Final Steps of the NIST Lightweight Cryptography Standardization

Meltem Sönmez Turan

C&ESAR 2023 November 21, 2023

This Talk will cover

an overview of the NIST lightweight cryptography standardization

an update on standardization of Ascon family

National Institute of Standards and Technology NIST

- Part of US Department of Commerce
- Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988

MISSION

to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

Laboratory Programs \rightarrow Information Technology Lab \rightarrow Computer Security Division

Computer Security Division (CSD)

Developing Crypto Standards

- International "competitions" e.g., AES, SHA-3, PQC, Lightweight Crypto
- Adoption of existing standards e.g., RSA, HMAC
- Open call for proposals: e.g., block cipher modes of operations

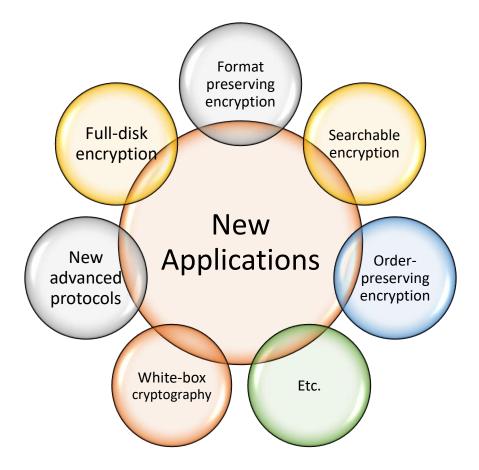
CSD Publications

- Federal Information Processing Standards (FIPS): Specify approved crypto standards.
- NIST Special Publications (SPs): Guidelines, technical specifications, recommendations etc.
- NIST Internal or Interagency Reports (IR): Reports of research findings.

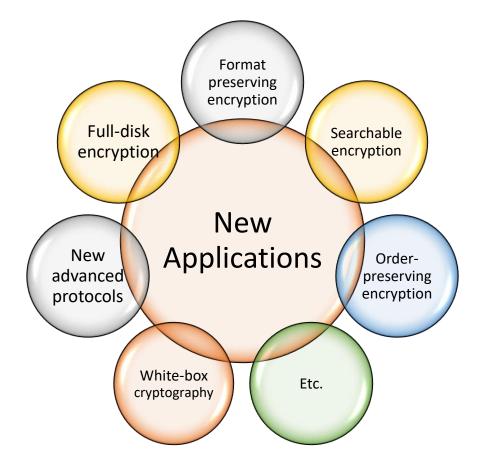
Principles

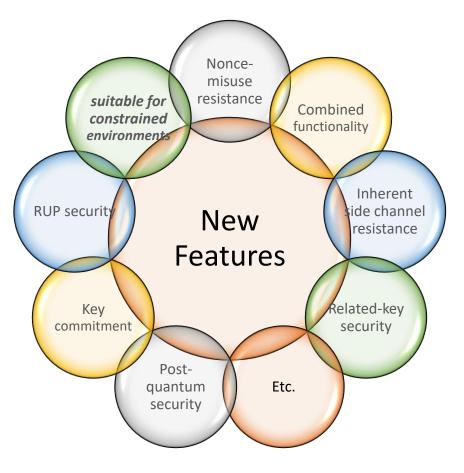
Transparency, openness, balance, integrity, technical merit, global acceptability, usability, continuous improvement, innovation etc.

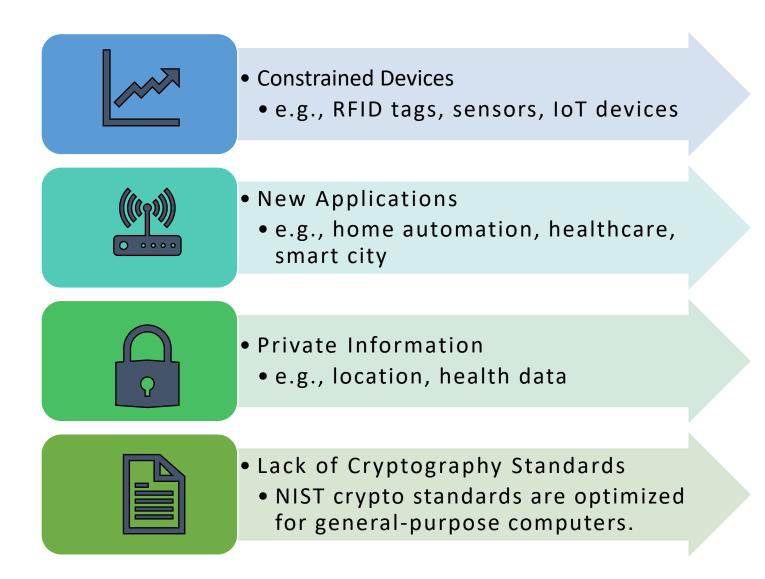
Advanced Encryption Standard (AES)


