The Landscape of Committing Authenticated Encryption

Mihir Bellare

UC San Diego

Viet Tung Hoang

Florida State University

Cong Wu Florida State University

NIST Workshop 2023– October 3, 2023

Classical encryption

Example: CBC, CTR

Provide privacy only

Authenticated encryption (AE)

Example: GCM, OCB, CCM

Provide privacy and authenticity

Many attacks on TLS, WEP, IPSec

Authenticated encryption (AE)

Example: GCM, OCB, CCM

Provide privacy and authenticity

Many recent attacks show that privacy and authenticity are **not enough**

Many attacks on TLS, WEP, IPSec

Authenticated encryption (AE)

Example: GCM, OCB, CCM

Provide privacy and authenticity

Many recent attacks show that privacy and authenticity are **not enough**

What We Need: Committing Security

Intuition: A ciphertext cannot be opened properly under two different contexts (possibly to different messages)

FOR17

What We Need: Committing Security

Intuition: A ciphertext cannot be opened properly under two different contexts (possibly to different messages)

<u>Not</u> supported by standard encryption schemes

FOR17

App: Facebook's message franking

CMT-4: Commit (*K*, *N*, *A*, *M*)

App: Amazon Cloud encryption

CMT-1: Commit just *K*

App: Facebook's message franking

CMT-4: Commit (*K*, *N*, *A*, *M*)

Require hashing A

App: Amazon Cloud encryption

CMT-1: Commit just *K*

App: Facebook's message franking

CMT-4: Commit (*K*, *N*, *A*, *M*)

Require hashing A

App: Amazon Cloud encryption

CMT-1: Commit just *K*

Question #1: Why two notions? Doesn't CMT-4 subsume CMT-1?

App: Facebook's message franking

CMT-4: Commit (*K*, *N*, *A*, *M*)

Require hashing A

App: Amazon Cloud encryption

CMT-1: Commit just *K*

Question #1: Why two notions? Doesn't CMT-4 subsume CMT-1?

Hashing is costly, even for short AD. Most apps only need CMT-1.

App: Facebook's message franking

CMT-4: Commit (*K*, *N*, *A*, *M*)

Require hashing A

App: Amazon Cloud encryption

CMT-1: Commit just *K*

Question #1: Why two notions? Doesn't CMT-4 subsume CMT-1?

Hashing is costly, even for short AD. Most apps only need CMT-1.

Question #2: Is birthday-bound security (64 bits) enough?

BH22

App: Facebook's message franking

CMT-4: Commit (*K*, *N*, *A*, *M*)

Require hashing A

App: Amazon Cloud encryption

CMT-1: Commit just *K*

Question #1: Why two notions? Doesn't CMT-4 subsume CMT-1?

Hashing is costly, even for short AD. Most apps only need CMT-1.

Question #2: Is birthday-bound security (64 bits) enough?

No, here attacks are offline. Should go close to 128-bit security.

BH22

The Landscape of Current Committing AE

CMT-4

The Landscape of Current Committing AE

CMT-4

The Landscape of Current Committing AE

CMT-4

Speed Comparison: CMT-1 Schemes

Speed Comparison: CMT-4 Schemes

Speed Comparison: CMT-4 Schemes

Birthday attack: $|T| \ge 256$

Common View

Commitment = Tag

Birthday attack: $|T| \ge 256$

Our View

Commitment = Whole ciphertext

Commitment = Tag

Our View

Commitment = Whole ciphertext

Birthday attack: $|C| \ge 256$

Common View

Commitment = Tag

Birthday attack: $|T| \ge 256$

Our View

Commitment = Whole ciphertext

Birthday attack: $|C| \ge 256$ Expansion is $\max\{256 - |M|, 128\}$

A special-purpose committing AE

Conventional AE

Committing Concealer

A special-purpose committing AE

Conventional AE

Committing Concealer

[BHW23]

A special-purpose committing AE

Conventional AE

Committing Concealer

No nonce and AD

A special-purpose committing AE

Conventional AE

Committing Concealer

No nonce and AD

[BHW23]

A special-purpose committing AE

Conventional AE

Committing Concealer

No nonce and AD

Short, say 0B – 15B

A special-purpose committing AE

Conventional AE

Committing Concealer

No nonce and AD

Short, say 0B - 15B

A special-purpose committing AE

Conventional AE

Committing Concealer

No nonce and AD

Building Committing Concealer The Hash-then-Mask (HtM) Construction

The HtM construction, conceptual view

Building Committing Concealer The Hash-then-Mask (HtM) Construction

Building Committing Concealer The Hash-then-Mask (HtM) Construction

Using Committing Concealer To Reduce Size

Using Committing Concealer To Reduce Size

It's Time To Have Committing AE Standard?

Many applications need committing security but each has its own (suboptimal) scheme

It's Time To Have Committing AE Standard?

Many applications need committing security but each has its own (suboptimal) scheme

This won't happen if we have committing AE standards. Our schemes offer a good starting choice

It's Time To Have Committing AE Standard?

