KIVR: Context-Committing Authenticated Encryption Using Plaintext Redundancy and Application to GCM and Variants

Yusuke Naito (Mitsubishi Electric Corporation)
Yu Sasaki (NTT Social Informatics Laboratories)
Takeshi Sugawara (The University of Electro-Communications)
Authenticated Encryption with Associated Data

\[K, N, A, M \xrightarrow{\Pi_{\text{Enc}}} C, T \]

\[K, N, A, C, T \xrightarrow{\Pi_{\text{Dec}}} \begin{cases} M & \text{if authenticated} \\ \bot & \text{otherwise} \end{cases} \]

- Security of AE is well studied.
- The security of AE schemes is usually proved with formal security notions.
- However, AE schemes are sometimes misused or abused beyond their promise.
Key Commitment

- Farshim et al. initiated the theoretical study in 2017, followed by the real-world attacks.
 - Multi-recipient integrity attack (delivering malicious content to a target user)
 - Partitioning oracle attacks (achieving faster password brute-force attack)

- Without key commitment, an adversary can efficiently find a ciphertext decrypted with multiple keys:
 \[\Pi_{Enc}(K, N, A, M) = \Pi_{Enc}(K', N, A, M) \text{ with } K \neq K' \]

- Conventional AE security notions do not support the key commitment.

- \(O(1) \) attacks are known for GCM, GCM-SIV, CCM, ChaCha20-Poly1305.
In 2022, Bellare-Hoang introduced generalization of key commitment called context commitment.

Key commitment (CMT-1): K is different.

$$\Pi_{\text{Enc}}(K, N, A, M) = \Pi_{\text{Enc}}(K', N', A', M') \text{ with } K \neq K'$$

Context commitment (CMT-4): different values can be located in any of K, N, A, M.

$$\Pi_{\text{Enc}}(K, N, A, M) = \Pi_{\text{Enc}}(K', N', A', M') \text{ with } (K, N, A, M) \neq (K', N', A', M')$$

- CMT-4 guarantees more robust security than CMT-1.
- AE with CMT-4 security is an ongoing research challenge.
Research Directions

There are two possible research directions.

1. Designing a dedicated scheme with committing security.

2. Extending conventional AEs for committing security.

We are taking the second approach. Particularly, we want to salvage GCM to provide CMT-4 security.
Previous Work: Hash-then-Enc (HtE) [BH22]

- HtE generates a temporary key L by a collision-resistant hash H, then compute AE by using L as a key.

- HtE converts CMT-1 secure AE to CMT-4 secure AE.

- Generic conversions: UtC and RtC
 - from any AE to CMT-1 secure AE
 - with ciphertext expansion (ciphertext size is increased).

- By using both, any AE can be converted to CMT-4 secure AE with ciphertext expansion.
Previous Work: Hash-then-Enc (HtE) [BH22]

• GCM cannot be salvaged with HtE without ciphertext expansion (UtC and RtC).

• Modify GCM to be CMT-1 secure.

• Two CMT-1 variants
 • CAU-C1 (a variant of GCM)
 • CAU-SIV-C1 (a variant of GCM-SIV)

• GMAC is modified e.g.
 • by adding the feed-forward or
 • by changing the position of XOR of hash value.
Previous Work: CTX [CR22]

• A hash function is applied to the tag T'' of AE, and the hash value is a tag of the CTX-based AE.

• Verification is done with T.

• CTX converts any AE to CMT-4 secure AE.
Our Goals

Design a CMT-4 conversion with the following goals

• **Construct CMT-4 secure AE for the following classes of CTR mode-based AEs**
 • CTRAE: Enc-then-MAC scheme (including GCM and CAU-C1)
 • CTRSIV: SIV paradigm (including GCM-SIV and CAU-SIV-C1)

• **Avoid ciphertext expansion**
 • The ciphertext size should be preserved to maintain compatibility with the hardware, database, or communication protocol, already deployed.

• **Beyond-the-Birthday-Bound (BBB) Security for Key Size**
 • Commitment is an offline security, i.e., there is no secret and adversaries choose key values.
 • Offline complexity of standard AE security is k bits.
 • Hence, we aim at least greater than $k/2$-bit security for committing security.
Consider a class of AEs s.t. AD A affects the tag generation but does not affect the message/plaintext conversion, such as GCM.

- $C = Enc(K, N, M)$
- $T = Tag(K, N, A, C)$

The birthday attack with distinct AD A breaks the CMT-4 security
- Changing AD A and fixing the other inputs (K, N, M)
- $\Pi_{Enc}(K, N, A, M) = \Pi_{Enc}(K', N, A, M)$ with $A \neq A'$
- Complexity: 2^{t}, where t is the tag size, usually smaller than or equal to the key size.

Without some special features, our goals cannot be achieved.
Our Approach

• We make use of the plaintext contains redundancy to salvage GCM.

Ex. A plaintext in HTTP starts with “HTTP/1.1” which can be used as 8-byte redundancy.

• The redundant part is known to recipients who decrypts the ciphertext, thus can be used as another source of integrity check.

• This is a natural extension of [ADG+22] that design a conversion to CMT-1 security by using the zero padding $M \parallel 0...0$.
 • The zero padding expands the ciphertext length.