- FIPS 197 Advanced Encryption Standard Published in 2001.
- Reviewed¹ after 20 years and updated in May 2023.
- Widely adopted, with significant impact on economy²
- Instantiated with a mode of operation from SP 800-38 series (e.g., CBC, OFB, CBC, GCM, ...)

Federal Information Processing Standards Public	ication
Advanced Encryption Standard (AES)	
Category: Computer Security	Subcategory: Cryptograp
Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900	
This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.197-upd1	
Published November 26, 2001; Updated May 9, 202	23
SORTHERNT OF COMMERCIAN * ENTRY STATES OF AND	
U.S. Department of Commerce Donald L. Evans, Secretary	
Technology Administration	


- 1. NIST IR 8319 & Publication Reviews <u>https://csrc.nist.gov/projects/crypto-publication-review-project/completed-reviews</u>
- 2. Smid, Development of the Advanced Encryption Standard, 2021
- 3. Leech et al., *The Economic Impacts of the Advanced Encryption Standard*, 2018


Why do we need more symmetric-key primitives?


Why do we need more symmetric-key primitives?

Why do we need more symmetric-key primitives?

Public competition-like process with multiple rounds like AES, SHA3 and PQC standardization

Develop new guidelines, recommendations and standards optimized for constrained devices

Authenticated Encryption and (optional) hashing for constrained software and hardware environments

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

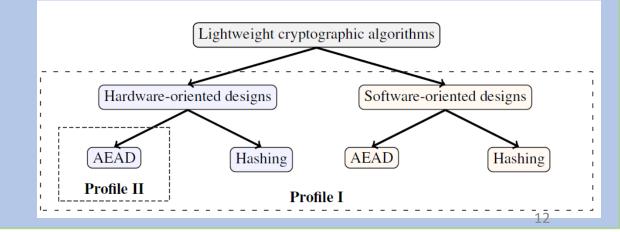
Final Round (March 2021 – February 2023)

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023)


Workshops:

- First Lightweight Cryptography Workshop July 20 – 21, 2015
- Second Lightweight Cryptography Workshop
 October 17 18, 2016

to get feedback on target applications, industry need, requirements, etc.

Publications:

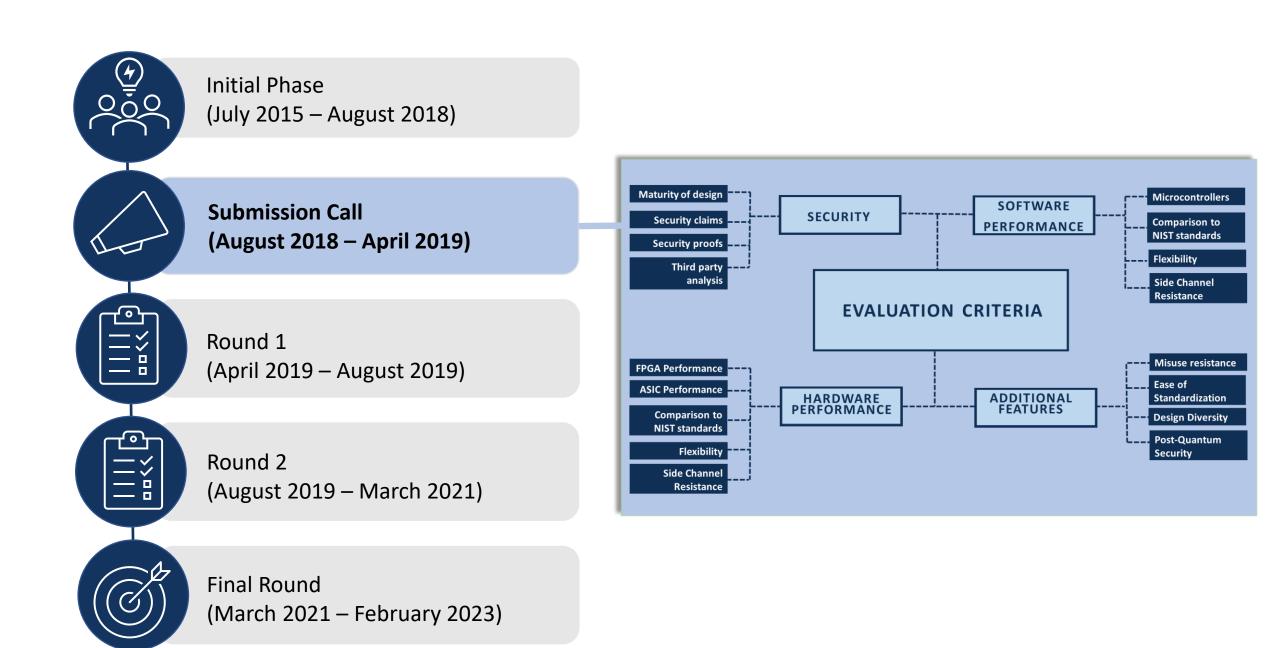
- NISTIR 8114 Report on Lightweight Cryptography
- (White paper, retired) *Profiles for the Lightweight Cryptography Standardization Process*

