Key Committing Security of AEZ and More

<u>Yu Long Chen</u>, Antonio Flórez-Gutiérrez, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko Minematsu, Nicky Mouha, Yusuke Naito, Ferdinand Sibleyras, Yosuke Todo

Data Confidentiality and Authenticity

Data confidentiality

- No outsider can learn anything about data
- Data authenticity
 - No outsider can manipulate data

Authenticated Encryption

Dec outputs $M = \text{Dec}(N, A, C, T) \in \{0, 1\}^{|C|}$ if T is correct and \perp otherwise We require that $\text{Dec}_{K}(N, A, \text{Enc}_{K}(A, M)) = M$

Key Committing Security

- Example: Security as proposed by Bellare and Hoang @Euro22
- Probability that an attacker can find two inputs of AE that have the same ciphertext (including tags)
 - CMT-1: different keys
 - CMT-3: different (K, N, A) pairs
 - CMT-4: different (K, N, A, M) pairs
 - CMT-3 = CMT-4 has been proven by BH22

Encode-then-Encipher via Wide-Block Cipher

- First encode the message (for example append with zeros), then apply WBC for enciphering
- Analyzing key committing security against EtE
 - WBC itself is not an AE and we need to specify where to insert $0^{ au}$
- In this work, we focus on
 - AEZ: appending is specified
 - Adiantum: prepend and append with zeros
 - HCTR2: prepend and append with zeros

- EtE using 128-bit TBC
 - Zero string concatenation at the end of plain text
 - Length of zero string is an arbitrary byte, not considered to exceed 128 bits
 - Input length = plaintext length + τ = ciphertext length
- Input length 256 bits or more: AEZ-core (this work!)
- Input length less than 256 bits: AEZ-tiny
 - Feistel with a minimum of 8 rounds
 - Number of steps varies depending on input length

Key Committing Security of AEZ

- O(1) CMT-4 attack against general AEZ
- CMT-1 attacks
 - $\tau = n$: birthday complexity O(2^{*n*/2})
 - τ < n: attack based different algorithms
 - Tightness of attack against general AEZ -> Provable security result for τ = n, assuming the primitives are ideal

Collision-Finding for CMT-1 Attacks Against AEZ-Core

CMT-1 Attack Complexities Against gAEZ

• attack based on 4-tree algorithm, repeated 4-tree algorithm, and birthday attack

Differential Propagation in CMT-1 Attack Against Full-Spec AEZ

- Underlying TBC follows the full specification of AEZ-core (full-spec AEZ)
 - Choose distinct keys (K, K') -> the difference in certain intermediate states becomes 0
 - CMT-1 attack against full-spec AEZ with complexity O(2²⁷)
 - A numerical example of CMT-1 attack

EtE-Adiantum

- WBC designed by Crowley and Biggers [CB18]
- Widely deployed in practice as a disk sector encryption scheme on Android devices
- NH [BHK+99] and Poly1305 [Ber05], AES-256, and XChaCha12
- Results:
 - O(1) CMT-4 attack against both prepending and appending cases
 - CMT-1 attack with birthday complexity
 - $O(2^{n/2})$ for appending case
 - $O(2^{\tau/2})$ for prepending case
 - Tightness of attack against prepending case -> provable security result assuming cryptographic permutation inside XChaCha12 is ideal
 - Using s-way collision probability of permutation-based Davies-Meyer

Collision-Finding for CMT-1 Attacks Against Adiantum

XChacha's Block Function

- Input: key K (256 bits), nonce = (n1, n2) (128,64 bits)
- Output: Y (512 bits)
- Init = (const (128) || K (256) || n1 (128))
- P = Chacha permutation (20 rounds)
- HChacha(Init) = tr_256(P(Init) + Init)
 - "+" is 32-bit word-wise modular addition (16 additions)
 - "tr_256" concatenates the first and the last 128 bits
- Init' = (const (128) || L (256) || 0^32 || 0^32 || n2 (64))

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03#section-2.2

EtE-HCTR2

- WBC designed by Crowley, Huckleberry, and Biggers [CHB21]
- Based on HCTR [WFW05]
- Polynomial hash function, AES, and XCTR mode of stream encryption
- Results:
 - O(1) CMT-4 attack against both prepending and appending cases
 - CMT-1 attack with birthday complexity
 - $O(2^{\tau/2})$ for appending case
 - $O(2^{n/2})$ for prepending case

Collision-Finding for CMT-1 Attacks Against HCTR2

Summarization

,				
Scheme	CMT-1 A	CMT-1 P	CMT-4 (A & P)	Proof
general AEZ	$O(2^{n/2})$	(not specified)	O(1)	n/2 (Sect. 7.1)
full-spec AEZ	$O(2^{27})$	(not specified)	O(1)	
EtE-Adiantum	$O(2^{n/2})$	$O(2^{n/2})$	O(1)	n/2 (Sect. 7.2)
EtE-HCTR2	$O(2^{n/2})$	$O(2^{n/2})$	O(1)	

Authenticated Enciphering

- Tim Beyne, Yu Long Chen, and Wonseok Choi
- An alternative definition for authenticated encryption
- Follows the work of *Mihir Bellare, Phillip Rogaway:* Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for Efficient Cryptography. (AC2000)
- Key observation: nonce/tag pair has the same relation as the message/ciphertext pair