Evaluating the usability
of the Ascon 1.2 suite

AAAAAAAAAA

$ whoami

Ketrina Yim, 2019

Email Email

' f

—_—
EY

—

——e
"

Snd—

R

DNS server Online mailbox Online mailbox DNS server
- = = = | - — [
o p — - . -~ - | - - . I P — E— e S—
inealimalioe Personal computer Receiver's Email Sender's Personal computer Localimalibax Email
mail server(s) relay(s) mail server(s) N

t ty ty

Il

n
DNS server DNS server DNS server

You Friend

\ '<g>

Renaud et al., 2014

Disclaimer:
all opinions are my own

o0 {] - O B8 & csrc.nist.gov e C [ﬁ + O

E= An official website of the United States government Here's how you know v

N lsr Search CSRC Q = CSRC MENU

Information Technology Laboratory h T

COMPUTER SECURITY RESOURCE CENTER HESOURCELSNIER

UPDATES 2023

Lightweight Cryptography Standardization Process: NIST Selects Ascon
February 07,2023
f v

The NIST Lightweight Cryptography Team has reviewed the finalists based on their submission packages, status updates, third-party ¥ RELATED TOPICS
security analysis papers, and implementation and benchmarking results, as well as the feedback received during workshops and
through the lwc-forum. The decision was challenging since most of the finalists exhibited performance advantages over NIST Security and Privacy: lightweight cryptography

standards on various target platforms without introducing security concerns. R
getp & ty Activities and Products: standards development

The team has decided to standardize the Ascon family for lightweight cryptography applications as it meets the needs of most use
cases where lightweight cryptography is required. Congratulations to the Ascon team! NIST thanks all of the finalist teams and the RELATED PAGES
community members who provided feedback that contributed to the selection.

News Item: Lightweight Cryptography Finalists Announced

NIST's next steps will be to: Event: Lightweight Cryptography Workshop 2023

e Publish NIST IR 8454, which describes the details of the selection and the evaluation process

e Work with the Ascon designers to draft the new lightweight cryptography standard for public comments

e Host a virtual public workshop to further explain the selection process and to discuss various aspects of standardization (e.g.,
additional variants, functionalities, and parameter selections) as well as possible extensions to the scope of the lightweight
cryptography project. The tentative dates for the workshop are June 21-22,2023. More information will be provided in the
upcoming weeks.

NIST Lightweight Cryptography Team

Also see the related NIST news article, NIST Selects 'Lightweight Cryptography'Algorithms to Protect Small Devices.

Focus on understanding real-world failure cases
Test the toolbox with end-users for footguns
Provide structures and incentives for assurance

Explore secure channels and record protocols

Focus on understanding real-world failure cases

b‘j noodgevaucn
112

EXECUTION
BRIDGE

ACTION
SPECIFICATION

&
‘)

-/,

(A
&)
& %
A o,
N o

A8
&
4.

GOALS

PHYSICAL INTERPRETATION

SYSTEM

EVALUATION
BRIDGE

SYSTEM DEVELOPMENT

Congress and Legislatures

Lobbying
Hearings and open meetings
Accidents

Government Reports
Legislation l T

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Regulations Certification Info.
Stan.d.ard.s Change reports
Certification Whistleblowers
Legal penalties Accidents and incidents
Case Law
Company
Management
Safety Policy Status Reports
Standards l Risk Assessments
Resources Incident Reports
Policy, stds. Project

) Hazard Analyses >
Test Requirements _
Review Results Human Controller(s)
Implementation i T A
and assurance Automated |
Safety Revised ; Controller :
Reports operating procedures V v :
y Hazard Analyses — - '
. Software revisions | Actuator(s) | [Sensor(s) |
Manufacturing Documentation Hardware replacements
Management Design Rationale | Physical [|
. Process
Work | safety reports Maintenance

Procedures

'

