A NIST Call for Threshold-Friendly & Quantum-Resistant Fully-Homomorphic Encryption (FHE) Schemes

Cryptographic Technology Group National Institute of Standards and Technology (NIST)

*Presented at the 6th HomomorphicEncryption.org Standards Meeting March 23, 2023 @ Seoul (South Korea)

Suggested reading: NISTIR 8214C ipd: NIST First Call for Multi-Party Threshold Schemes (Initial Public Draft) [Jan. 2023]

* Luís Brandão: At NIST as a Foreign Guest Researcher (non-employee), Contractor from Strativia. Expressed opinions are from the speaker and should not be construed as official NIST views. Joint work with René Peralta. Minor editorial updates on 2023-March-28.

Outline

- 1. Introduction: NIST/PEC/Threshold
- 2. The "Threshold" Call and FHE
- 3. Concluding remarks

(Slides will be made publicly available)

FHE = fully-homomorphic encryption. NIST = National Institute of Standards and Technology. PEC = privacy-enhancing cryptography

Outline

- 1. Introduction: NIST/PEC/Threshold
- 2. The "Threshold" Call and FHE
- 3. Concluding remarks

FHE = fully-homomorphic encryption. NIST = National Institute of Standards and Technology. PEC = privacy-enhancing cryptography

NIST: Laboratories \rightarrow Divisions \rightarrow Groups

- ▶ Non-regulatory federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.

VIST name and address plate (source: nist.gov)

NIST: Laboratories \rightarrow Divisions \rightarrow Groups

- ▶ Non-regulatory federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.


```
NIST name and address plate (source: nist.gov)
```

→ Cryptographic Technology Group (CTG): research, develop, engineer, and produce guidelines, recommendations and best practices for cryptographic algorithms, methods, and protocols.

Modern/advanced cryptography

Tradition: for long, NIST has had standards for building blocks for "traditional" data security.

	Traditional	
Data status	At rest or In transit	
Operation being secured	Storage or Communication	
Example crypto primitives	Encryption, Signatures, Hashing	
NIST crypto standards today?	Yes	

Modern/advanced cryptography

Tradition: for long, NIST has had standards for building blocks for "traditional" data security.

	Traditional	Advanced
Data status	At rest or In transit	In use
Operation being secured	Storage or Communication	Computation
Example crypto primitives	Encryption, Signatures, Hashing	MPC, HE, ZKP
NIST crypto standards today?	Yes	No

Legend: HE = homomorphic encryption; MP = multi-party; MPC = (secure) MP computation; ZKP = zero-knowledge proof

Modern/advanced cryptography

Tradition: for long, NIST has had standards for building blocks for "traditional" data security.

	Traditional	Advanced
Data status	At rest or In transit	In use
Operation being secured	Storage or Communication	Computation
Example crypto primitives	Encryption, Signatures, Hashing	MPC, HE, ZKP
NIST crypto standards today?	Yes	No

Legend: HE = homomorphic encryption; MP = multi-party; MPC = (secure) MP computation; ZKP = zero-knowledge proof

Modernization: the "Call for MP Threshold Schemes" is connected to advanced cryptography.

Activities in the "Crypto" Group

- Public documentation: FIPS; Special Publications (SP 800); NIST Reports (IR).
- International cooperation: government, industry, academia, standardization bodies.

Legend: BC = Block Ciphers. CC = Circuit Complexity. Crypto = Cryptography. DS = Digital Signatures. EC = Elliptic Curves. FIPS = Federal Information Processing Standards. IR = Internal or Interagency (denoting that the public NIST report was developed internally at NIST or in an interagency collaboration, respectively. IRB = Interoperable Randomness Beacons. KM = Key Management. LWC = Lightweight Crypto. PEC = Privacy-Enhancing Crypto. PQC = Post-Quantum Crypto. RNG = Random-Number Generation. SP 800 = Special Publications in Computer Security. TC = [Multi-Party] Threshold Crypto).

More details at https://www.nist.gov/itl/csd/cryptographic-technology

Privacy-Enhancing Cryptography (PEC): NIST project

- A project in the NIST Cryptographic Technology Group
- ► PEC: cryptography (that can be) used to enhance privacy.