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023) In August 2018, NIST published 'Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process'.


Submission deadline: February 2019

Security requirements

At least 112-bit security level for messages up to 2^{50} bytes, (nonce respecting). Key size at least 128 bits.

Design requirements Perform better than NIST standards (AES-GCM, SHA-2), optimized for short messages etc.

Implementation requirements Reference and optimized implementation compatible with API etc.

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023) Around 4 months

56 First-round candidates

Evaluation of the candidates were done based on their security

 e.g., distinguishing attacks, practical tag forgeries, domain separation issues, new designs with no third-party analysis etc.

NIST IR 8268 explains how 32 candidates (out of 56) were selected to move forward to the second round. NISTIR 8268

Status Report on the First Round of the NIST Lightweight Cryptography Standardization Process

> Meltem Sönmez Turat Kerry A. McKay Çağdaş Çalıl Donghoon Chanş Larry Basshan

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8268

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023)

Around 20 months

32 Second-round candidates

Workshops:

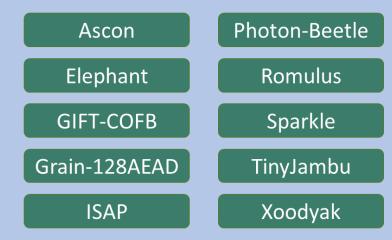
- Third Lightweight Cryptography Workshop November 4 – 6, 2019
- Fourth Lightweight Cryptography Workshop 2016
 October 19 21, 2020

NIST IR 8369 explains how 10 finalists were selected to move forward to the final round. NISTIR 8369

Status Report on the Second Round of the NIST Lightweight Cryptography Standardization Process

> Meltem Sönmez Turan Kerry McKay Donghoon Chang Çağdaş Çalık Lawrence Bassham Jinkeon Kang John Kelsey

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8369


Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

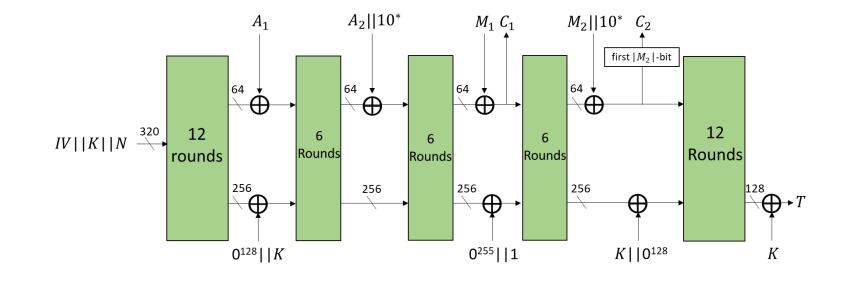
Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023)

Evaluation of ten finalists took about two years.