> Management =

Safety Standards Hazard Analyses
Progress Reports

Design,
Documentation

Safety Constraints
Standards

Test reports

Hazard Analyses
Safety-Related Changes
Progress Reports

SYSTEM OPERATIONS

Congress and Legislatures

Government Reports
Lobbying

Hearings and open
meetings

Accidents

Legislation

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,

Insurance Companies, Courts
Re [4
gulations
Standards
Certification
Legal penalties
Case Law

Accident and incident
reports

Operations reports
Maintenance Reports
Change reports
Whistleblowers

y

Company
Management

Safety Policy
Standards
Resources

Operations Reports

Operations
Management

Change requests
Audit reports

Work Instructions

Problem reports
Operating Assumptions

Operating Procedures

Operating Process

audits ™ and Evolution

work logs
inspections

Manufacturing

Problem Reports
Incidents

Change Requests
Performance Audits

£
£
F o=
f

Cryptographic standards and guidelines should be
chosen to minimise the demands on users and
implementers as well as the adverse consequences
of human mistakes and equipment failures.

Many stages of cryptographic research from design to deployment

b Warning;:
Explore space of cryptosystems > waterfall
Study algorithms for the attackers data flow,

> undesirable.
I

P
I
I

Define the goals

Focus on secure cryptosystems

Study algorithms for the users [~

Study implementations on real hardware

<

Study side-channel attacks, fault attacks, etc.

Focus on secure, reliable implementations [~

Focus on implementations meeting performance requirements

Integrate securely into real-world applications [~

Y © H 4 A

Il est nécessaire, vu les circonstances
quil en commandent ’application,
que le systeme soit d’un usage facile.

Why Cryptosystems Fail

Ross Anderson
University Computer Laboratory

Pembroke Street, Cambridge CB2 3QG
Email: rjai4@cl.cam.ac.uk

Abstract

Designers of cryptographic systems are at a disadvantage to
most other engineers, in that information on how their sys-
tems fail is hard to get: their major users have traditionally
been government agencies, which are very secretive about
their mistakes.

In this article, we present the results of a survey of the
failure modes of retail banking systems, which constitute
the next largest application of cryptology. It turns out that
the threat model commonly used by cryptosystem designers
was wrong: most frauds were not caused by cryptanalysis or
other technical attacks, but by implementation errors and
management failures. This suggests that a paradigm shift
is overdue in computer security; we look at some of the al-
ternatives, and see some signs that this shift may be getting
under way.

quiries are conducted by experts from organisations with a
wide range of interests - the carrier, the insurer, the man-
ufacturer, the airline pilots’ union, and the local aviation
authority. Their findings are examined by journalists and
politicians, discussed in pilots’ messes, and passed on by
flying instructors.

In short, the flying community has a strong and insti-
tutionalised learning mechanism. This is perhaps the main
reason why, despite the inherent hazards of flying in large
aircraft, which are maintained and piloted by fallible hu-
man beings, at hundreds of miles an hour through congested
airspace, in bad weather and at night, the risk of being killed
on an air journey is only about one in a million.

In the crypto community, on the other hand, there is
no such learning mechanism. The history of the subject
(K1}, [W1]) shows the same mistakes being made over and

over again; in particular, poor management of codebooks
Y Y Y. L.yt

V- 2(- X

A HISTORY OF US. COMMUNICATIONS SECURITY (U)

(The David G. Boak Lectures)
HANDLING INSTRUCTIONS

. This publication consists of covers and numbered pages 1 to 101 inclusive. Verify presence of each

page upon receipt.

. Formal authorization for access to"SECRET- material is required for personnel to have access

to this publication.

. This publication will not be released outside government channels without approval of the Di-

rector, National Security Agency.

. Extracts from this publicstion may be made for classroom or individual ipstruction purposes
only. Such extracts will be classified-SECRET NOFORN and accounted for locally until de-

stroyed.

. ‘This publication will not be carried in aircraft for use therein.