[emphasis on non-standardized tools]

PEC tools STPPA (series of talks) PEC use-case suite Threshold schemes ZKProof collaboration Encounter metrics Email list (PEC Forum)

Privacy-Enhancing Cryptography (PEC): NIST project

- A project in the NIST Cryptographic Technology Group
- PEC: cryptography (that can be) used to enhance privacy. [emphasis on non-standardized tools]

Goals:

1. Accompany the progress of emerging *PEC tools*.

PEC tools STPPA (series of talks) PEC use-case suite Threshold schemes ZKProof collaboration Encounter metrics Email list (PEC Forum)

Legend: ABE: attribute-based encryption. IBE: identity-based encryption. PEC: privacy-enhnacing cryptography. Symm./pub.: symmetric-key or public-key based

Privacy-Enhancing Cryptography (PEC): NIST project

- A project in the NIST Cryptographic Technology Group
- PEC: cryptography (that can be) used to enhance privacy. [emphasis on non-standardized tools]

Goals:

- 1. Accompany the progress of emerging PEC tools.
- 2. Promote development of PEC reference material.
- 3. Exploratory work to assess potential for recommendations, standardization; ...

ZKP	MPC	FHE	PSI	GRS	FnE	PIR	StE
Zero-	(Secure)	Fully	Private	Group and	Functional	Private	Structured
Knowledge	Multiparty	Homomorphic	Set	Ring	Encryption	Information	Encryption
Proofs	Computation	Encryption	Intersection	Signatures	(Inc. ABE & IBE)	Retrieval	(Symm./Pub.)

Legend: ABE: attribute-based encryption. IBE: identity-based encryption. PEC: privacy-enhnacing cryptography. Symm./pub.: symmetric-key or public-key based

PEC tools STPPA (series of talks) PEC use-case suite Threshold schemes ZKProof collaboration Encounter metrics Email list (PEC Forum) https://csrc.nist.gov/projects/pec

Multi-Party Threshold Cryptography: NIST project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

- 1. Split (secret-share) the secret/private-key across multiple parties.
- 2. Use **MPC** to perform needed operation (with split key), e.g., decrypt. (MPC = secure multiparty computation ... or call it "Threshold Cryptography")

etc.

https://csrc.nist.gov/projects/threshold-cryptography

Multi-Party Threshold Cryptography: NIST project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

- 1. Split (secret-share) the secret/private-key across multiple parties.
- Use MPC to perform needed operation (with split key), e.g., decrypt. (MPC = secure multiparty computation ... or call it "Threshold Cryptography")
- "Threshold" (f): Operation is secure if number of corrupted parties is $\leq f$.
- **Decentralized** trust about key (never reconstructed): avoids single-point of failure.

https://csrc.nist.gov/projects/threshold-cryptography

etc.

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to more efficient threshold schemes)

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to more efficient threshold schemes)

- > Standards "should" focus on high need and potential for adoption
- ▶ Threshold friendliness: desirable feature → improves adoptability

(e.g., determ. vs. prob. threshold EdDSA/Schnorr signatures [NISTIR 8214B ipd])

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to more efficient threshold schemes)

- > Standards "should" focus on high need and potential for adoption
- ► Threshold friendliness: desirable feature → improves adoptability (e.g., determ. vs. prob. threshold EdDSA/Schnorr signatures [NISTIR 8214B ipd])

How to explore the threshold space?:

- applicable to a wide scope of primitives
- which brings added complexity

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to more efficient threshold schemes)

- > Standards "should" focus on high need and potential for adoption
- ► Threshold friendliness: desirable feature → improves adoptability (e.g., determ. vs. prob. threshold EdDSA/Schnorr signatures [NISTIR 8214B ipd])

How to explore the threshold space?:

- applicable to a wide scope of primitives
- which brings added complexity

Next section: A public Call for reference material ... toward recommendations.

- Introduction: NIST/PEC/Threshold
- 2. The "Threshold" Call and FHE
- 3. Concluding remarks

FHE = fully-homomorphic encryption. NIST = National Institute of Standards and Technology. PEC = privacy-enhancing cryptography

NIST Call for Multi-Party Threshold Schemes

NISTIR 8214C ipd (initial public draft) — public comments till 2023-April-10

Calling for threshold schemes for diverse primitives:

- Cat1: Selected NIST-standardized primitives EdDSA, ECDSA, RSA, AES, ECC-KE, ...
- ► Cat2: Primitives not specified by NIST
 - Interest in threshold friendliness and quantum resistance
 - Interest in advanced features, from PEC "tools": FHE, IBE, ZKP, ...

