tweaks reuse is limited

Thank you for your attention!

Conclusion 

▶ We introduced (docked-)double-decker, two tweakable wide block 
ciphers based on deck functions and keyed hash functions 
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