NATIONAL SECURITY INFORMATION

Unanthorized Disclosore Subject to Criminal Sanctions

NATIONAL SECURITY AGENCY

FORT GEORGE G. MEADE, MARYLAND 20755

Revised July 1973

Cleasified by Director, NSA, pursuant to NSA, Masoal 123-2,
Exempt frem General Declsasification Schedule

of Execntive Order 11652 Exempt Category 2.
Deciamificstion date canpat be determined.

oRIGINAL 1
Reverse (Page 2) Blank

| DECLASSIFIED UNDER AUTHORITY OF THE

INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL,

1 E.0.13526, SECTION 5.3(b)(3)

ISCAP APPEAL NO. 2009-049, document no. 1
DECLASSIFICATION DATE: October 14, 2015

A HISTORY
OF
U.S. COMMUNICATIONS SECURITY (U)

THE DAVID G. BOAK LECTURES

VOLUME I1

NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MARYLAND 20755

The information contained in this publication will not be disclbscd to foreign nationals or their representatives
without express approval of the DIRECTOR, NATIONAL SECURITY AGENCY. Approval shall refer
specifically to this publication or to specific information contained herein.

JULY 1981

CLASSIFIED BY NSA/CSSM 1232
REVIEW ON 1| JULY 2001

DECLASSIFIED UNDER AUTHORITY OF THE
INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL,
E.O. 13526, SECTION 5.3(b)(3)

ISCAP APPEAL NO. 2009-049, document no. 2
DECLASSIFICATION DATE: October 14, 2015

NOT RELEASABLE TO FOREIGN NATIONALS

—SECRET

HANDLE VIA COMINT CHANNELS ONLY

ORIGINAL
(Reverse Blank)

Requirement R ()

$ Assumption £ A

Specification SP

- | ~

System
S
- / —
B
| Adversary A
Environment £

CYBER SAFETY REVIEW BOARD

g

- S
] e J IR

-
o el
..

) |--)\ {
Lo eun- 5

B (—-~
\-’) e

:
:
N

i n

Review of the December
2021 Log4j Event

Publication: July 11, 2022
Cyber Safety Review Board

Test the toolbox with end-users for footguns

PGPkeys =
PGPkeys
Name Yalidity Trust Creation Size
w B= Alma Whitten <almR2cs.cmu.edu> BN (NN 9/24/98 1024/2048 |~
v G Alma Whitten <alma@cs.crmu.edu> 1
A Alma Whitten <alma@cs.cru.edu’ 9724798
D == il Blanke <wib@pgp.com> |] | | s/14/97 1024 /4096
D = Brett 4. Thomas <bat@pgp.com> | | | 5/19/97 1024 /2048
D ®= Jason Bobier <jason@pgp.com> | | | 6/4/97 1024 /2059
D @2 Jeff Harrell <jeff@pgp.com> |] | | s/z0/97 1024 /2048
D O=n Jeffrey I. Schiller <jis@mit.edu> | | | 8/27/94 1024
P ®= jude shabry <jude@pgp.com> | | | | 6/9/97 1024 /2048
D oo Lloyd L. Chambers <lloyd@pgp.com> | | | 5/20/97 1024 /4096
D @2 Mark B. Elrod <elrod@pgp.com? | | | 6/4/97 1024/2048 [
D @2 Mark H. Weaver <mhw@pgp.com> | | | 6/10/97 1024 /2048 7
Z