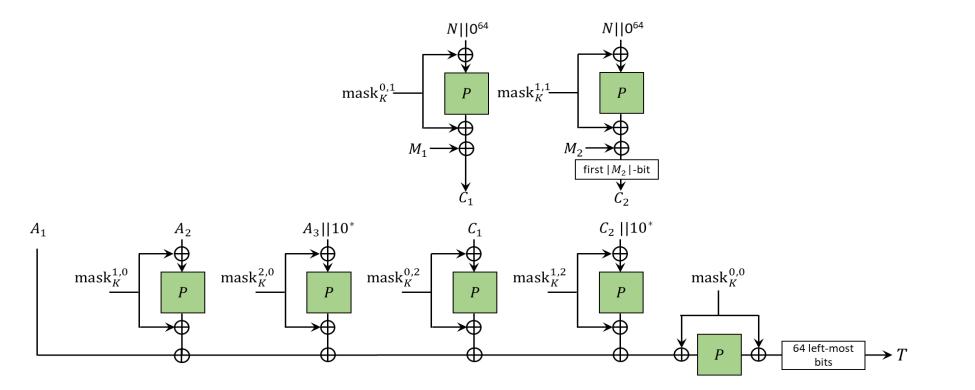
Fair evaluation of finalists is challenging:

- Assigning different weights for different criteria
- Different security claims, different functionality, attacks with different complexities etc.
- Limited resources (not all algorithms got the same attention from the crypto community) for security analysis and benchmarking.

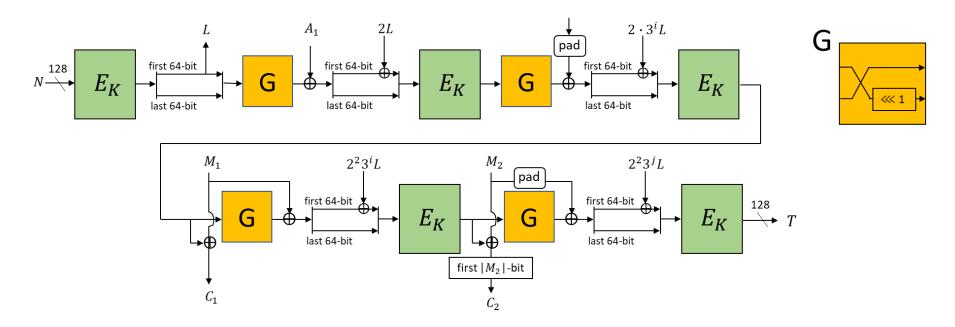

Decision relied on publicly available analysis and benchmarking results.

Finalists	Variant	Building Block	Mode	Key size	Nonce Size	Tag Size
	ASCON-128			128	128	128
ASCON	ASCON-128a	ASCON Permutation	MonkeyDuplex	128	128	128
	ASCON-80pq			160	128	128
	Dumbo	Spongent- π [160]		128	96	64
Elephant	Jumbo	Spongent- π [176]	Encrypt-then-MAC	128	96	64
	Delirium	KECCAK-f[200]		128	96	128
GIFT-COFB	GIFT-COFB	GIFT-128	Combined Feedback	128	128	128
Grain-128AEAD	Grain-128AEAD	Feedback shift register	Encrypt-and-MAC	128	96	64
	ISAP-A-128a	ASCON Permutation		128	128	128
ICAD	ISAP-K-128a	KECCAK-f[400]	Enorupt than MAC	128	128	128
ISAP	ISAP-A-128	ASCON Permutation	Encrypt-then-MAC	128	128	128
	ISAP-K-128	KECCAK-f[400]		128	128	128
PHOTON-Beetle	PHOTON-Beetle-AEAD[128]	DIOTON Dermutation	Sponge with	128	128	128
PHOTON-Beetle	PHOTON-Beetle-AEAD[32]	PHOTON ₂₅₆ Permutation	Combined Feedback	128	128	128
	Romulus-N	Skinny 129 294	Combined Feedback	128	128	128
Romulus	Romulus-M	Skinny-128-384+ Tweekeble Pleek Cirber	MAC-then-Encrypt	128	128	128
	Romulus-T	Tweakable Block Cipher	Encrypt-then-MAC	128	128	128
	SCHWAEMM256-128	SPARKLE ₃₈₄		128	256	128
SPARKLE	SCHWAEMM128-128	SPARKLE ₂₅₆	Sponge with	128	128	128
STAKKLE	SCHWAEMM192-192	SPARKLE ₃₈₄	Combined Feedback	192	192	192
	SCHWAEMM256-256	SPARKLE ₅₁₂		256	256	256
Tiny JAMBU	TinyJAMBU-128		Sponge	128	96	64
	TinyJAMBU-192	Keyed Permutation		192	96	64
	TinyJAMBU-256			256	96	64
Xoodyak	Xoodyakv1	Xoodoo Permutation	Sponge-variant Cyclist	128	128	128

