

Deck-Based Wide Block Cipher Modes*

Aldo Gunsing, Joan Daemen and Bart Mennink

The Third NIST Workshop on Block Cipher Modes of Operation 2023

* Contribution is based on the publication *Deck-Based Wide Block Cipher Modes* and an Exposition of the Blinded Keyed Hashing Model at ToSC 2019(4)

Block cipher

- ▶ Plaintext P encrypted to ciphertext C with secret key K
- Fixed block size

Block cipher

- > Plaintext P encrypted to ciphertext C with secret key K
- Fixed block size
- ▶ In order to encrypt variable sized messages, we need a mode of operation
 - These modes require a nonce

Wide block cipher

- Alternatively, we can design a wide block cipher
- ► A wide block cipher is a block cipher with a variable block size

Wide block cipher

- Alternatively, we can design a wide block cipher
- ► A wide block cipher is a block cipher with a variable block size
- Every part of the output (ideally) depends on every part of the input

Tweakable wide block cipher

A tweakable wide block cipher additionally has a tweak

 \blacktriangleright Tweak W public, ciphertext completely changes with a different tweak

Tweakable wide block cipher

A tweakable wide block cipher additionally has a tweak

- ▶ Tweak W public, ciphertext completely changes with a different tweak
- Useful for e.g. disk encryption, where every sector gets its own tweak

- Doubly-extendable cryptographic keyed (deck) functions:
 - Input: any size
 - Output: arbitrarily long

- Doubly-extendable cryptographic keyed (deck) functions:
 - Input: any size
 - Output: arbitrarily long
- Stream ciphers:
 - Input: fixed size
 - Output: arbitrarily long

- Doubly-extendable cryptographic keyed (deck) functions:
 - Input: any size
 - Output: arbitrarily long
- Stream ciphers:
 - Input: fixed size
 - Output: arbitrarily long
- Keyed hashes:
 - Input: any size
 - Output: fixed size

We build two tweakable wide block ciphers based on three primitives:

- Doubly-extendable cryptographic keyed (deck) functions:
 - Input: any size
 - Output: arbitrarily long
- Stream ciphers:
 - Input: fixed size
 - Output: arbitrarily long
- Keyed hashes:
 - Input: any size
 - Output: fixed size

In contrast to block ciphers, these primitives are not invertible and do not need to be, which allows for a more flexible design

- Generalization of Farfalle-WBC by Bertoni et al. (2017)
- Feistel-like structure

- Generalization of Farfalle-WBC by Bertoni et al. (2017)
- Feistel-like structure
- Two keyed hashes H on the outside, two deck functions F on the inside

- Generalization of Farfalle-WBC by Bertoni et al. (2017)
- Feistel-like structure
- Two keyed hashes H on the outside, two deck functions F on the inside
- Outer lanes of fixed size
- Inner lanes of variable size

- Variant of double-decker
- One lane less

- Variant of double-decker
- One lane less
- Outer lanes of fixed size
- Inner lane of variable size

- Variant of double-decker
- One lane less
- Outer lanes of fixed size
- Inner lane of variable size
- Deck functions F get fixed sized input, so they conceptually become stream ciphers

A keyed hash H is ε -XOR-universal if for all $x \neq x'$ and y

 $\mathbb{P}[H_{\mathcal{K}}(x)\oplus H_{\mathcal{K}}(x')=y]\leqslant \varepsilon$

A keyed hash H is ε -XOR-universal if for all $x \neq x'$ and y

```
\mathbb{P}[H_{\mathcal{K}}(x)\oplus H_{\mathcal{K}}(x')=y]\leqslant \varepsilon
```

This conventional property only considers the XOR-difference between a single query pair

▶ A keyed hash *H* is ε -XOR-universal if for all $x \neq x'$ and *y*

```
\mathbb{P}[H_{\mathcal{K}}(x)\oplus H_{\mathcal{K}}(x')=y]\leqslant \varepsilon
```

This conventional property only considers the XOR-difference between a single query pair

For q queries the bound becomes $\binom{q}{2}\varepsilon$

▶ A keyed hash *H* is ε -XOR-universal if for all $x \neq x'$ and *y*

```
\mathbb{P}[H_{\mathcal{K}}(x)\oplus H_{\mathcal{K}}(x')=y]\leqslant \varepsilon
```

- This conventional property only considers the XOR-difference between a single query pair
- ▶ For q queries the bound becomes $\binom{q}{2}\varepsilon$

However:

- ε is the worst-case bound on all possible $x \neq x'$
- For some functions not all query pairs have similar probabilities

Blinded keyed hash

We consider blinded keyed hash (bkh) security to achieve a more accurate estimate when multiple queries are taken into account

Blinded keyed hash

- We consider blinded keyed hash (bkh) security to achieve a more accurate estimate when multiple queries are taken into account
- The keyed hash function H is bkh secure if it is indistinguishable in the following setup

Security results

We cannot apply the bkh model directly to our construction

- The real difficulty is to reduce to the bkh model
- ► For XOR-universality this was trivial

Security results

We cannot apply the bkh model directly to our construction

- The real difficulty is to reduce to the bkh model
- For XOR-universality this was trivial
- We show that the two double-deckers are secure when:
 - The keyed hash H is bkh secure
 - ► The deck function *F* is prf secure

Security results

We cannot apply the bkh model directly to our construction

- The real difficulty is to reduce to the bkh model
- For XOR-universality this was trivial
- We show that the two double-deckers are secure when:
 - The keyed hash H is bkh secure
 - ► The deck function *F* is prf secure
- Furthermore, by applying the tweak to the deck functions the bound of H becomes tweak-separated
 - Deck functions behave independently for different tweaks
 - Significantly improves security bound for certain settings

Power of tweak-separation

• Consider a ε -XOR-universal keyed hash function H

• Consider q queries and q_W queries with tweak W

loss on H	naive	actual
general bound	$\binom{q}{2}\varepsilon$	
one tweak	$\binom{q}{2}\varepsilon$	
no tweak repetitions	$\binom{q}{2}\varepsilon$	

Power of tweak-separation

• Consider a ε -XOR-universal keyed hash function H

• Consider q queries and q_W queries with tweak W

loss on <i>H</i>	naive	actual
general bound	$\binom{q}{2}\varepsilon$	$\sum_{W} {\binom{q_{W}}{2}} \varepsilon$
one tweak	$\binom{q}{2}\varepsilon$	$\binom{q}{2}\varepsilon$
no tweak repetitions	$\binom{q}{2}\varepsilon$	0

Application to disk encryption on SSDs

- Double-decker is very suitable for disk encryption
 - Disks are separated in sectors
 - Block size is equal to the sector size
 - Physical sector number used as tweak

Application to disk encryption on SSDs

- Double-decker is very suitable for disk encryption
 - Disks are separated in sectors
 - Block size is equal to the sector size
 - Physical sector number used as tweak
- The sectors in SSDs have a limited lifetime as they get damaged every time data is written
- ▶ The Kingston UV500 960 GB has $N = 2^{28}$ sectors, where every sector can be written at most \approx 500 times

Application to disk encryption on SSDs

- Double-decker is very suitable for disk encryption
 - Disks are separated in sectors
 - Block size is equal to the sector size
 - Physical sector number used as tweak
- The sectors in SSDs have a limited lifetime as they get damaged every time data is written
- ▶ The Kingston UV500 960 GB has $N = 2^{28}$ sectors, where every sector can be written at most \approx 500 times
- ▶ Without tweak-separation secure when $2\binom{500N}{2}\varepsilon \approx 2^{74}\varepsilon \ll 1$
- ▶ With tweak-separation this improves to $2N\binom{500}{2}\varepsilon \approx 2^{46}\varepsilon \ll 1$

Comparison with Adiantum

We introduced (docked-)double-decker, two tweakable wide block ciphers based on deck functions and keyed hash functions

- We introduced (docked-)double-decker, two tweakable wide block ciphers based on deck functions and keyed hash functions
- We also introduced the security model *bkh* for keyed hashes as a generalization of XOR-universality

- We introduced (docked-)double-decker, two tweakable wide block ciphers based on deck functions and keyed hash functions
- We also introduced the security model *bkh* for keyed hashes as a generalization of XOR-universality
- Using this model we were able to prove better bounds

- We introduced (docked-)double-decker, two tweakable wide block ciphers based on deck functions and keyed hash functions
- We also introduced the security model *bkh* for keyed hashes as a generalization of XOR-universality
- Using this model we were able to prove better bounds
- Our usage of the tweak improves security when tweaks reuse is limited

- We introduced (docked-)double-decker, two tweakable wide block ciphers based on deck functions and keyed hash functions
- We also introduced the security model *bkh* for keyed hashes as a generalization of XOR-universality
- Using this model we were able to prove better bounds
- Our usage of the tweak improves security when tweaks reuse is limited

Thank you for your attention!