[& File Edit LS00 Help

PGPtools 2=

PGPkeys Encrypt Sign Encrypt & Sign Decrypt/VYerify
DPrag users from this list to the Recipients list: Yalidity Trust Size 2)
G Michael lannamico <mji@pgp.com> | | | | 102474021 |~
[3 Noah Dibner Salzman <noah@cytachrome.com? |] | | 102472048
G MNoah Dibner Salzman <noah@pgp.com> |] |] 102472048
G PGP Support Key DSS <pgpsupport@pgp.com> | | |] 1024/1024
[3 Philip Nathan <philipn@pgp.com> | | [| 102472048
G Philip R. Zimmermann <prz@pgp.com> |] |] 102472048
G Pretty Good Privacy, Inc. Corporate Key |] |] 102472048
[3 Wil Price <wprice@pap.com> | | | | 102474000
G Will Price <wprice@primenet.com?> |] |] 102474000

w
Recipients: Yalidity Trust Size
G Jason Bobier <jbobier@prismatix.com?> |] |] 102472059 [~
Q Philip R. Zimmermann <prz@acm.org> | | |] 1024

w

— Options

Text Output

Force MacBinary

Cancel | “ 0K ll

Sign 3£S

Add Name...

Set Default D PGPkeys
PG Pu New Key...
) Info...

Revoke

ER

Import Keys... €M

b _ Export Keys...

FEE

Get Selected Key #G6
Send Selected Key 3K
Find New Keys 3 F

du>

T 'VE BEEN POSIING 1Y
PUBLIC KEY FOR 15 YEARS

NOLJ, BUT NO ONE. HAS
EVER ASKED ME FOR IT
OR USED IT FOR ANYTHING
AS FAR AS T (AN TELL.

To strengthen systems across the board,
security professionals must focus on
creating developer-iriendly approaches.

Challenges in Authenticated Encryption

Editor
Daniel J. Bernstein

Contributors (alphabetical order; affiliations included for identification only)
Jean-Philippe Aumasson (Kudelski Security, Switzerland)
Steve Babbage (Vodafone, UK)

Daniel J. Bernstein (University of Illinois at Chicago, USA;
Technische Universiteit Eindhoven, Netherlands)
Carlos Cid (Royal Holloway, University of London, UK)
Joan Daemen (STMicroelectronics, Belgium;
Radboud Universiteit, Netherlands)

Orr Dunkelman (University of Haifa, Israel)

Kris Gaj (George Mason University, USA)

Shay Gueron (University of Haifa, Israel; Intel, Israel)
Pascal Junod (HEIG-VD, Switzerland)

Adam Langley (Google, USA)

David McGrew (Cisco, USA)

Kenny Paterson (Royal Holloway, University of London, UK)
Bart Preneel (KU Leuven, Belgium)

Christian Rechberger (Danmarks Tekniske Universitet, Denmark)
Vincent Rijmen (KU Leuven, Belgium)

Matt Robshaw (Impinj, USA)

Palash Sarkar (Indian Statistical Institute, Kolkata, India)
Patrick Schaumont (Virginia Tech, USA)

Adi Shamir (Weizmann Institute, Israel)

Ingrid Verbauwhede (KU Leuven, Belgium)

17. July 2015 (workshop) + 1. March 2017 (white paper)

Revision 1.05

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the H2020-ICT program under contract H2020-ICT-2014 no. 645421. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Contents

Executive summary
Audience

Framework and history

0 A brief introduction to authenticated encryption

0.1 Confidentiality
0.2 Integrity . . .
0.3 Performance .

1 The security target is wrong
1.1 Side-channel attacks—the security target istoolow
1.2 Birthday attacks—the security target istoolow
1.3 Data limits—the security target is too high
1.4 Attack economics—the security target is too high
1.5 Quantum computers—the security target istoolow

2 The interface is wrong

2.1 Streams . . .
2.2 Files
2.3 Noisy channels

2.4 Software engineering and hardware engineering

3 The performance

target is wrong

3.1 Denial-of-service attacks Lo
3.2 Veryshortinputs
3.3 Higher-level protocolso

3.4 Flexibility . .
3.5 CPU evolution

4 Mistakes and malice
4.1 Error-prone designs L.

4.2 Unverifiability

4.3 Miscommunication of security prerequisites
4.4 Incorrect proofs L
4.5 Malicious cryptographic software and hardware

N —

UL W W

© © o o I N

15
15
15
15
16
16

Search projects Q Help Sponsors Login Register

ascon 0.0.9

ép'ip install asconé Ly

Released: Mar 24, 2023

Lightweight authenticated encryption and hashing

Navigation

= Project description

O Release history

& Download files

Project links

A Homepage

Statistics

View statistics for this project via
Libraries.io (4, or by using our public
dataset on Google BigQuery (4