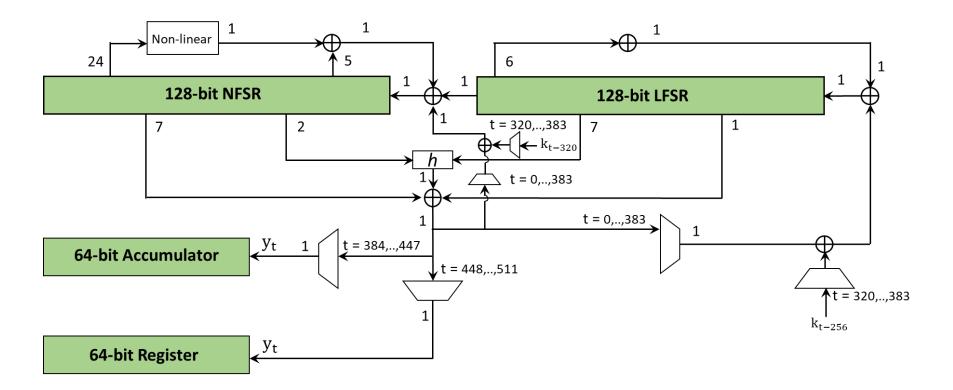
Finalists	Variant	Building Block	Mode	Digest size
ASCON	ASCON-Hash	ASCON Permutation	Sponge	256
ASCON	ASCON-Hasha	ASCON Fermutation		256
PHOTON-Beetle	PHOTON-Beetle-Hash[32]	PHOTON ₂₅₆ Permutation	Sponge	256
Romulus	Romulus-H	Skinny-128-384+	$MDPH^1$	256
SPARKLE	ESCH256	SPARKLE384	Sponga	256
STAKKLE	ESCH384	SPARKLE ₅₁₂	Sponge	384
Xoodyak	Xoodyak	Xoodoo Permutation	Sponge	256


- Permutation-based (320-bit) AEAD and hashing scheme (fixed or variable output length)
- AEAD: MonkeyDuplex mode with keyed initialization and finalization, Hash: Sponge
- No design tweak, new variant added in the final round
- Included in the final portfolio of CAESAR for lightweight authenticated encryption

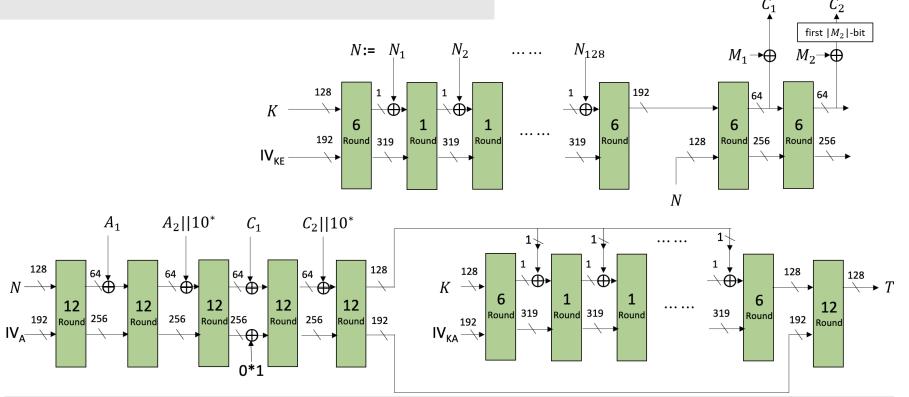
	Variant	Parameter sizes
	Ascon-128	128-bit key/nonce/tag
AEAD	Ascon-128a	128-bit key/nonce/tag
	Ascon-80-pq	160-bit key, 128-bit nonce/tag
Hash	Ascon-hash	256-bit digest
На	Ascon-hasha	256-bit digest
XOF	Ascon-XOF	Arbitrary length digest
×	Ascon-XOFa	Arbitrary length digest


- Nonce-based Encrypt-then-MAC mode
- Only finalist with a parallel mode
- Design tweak: Mode slightly modified to achieve authenticity under nonce-reuse.