• For protocols with redundancy in plaintexts, we can enhance the security without ciphertext expansions by adding redundancy.
Existing Conversion + Plaintext redundancy

HtE + Plaintext Redundancy

- Change AD A and fix the other inputs
- We can find a collision of L with $2^{k/2}$ complexity
- The collision on L yields the collision $\text{HtE}(\Pi_{Enc})(K, N, A, M) = \text{HtE}(\Pi_{Enc})(K', N, A, M)$ with $A \neq A'$.
- Committing security is not enhanced from $k/2$ bits.
Existing Conversion + Plaintext Redundancy

CTX + Plaintext redundancy

- We consider CTRAE including GCM.
 - $C = \text{CTR}(K, N, M)$
 - $T = \text{Tag}(K, N, A, C)$
- Change A and fix the other inputs.
- A collision on T with $2^{t/2}$ complexity
 \[
 \text{HtE}(\Pi_{\text{Enc}})(K, N, A, M) = \text{HtE}(\Pi_{\text{Enc}})(K', N, A, M)
 \] with $A \neq A'$.
- The committing security cannot be enhanced from $t/2$ bits, and usually $t \leq k$.
Our Design: New Conversion KIVR

Generalization of **HtE** + redundancy.

1. Generate temporal data: \((K_T, IV_T, R_T) \leftarrow H(K, N, A)\)
2. Extract redundant data: \(R\)
3. The redundant data \(R\) is masked as \(R \oplus R_T\),
4. Perform the original AE with a key \(K_T\), a nonce \(IV_T\), and the masked redundancy \(R \oplus R_T\) as a plaintext.

\[
(K, N, A) \xrightarrow{H} (K_T, IV_T, R_T)
\]

\[
K_T, IV_T, \epsilon, P_{\text{mix}}(R \oplus R_T, M) \xrightarrow{\Pi_{\text{Enc}}} C, T
\]
CMT-4 Security for KIVR

• We prove the CMT-4 security of KIVR with CTRAE and CTRSIV and with plaintext redundancy.

• Let $tagcol$ be security for tag-collision attacks by changing K, N, A.

• Let $r = |R|$ be the length of redundancy.

• CMT-4 security of CTRAE: $\max\{\frac{r}{2}, tagcol\}$

• CMT-4 security of CTRSIV: $\frac{r}{2} + tagcol$

• $tagcol$:
 • GCM and GCM-SIV: $tagcol = 0$
 • CAU-C1 and CAU-SIV-C1: $tagcol = \frac{t}{2}$
Comparison with Parameter of GCM

- If sufficiently large redundancy is available, KIVR-based schemes achieve BBB-security for the key size.
- For XML and HTTP2 with $r = 192$, KIVR with GCM achieves 96-bit CMT-4 security.
- For PNG and HTTP with $r = 64$, KIVR with CAU-SIV-C1 achieves 96-bit CMT-4 security.

Table 2. CMT-4 security of the instantiations with r-bit redundancy.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>AE</th>
<th>CMT-4 Security w/ $k = 128$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTX [6] + Redundancy</td>
<td>GCM, CAU-C1</td>
<td>64</td>
<td>Prop. 3†</td>
</tr>
<tr>
<td>HtE [4] + Redundancy</td>
<td>GCM</td>
<td>$\min{\frac{r}{2}, 64}$</td>
<td>Prop. 5†</td>
</tr>
<tr>
<td>HtE [4] + Redundancy</td>
<td>CAU-C1</td>
<td>64</td>
<td>Prop. 6†</td>
</tr>
<tr>
<td>HtE [4] + Redundancy</td>
<td>GCM-SIV</td>
<td>$\min{\frac{r}{2}, 64}$</td>
<td>Prop. 7†</td>
</tr>
<tr>
<td>HtE [4] + Redundancy</td>
<td>CAU-SIV-C1</td>
<td>64</td>
<td>Prop. 8†</td>
</tr>
<tr>
<td>KIVR + Redundancy</td>
<td>GCM</td>
<td>$\frac{r}{2}$</td>
<td>Cor. 2‡</td>
</tr>
<tr>
<td>KIVR + Redundancy</td>
<td>CAU-C1</td>
<td>$\max{\frac{r}{2}, 64}$</td>
<td>Cor. 3‡</td>
</tr>
<tr>
<td>KIVR + Redundancy</td>
<td>GCM-SIV</td>
<td>$\frac{r}{2}$</td>
<td>Cor. 5‡</td>
</tr>
<tr>
<td>KIVR + Redundancy</td>
<td>CAU-SIV-C1</td>
<td>$\frac{r}{2} + 64$</td>
<td>Cor. 6‡</td>
</tr>
</tbody>
</table>
We propose a new mode KIVR

- transforms existing AEs to have CMT-4 security
- without increasing the ciphertext size
- by exploiting plaintext redundancy found in practical use cases.

KIVR uses a collision-resistant hash to convert a tuple of \((K, N, A)\) into \((K_T, IV_T, R_T)\), and use them as a key and IV of an underlying AE and the mask value for the redundant data.

Security of KIVR linearly increases with the number of redundant bits \(r\) and can achieve the BBB security for key size with a sufficiently large \(r\).

Thank you for your attention.