Project description

Python implementation of Ascon

This is a Python3 implementation of Ascon v1.2, an authenticated cipher and hash function.

https://github.com/meichlseder/pyascon

Ascon

Ascon is a family of authenticated encryption (AEAD) and hashing algorithms designed to be lightweight and easy to

implement, even with added countermeasures against side-channel attacks. It was designed by a team of
cryptographers from Graz University of Technology, Infineon Technologies, and Radboud University: Christoph
Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlaffer.

Ascon has been selected as the standard for lightweight cryptography in the NIST Lightweight Cryptography
competition (2019-2023) and as the primary choice for lightweight authenticated encryption in the final portfolio of
the CAESAR competition (2014-2019).

Mitigations
likelihood & impact

Attack paths
prioritised scenarios

Architecture
data flow & trust zones

Threat events
hypothesised exploits

Key assets
targeted elements

Entry points
external interfaces

<>

Web Application

i

Mobile Application

Source Code

API to external parties

S

Architectural diagrams

O

Processes

Where data will
change from one
form to another.

—_—

Data flows
Represents data
moving from one
part of the system
to elsewhere.

Data stores
Indicates data at
rest, i.e. a place

for longer storage.

Terminators
Also called actors

or external entities.

These are the
limits of analysis.

Trust zones

Can be drawn as
trust boundaries,
i.e. dotted lines

between elements.

Confidentiality
Integrity
Availability
Authentication
Authorisation

Accountability

Information disclosure
Tampering
Denial of service

Spoofing

Elevation of privilege

Repudiation

6.3 SR-2: Threat model
6.3.1 Requirement

A process shall be employed to ensure that all products shall have a threat model specific to
the current development scope of the product with the following characteristics (where
applicable):

a) correct flow of categorized information throughout the system;

b) trust boundaries;

C) processes;

d) data stores;

e) interacting external entities;

f) internal and external communication protocols implemented in the product;

g) externally accessible physical ports including debug ports;

h) circuit board connections such as Joint Test Action Group (JTAG) connections or debug
headers which might be used to attack the hardware;

i) potential attack vectors including attacks on the hardware, if applicable;

j) potential threats and their severity as defined by a vulnerability scoring system (for
example, CVSS);

k) mitigations and/or dispositions for each threat;

|) security-related issues identified; and

m) external dependencies in the form of drivers or third-party applications (code that is not
developed by the supplier) that are linked into the application.

The threat model shall be reviewed and verified by the development team to ensure that it is
correct and understood.

The threat model shall be reviewed periodically (at least once a year) for released products
and updated if required in response to the emergence of new threats to the product even if
the design does not change.

Any issues identified in the threat model shall be addressed as defined in 10.4 and 10.5.

https://www.nen.nl/en/nen-en-iec-62443-4-1-2018-en-245178

Medtronic, 2006

Components
Data flows
Crown jewels
Trust zones

Assumptions

Threats (STRIDE)
Prioritisation
Countermeasures
Security testing

Follow-up

Silent ‘pair programming’

— Don’t want to break the flow
— Switch every five minutes
— Apply the refinement approach

10 min. Outline the program’s structure as comments

What message(s) will you be sending/receiving?
Which algorithm(s) will you be using for this?

10 min. Write pseudocode to make your ideas tangible
20 min. Translate your pseudocode into Python code

https://pypl.org/p/ascon
$ pip install ascon

>>> import ascon

>>> ascon.[tab][tab]
>>> data = b"..."