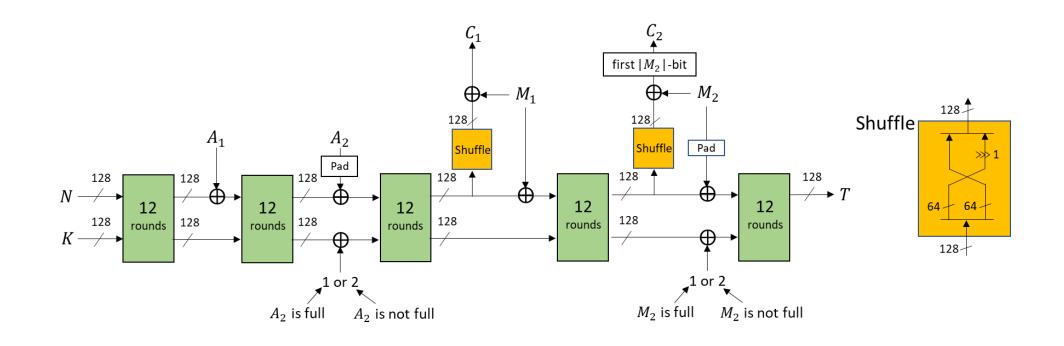
Variant	Parameter sizes
Dumbo	128-bit key, 96-bit nonce, 64-bit tag
Jumbo	128-bit key, 96-bit nonce, 64-bit tag
Delirium	128-bit key, 96-bit nonce, 128-bit tag


- Block-cipher (GIFT-128) based AEAD scheme
- Combined Feedback (COFB) mode
- No design tweak

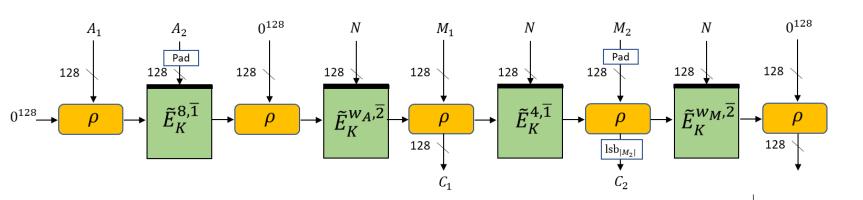
Variant	Parameter sizes
Gift-COFB	128-bit key/nonce/tag

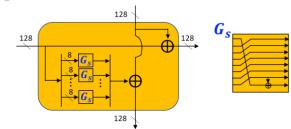

- Feedback shift register based AEAD scheme
- Design tweak on the initialization part
- (Earlier versions) Part of eSTREAM portfolio, included in ISO/IEC 29167-13:2005

Variant	Parameter sizes
Grain-128AEAD	128-bit key, 96-bit nonce, 64-bit tag


- Permutation-based (Ascon and Keccak permutations) AEAD scheme
- Can be paired with Ascon Hash
- Nonce-based Encrypt-then-MAC mode
- Algorithm-level security against implementation attacks
- No design tweak (primary variant updated)

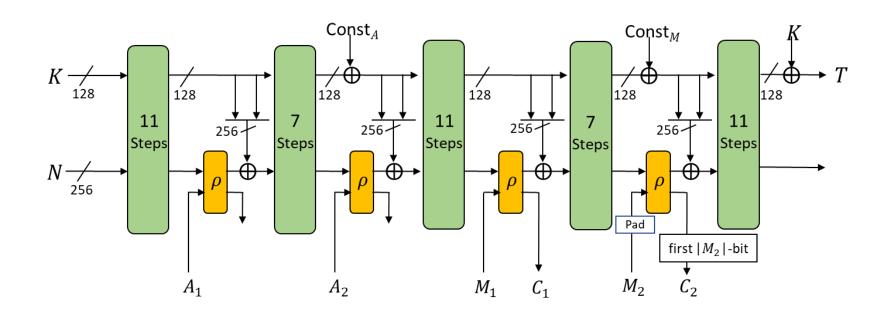
Variant	Parameter sizes
ISAP-A-128a	128-bit key/nonce/tag
ISAP-K-128a	128-bit key/nonce/tag
ISAP-A-128	128-bit key/nonce/tag
ISAP-K-128	128-bit key/nonce/tag