AES = Advanced Encryption Standard. EC = Elliptic curve. ECC-KE = EC cryptography (based) key-exchange. EdDSA = Edwards-Curve digital signature algorithm. ECDSA = EC digital signature algorithm. FHE = Fully-homomorphic encryption. IBE = Identity-based encryption. NIST = National Institute of Standards and Technology. PEC = Privacy-enhancing cryptography. RSA = Rivest-Shamir-Adleman. ZKP = Zero-knowledge proof.

Subcategory: Type	
C2.1: Signing	
C2.2: PKE	
C2.3: Key agreem.	
C2.4: Symmetric	
C2.5: Keygen	

Note: While TF-QR is a desired combination for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

TF = threshold friendly. QR = quantum resistant.

Subcategory: Type	Example types of schemes	Example primitives
C2.1: Signing	TF succinct & verifiably-deterministic signatures	Sign
	TF-QR signatures	Sign

Note: While TF-QR is a desired combination for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

Subcategory: Type

C2.6: Advanced C2.7: ZKPoK C2.8: Gadgets

Note: While TF-QR is a desired combination for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

TF = threshold friendly. QR = quantum resistant.

Subcategory: Type	Example types of schemes	Example primitives
C2.6: Advanced	TF-QR fully-homomorphic encryption	Decryption; Keygen
	TF identity-based and attribute-based encryption	Decryption; Keygens

Note: While TF-QR is a desired combination for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

Subcategory: Type	Example types of schemes	Example primitives
2.7: ZKPoK	Zero-knowledge proof of knowledge of private key	ZKPoK.Generate

Subcategory: Type	Example types of schemes	Example primitives
C2.8: Gadgets	Garbled circuit (GC)	GC.generate; GC.evaluate

Note: While TF-QR is a desired combination for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

TF = threshold friendly. QR = quantum resistant.

Subcategory: Type	Example types of schemes	Example primitives
C2.1: Signing	TF succinct & verifiably-deterministic signatures	Sign
	TF-QR signatures	Sign
C2.2: PKE	TF-QR p ublic- k ey e ncryption (PKE)	Decrypt/Encrypt (a secret value)
C2.3: Key agreem.	TF Low-round multi-party k ey- a greement (KA)	Single-party primitives
C2.4: Symmetric	TF blockcipher/PRP	Encipher/decipher
	TF key-derivation / key-confirmation	PRF and hash function
C2.5: Keygen	Any of the above	Keygen
C2.6: Advanced	TF-QR fully-homomorphic encryption	Decryption; Keygen
	TF identity-based and attribute-based encryption	Decryption; Keygens
C2.7: ZKPoK	Zero-knowledge proof of knowledge of private key	ZKPoK.Generate
C2.8: Gadgets	Garbled circuit (GC)	GC.generate; GC.evaluate

Note: While TF-QR is a desired combination for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

Confidence and expectations about FHE subcategory (C2.6.1)

- ▶ 5+ years of "HomomorphicEncryption.Org Standardization" (HES)
- Community efforts like HES are very useful \Rightarrow FHE is in this call.

Confidence and expectations about FHE subcategory (C2.6.1)

- ▶ 5+ years of "HomomorphicEncryption.Org Standardization" (HES)
- Community efforts like HES are very useful \Rightarrow FHE is in this call.

Welcome (and needed) interaction?

- 1. Feedback about the call: [initial comments by April 10th, 2023]
 - a. positioning of FHE as an advanced primitive
 - b. benchmarking use-cases vs. types of FHE and their thresholdizability

Confidence and expectations about FHE subcategory (C2.6.1)

- ► 5+ years of "HomomorphicEncryption.Org Standardization" (HES)
- \blacktriangleright Community efforts like HES are very useful \Rightarrow FHE is in this call.

Welcome (and needed) interaction?

- 1. Feedback about the call: [initial comments by April 10th, 2023]
 - a. positioning of FHE as an advanced primitive
 - b. benchmarking use-cases vs. types of FHE and their thresholdizability
- 2. Submissions of concrete FHE schemes and their threshold schemes:
 - specified w/ concrete parameters, implemented (open source), reproducible, \dots
- 3. Public scrutiny of submitted schemes:
 - will impact subsequent recommendations (processes and guidance)

Example FHE use-case

The draft call (§A.6.1) exemplifies one FHE use-case: AES oblivious evaluation

(AES = Advanced Encryption Standard)

Example FHE use-case

The draft call (§A.6.1) exemplifies one FHE use-case: AES oblivious evaluation

(AES = Advanced Encryption Standard)

- 1. Client FHE-encrypts a plaintext message
- 2. Server with AES-key homomorphically-evaluates the AESenciphering
- 3. Client FHE-decrypts the result to obtain the AES-ciphertext

AES is a blockcipher. E.g., AES-128 as Boolean circuit has 6400 ANDs and \approx 22K XOR.

