
RBGC: Chains of RBGs

John Kelsey, NIST and COSIC/KU Leuven

Disclaimer: all this is still in discussion and subject to change

1



Chains of RBGS are common in software 

• Hard to see how else to do it

• 90C needs to allow this
… without making the standard too complex to understand

2



Solution: RBGC construction

RBGC consists of:

• DRBG

• Seed source
… which can be another RBGC

3



RBGC components

Seed source
Any of
• RBG2
• RBG3
• Full entropy source
• Another RBGC  this allows chains and trees of RBGCs

DRBG
Any approved DRBG

4



The initial source

An RBGC can be a seed source…
… but the initial seed source has to provide some entropy 

• RBG2
• RBG3
• Full entropy source

5



Everything depends on initial source

Requirements:
• Available entropy source
• Strong output bits

Initial seed source may be:
• RBG2(P)
• RBG2(NP)
• RBG3
• Full entropy source

6



Chains of DRBGs: requirements

• Security strength can’t increase

• Each DRBG has exactly one seed source
• May also incorporate additional input

• A DRBG may provide seed material AND random bits 

• No loops allowed (See below) 7



Example chain

• Each DRBG has one seed source

• Security strength can’t go up

8



Trees of RBGs

• Each DRBG: one seed source
• May also incorporate additional input

• Initial source: Ultimate root of trust

• One source many DRBGs

• DRBGs can provide seed to other DRBGs
…AND random bits to applications

9



No limit on DRBGs in chain or tree

Should there be?

• Hard to justify any particular number

• Not a clear security reasons for specific limit

• Not sure what limit of useful designs will be

10



Ancestors, descendants, and loops

For each DRBG in RBGC:
• Ancestors 

Everything in chain that seeds DRBG

• Descendants
Everything in tree seeded from this DRBG

• Loop
Any DRBG is its own ancestor
Not permitted (for obvious reasons)

Ancestors

Descendants

11



Loops are not allowed

Example: RBGC with loop

• No entropy, no security

• Every DRBG is its own ancestor

12



Loops are not allowed

Example: RBGC with loop

• No entropy, no security

• Every DRBG is its own ancestor

This is insecure, and not allowed in 90C
13



What about additional input?

• DRBGs can incorporate additional input
• Instantiate, Reseed, Generate 

• Not many requirements on additional input

• Additional input is allowed for DRBGs in an RBGC construction

• DRBGs should not make a loop using additional input
• Not a security issue, but seems like a bad idea

14



Example: How to use additional input?

• OS RNG:
• Use hardware TRNG as seed source
• Collect entropy from interrupt timings as fall back
• Put into additional input of Instantiate or Reseed

Could design RNG to instantiate only when sufficient entropy from 
interrupt timings

15



Reseeding a DRBG in RBGC construction

• Reseed draws new seed material from
seed source

• DRBGs SHALL support reseed request

• Seed source provides requested amount of 
seed material

• Reseed DOES NOT recurse up the chain

No guarantee of fresh entropy from reseed.
16



Prediction resistance is not supported

• DRBGs in RBGC do not support prediction 
resistance

• Avoid potential for denial of service from
too much demand on initial source

• RBG2s do not always reseed on demand
• Sometimes reseed as entropy becomes available

17



Hard problem: Modularity

Common for software to be written 
without knowledge of what else will be
on platform.

Problem: how does lab evaluate RBGC in software module 
without seeing seed source?

This is extremely common situation.  How should we deal with it? 

18



Suppose we’re given this DRBG 
Claim: RBGC

For this to be a valid RBGC:
• Seed source must be one of

• RBG2
• RBG3
• Full entropy source
• RBGC

• Seed source security strength 
At least as strong as DRBG

• Seed source must not rely on DRBG for seed
No loops

19



Lab can't evaluate what it can't see
How should we approach this?

Obvious approaches:

1. Validate DRBG, specify requirements for seed source in 
certificate, hope for the best

2. Validate as DRBG only.  To get validation as RBGC, require it to 
be combined with seed source meeting requirements.

20



Wrap up

• RBGC construction allows chaining of DRBGs
• Permits chains or even trees

• Initial source has live entropy source
• RBG2, RBG3, full entropy source

• No prediction resistance, yes reseeds

• Hardest problem: modular evaluation

21


	RBGC: Chains of RBGs
	Chains of RBGS are common in software 
	Solution: RBGC construction
	RBGC components
	The initial source
	Everything depends on initial source
	Chains of DRBGs: requirements
	Example chain
	Trees of RBGs
	No limit on DRBGs in chain or tree
	Ancestors, descendants, and loops
	Loops are not allowed
	Loops are not allowed
	What about additional input?
	Example: How to use additional input?
	Reseeding a DRBG in RBGC construction
	Prediction resistance is not supported
	Hard problem: Modularity
	Suppose we’re given this DRBG 
	Lab can't evaluate what it can't see
	Wrap up