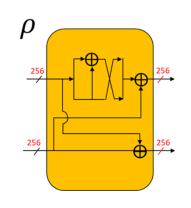

- Family of permutation-based (256-bit Photon permutation) AEAD & hashing scheme
- Sponge-like mode with a combined feedback.
- No design tweak


	Variant	Parameter sizes
AEAD	Photon-Beetle- AEAD[128]	128-bit key/nonce/tag
AE	Photon-Beetle- AEAD[32]	128-bit key/nonce/tag
Hash	Photon-Beetle- Hash[32]	256-bit digest

- Family of tweakable-block-cipher (Skinny) based AEAD & hashing
- Romulus-N: rate-1 TBC-based combined feedback, Romulus-M: MAC-then-Encrypt
- Nonce-misuse and nonce-respecting variants
- Design tweak to reduce the number of rounds from 56 to 40, removal of non-primary variants, addition of new variants.

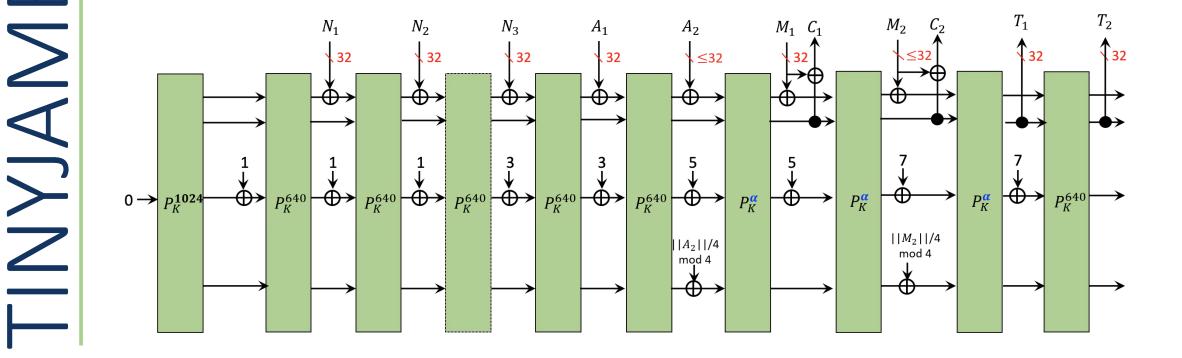
	Variant	Parameter sizes
	Romulus-N	128-bit key/nonce/tag
AEAD	Romulus-M	128-bit key/nonce/tag
	Romulus-T	128-bit key/nonce/tag
Hash	Romulus-H	256-bit digest



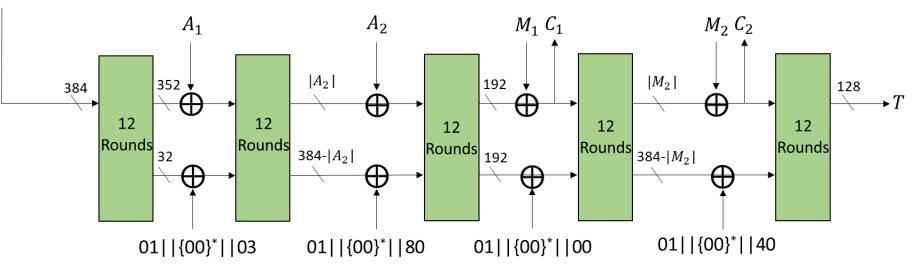


- Family of permutation-based AEAD (SCHWAEMM) and hashing (ESCH)
- ARX based design

- Sponge construction with combined feedback
- Tweak to change the primary variant


	Variant	Parameter sizes
	SCHWAEMM256-128	128-bit key/tag, 256-bit nonce
AD	SCHWAEMM128-128	128-bit key/nonce/tag
AEAD	SCHWAEMM192-192	192-bit key/nonce/tag
	SCHWAEMM256-256	256-bit key/nonce/tag
Hash	ESCH256	256-bit digest
На	ESCH384	384-bit digest
XOF	XOESCH256	Arbitrary length digest
×	XOESCH384	Arbitrary length digest

- Keyed-permutation based AEAD scheme
- Uses 128-bit nonlinear feedback shift register
- Inspired by JAMBU (CAESAR candidate)
- Design tweak: increase in number of rounds to improve security margin.