Example FHE use-case

The draft call (§A.6.1) exemplifies one FHE use-case: AES oblivious evaluation

(AES = Advanced Encryption Standard)

- 1. Client FHE-encrypts a plaintext message
- 2. Server with AES-key homomorphically-evaluates the AESenciphering
- 3. Client FHE-decrypts the result to obtain the AES-ciphertext

AES is a blockcipher. E.g., AES-128 as Boolean circuit has 6400 ANDs and \approx 22K XOR.

What can conceivably be thresholdized (§A.6.2)?

- FHE-keygen and FHE-decryption (with secret-shared FHE decryption key)
- ▶ FHE encryption (and decryption) of secret-shared plaintext
- Homomorphic evaluation of "AES-enciphering with secret-shared AES key"

Example items of wanted feedback

(Things to consider when finalizing the call)

- Benchmarking use-cases across types of FHE
 - E.g., Boolean circuits; arithmetic circuits (large modulus); approximate computations; ...
- Use-cases for which primitives to thresholdize? (e.g., beyond keygen and decryption)
- Which FHE schemes are likely to be useful/ready to submit
- Expected security, in comparison with NIST-selected PQC primitives.

It is useful to hear these things publicly, from stakeholders.

Main components of a submission package

Check	#	ltem
	M1	Written specification (S1–S16)
	M2	Reference implementation (Src1–Src4)
	М3	Execution instructions (X1–X7)
	M4	Experimental evaluation (Perf1–Perf5)
	M5	Additional statements

- ▶ (Optional) early public abstract: 3 months after final call
- (Optional) preliminary submission to check completeness: \approx 45 days before deadline
- \blacktriangleright Package-submission deadline: ≈ 5 months after final call

- 1. Introduction: NIST/PEC/Threshold
- 2. The "Threshold" Call and FHE
- 3. Concluding remarks

FHE = fully-homomorphic encryption. NIST = National Institute of Standards and Technology. PEC = privacy-enhancing cryptography

Assorted brief notes

The call covers other technicalities:

- Requirements about system model and security formulation
- Feedback: does FHE deserve some exception or add-on?
- ZKPs for FHE are also mentioned

More about the process:

- A submission can jointly cover a family of schemes
- How will this community compose teams for submission?
- ▶ Would a further clarification session/alignment be useful before the final call?

Concluding remarks

Intended progress

- 1. Feedback that helps improves the final call version, facilitating good submissions.
- 2. Submissions of FHE schemes along with their threshold schemes.
- 3. Public analysis clarifying for technical recommendations (and subsequent processes).

Concluding remarks

Intended progress

- 1. Feedback that helps improves the final call version, facilitating good submissions.
- 2. Submissions of FHE schemes along with their threshold schemes.
- 3. Public analysis clarifying for technical recommendations (and subsequent processes).

Ohter notes useful notes to recall:

- ▶ {"threshold is useful" and "FHE \in PEC" } \Rightarrow FHE subcategory in the threshold call.
- ▶ Not a competition for a selection, but rather a gathering of reference material.
- ▶ Work developed with other SDOs and in community efforts is also welcome.

Thank you for your attention! Questions?

A NIST Call for Threshold-Friendly & Quantum-Resistant Fully-Homomorphic Encryption (FHE) Schemes

Presented at the 6th HomomorphicEncryption.org Standards Meeting

luis.brandao@nist.gov — March 23, 2023 @ Seoul (South Korea)

- ▶ NISTIR 8214C ipd: NIST First Call for Multi-Party Threshold Schemes (Initial Public Draft)
- Public comments: send via email nistir-8214C-comments@nist.gov, by April 10th, 2013
- PEC Website: https://csrc.nist.gov/projects/pec
- PEC-Forum: https://list.nist.gov/PEC-forum
- MPTC Website: https://csrc.nist.gov/projects/threshold-cryptography
- MPTC-Forum: https://list.nist.gov/MPTC-forum