HCTR2

Paul Crowley, Eric Biggers, Nathan Huckleberry

Google LLC

2023-10-03
Background: Adiantum

- 2018: *Adiantum: length-preserving encryption for entry-level processors*
- A wide-block mode
- Fast without AES+GHASH instructions
- Efficient on 0.5kB-4kB messages
What we needed

- A wide-block mode
- Fast *with* AES+GHASH instructions
- Efficient on short messages (16B-64B)
- Secure and fully specified
Lots of proposals from around 2005–2009
- CMC, EME, EME*, PEP, TET, HEH, HCH, HSE, HMC...
- HCTR: Wang, Feng, and Wu 2005
- Quadratic security: Chakraborty and Nandi 2008
HCTR

- Simple
- Hash-encrypt-hash structure
- Fast with AES+GHASH instructions
- No ciphertext stealing
- XCTR mode
XCTR mode

- CTR: nonce PLUS counter
- XCTR: nonce XOR counter
- No 128-bit addition required
- No GCM hack
- Little-endian

\[
\begin{align*}
\text{CTR}_k(S) &= E_k(\text{bin}(S + 1)) \\
&\quad || E_k(\text{bin}(S + 2)) \\
&\quad || E_k(\text{bin}(S + 3)) || \cdots \\
\text{XCTR}_k(S) &= E_k(S \oplus \text{bin}(1)) \\
&\quad || E_k(S \oplus \text{bin}(2)) \\
&\quad || E_k(S \oplus \text{bin}(3)) || \cdots
\end{align*}
\]
HCTR issues

- Hash encoding is non-injective
 - $H_h(0) = h = H_h(\lambda)$
- Error in quadratic security proof
- HCTR2 fixes these, and “sands the edges”

```plaintext
procedure HASH(h, T, M)
  return $H_h(M||T)$
end procedure

procedure H(h, X)
  if $|X| = 0$ then
    return $h$
  else
    return polyeval($h$, pad($X$)|| bin($|X|$))
  end if
end procedure
```
HCTR2

- New key-dependent constant L XORed into S
- Rescues quadratic security bound
HCTR2 hash function

- Fixes encoding to be injective
- Handles variable-length tweak
- Length+tweak processed only once
- Uses POLYVAL for speed

```
procedure Hash(\bar{h}, T, M)
    if |M| \mod n = 0 then
        X ← \text{bin}(2|T| + 2)\|\text{pad}(T)\|M
    else
        X ← \text{bin}(2|T| + 3)\|\text{pad}(T)\|\text{pad}(M\|1)
    end if
    return POLYVAL(\bar{h}, X)
end procedure
```
Sanding the edges

- \tilde{h}, L derived from block cipher
- Endianness, field convention specified
- Sample implementation and test vectors
- In Linux kernel now
Quadratic security

- q queries, σ blocks, t time
- H-coefficient based proof

$\text{Adv}_{HCTR2[E]}^{\pm \text{prp}}(q, \sigma, t) \leq \text{Adv}_{E}^{\pm \text{prp}}(\sigma + 2, t + \sigma t') + \left(3\sigma^2 + 2q\sigma + q^2 + 7\sigma + 2\right)/2^{n+1}$
Future work: better than quadratic security?

- This is all still speculative
- Inspired by AES-GCM-SIV
- Per-message keys derived from nonce
- Derive \tilde{h} and L in the same way
- Multi-target security matters if keys are 128-bit
- Proof in ideal cipher model