Variant	Parameter sizes
TinyJambu-128	128-bit key, 96-bit nonce, 64-bit tag
TinyJambu-192	192-bit key, 96-bit nonce, 64-bit tag
TinyJambu-256	256-bit key, 96-bit nonce, 64-bit tag

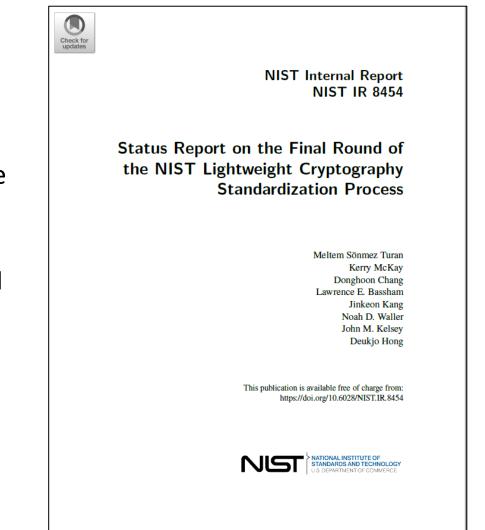
- Family of permutation based AEAD & hashing scheme
- Based on 384-bit Xoodoo permutation
- Uses Cyclist mode
- Design tweak: simplified initialization to improve performance for short messages

	Variant	Parameter sizes
AEAD	Xoodyak	128-bit key/nonce/tag
Hash	Xoodyak	256-bit digest
XOF	Xoodyak	Arbitrary length digest

 $K | |N| | (byte-length of N) | |01| | {00}^* | |02$

Security Margins and Claims

Security Requirements: At least 128-bit keys, input message sizes of at least 2⁵⁰-1 bytes etc.


All finalists have met the security requirements and provided sufficient security margins.

- None of the security claims made by the submitters have been invalidated.
- Maturity of the design is one of the important security evaluation factors.
 - Is the finalist based on well-established design principles?
 - Did the finalist receive enough third-party analysis?
 - Are there design tweaks that invalidate the earlier security analysis?
 - Are there any additional concerns (e.g., nonce misuse, related-key, RUP security, post quantum)?

Selection of Ascon

In February 2023, NIST announced the Ascon family as the winner.

- High security margin, large number of third-party analysis (designed in 2014)
- Primary choice for the for lightweight applications in the final CAESAR portfolio (in 2019)
- No design tweaks
- Performance advantages over NIST standards (AES-GCM and SHA-2) in hardware and software
- Implementation and design flexibility
- Mode-level protection mechanism against leakage and lower additional cost for protected implementations
- Support for additional functionalities XOF, dedicated MAC, in addition to Hash

Which variants to standardize?

	Variant	Parameter sizes
AEAD	Ascon-128	128-bit key/nonce/tag
	Ascon-128a	128-bit key/nonce/tag
	Ascon-80-pq	160-bit key, 128-bit nonce/tag
Hash	Ascon-hash	256-bit digest
	Ascon-hasha	256-bit digest
XOF	Ascon-XOF	Arbitrary length digest
	Ascon-XOFa	Arbitrary length digest

Current tentative decisions:

- Either Ascon-128 or both Ascon-128 and Ascon-128a
- Do not include Ascon-80pq
- XOF standardization instead of hash functions

Possible Updates

- Support of shorter tags: 64 and 96-bit tag
- Support for customization strings
- Little endian encoding of inputs for more efficient implementations
- Support for additional functionalities (PRF, MAC, KDF, DRBG etc.)

NEXT STEPS

- Publication of the draft standards describing the Ascon family (tentative in 2023)
 - Special Publication (SP) series rather than Federal Information Processing Standards (FIPS) (tentative decision)
- Public comments period of 60 to 90 days

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

CONTACT US

lightweight-crypto@nist.gov

PUBLIC FORUM lwc-forum@list.nist.gov

GITHUB https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

WEBSITE https://csrc.nist.gov/Projects/lightweight-cryptography