>>> print(data.hex())

Mail your commented code to
ascon@arnepadmos.com

Phase 1 — Comments
Alignment of flows
and our threat model

Phase 2 — Pseudocode
Match of structure to
messages and threats

Phase 3 — Source code
Compare comments
to the functions used

Exploratory initial qualitative observations:

— Zero, one, or just a couple of parameters passed
— Wrapper functions taking a message as input
— Hardcoded or empty nonce/key, e.g. in wrapper
— Parameters to library appearing out of thin air

— No key diversification, error handling, etc.

#1importing ascon

#create a string that contains the byte string
#sending encrypted data to the sensor
#decrypting the data

import ascon
def encrypt():
key = b"SECRETSAREHIDDEN"
message = b"hALLO DIT IS MIJN MESSAGE MET DE VOLGENDE WAARDE: "
nonce = bytes(16)
assoclateddata = b"RELATEDDATA™

X = ascon.encrypt(key, nonce, associateddata, message, variant="Ascon-80pq")
return X

#decrypting the data

def decrypt():
key = b"SECRETSAREHIDDEN"
nonce = bytes(16)
assoclateddata = b"RELATEDDATA™
y = ascon.decrypt(key, nonce, associateddata, x, variant="Ascon-80pq")

return y

import ascon # Import the ASCON module

ascon = ascon.ASCON() # Create an ASCON object
data = b"" # Create an empty byte array
for i in range(@, 100): # Loop 100 times
data += bytes([i]) # Add the current value of i to the data array

+:

def send_encrypted_message(message): Define a function to send an encrypted message
ascon.send(ascon.encrypt(message)) # Encrypt the message and send it

+:

Define a function to recelive an encrypted message
Receive the message and decrypt it

def receive_encrypted_message():
return ascon.decrypt(ascon.receive())

H:

+:

Define a function to send an encrypted acknoledgement
Encrypt the acknoledgement and send it

def send_encrypted_ack():
ascon.send(ascon.encrypt(b"\x06"))

+:

+:

Define a function to receive an encrypted acknoledgement
Receive the acknoledgement and decrypt it

def receive_encrypted_ack():
return ascon.decrypt(ascon.receive())

+:

print(data.hex()) # Print the data in hexadecimal format

import ascon

def get_data():
message = ascon.encrypt('give data')
sensor = " XX-=XX=XX-XX-XX-XX"

data = ascon.decrypt(send(message,sensor)) # send message to mac sensor and encrypt + [...]

if data != NULL:
data 1s present so we send the data back
message = 'ack’
return data

elif data = NULL:
1f no resonse 1s given, try again
get_data()

def processdata():
data = get_data()
1f data < 4.0:
ins_pump() # send prompt for pump to pump insulin
elif data > 7.0:
alert_message() # alert on screen that glucose is too high

messages

#data 1s gatherd from sensor and send to the pump
#data is encrypted (Ascon128)

#pump send a request

#get and ack from the pump

#message auth before sending the data with(ascon—-Mac)

who :

#data 1s gatherd on the sensor
#data 1s sent to the pump

#ack from pump

processing

#gathering of data from the sensor

#sending of data from sensor to pump
#decryptin of data on the pump

#sending of ack from the pump to the sensor

#pseudo:
#def message_auth(mac-sender, mac-reciever)

#send auth message from mac-sender to mac reciever
#1f mac_reclever == mac_reclever :

PHASE 1

Sensor:
send sugarlevels, authentication, checksum
send ack received, authentication, checksum
send battery level // if battery is low send alert
log battery level // if abnormal send alert
log connection // 1if connection behaviour is abnormal drop connection for 10 min.

Pump:
send ack, authentication, checksum
log 1insulin injection

PHASE 2

+

check authentication by checking authentication message
check integrity by checking the checksum
check elevation of privilege by checking the log of the battery

+H:

+

PHASE 3

import ascon
from time import sleep
from time import perf_counter

def authentication():
id = 'apparaatnaam’
hash = 'hash'
encrypted_auth = ascon.encrypt(id + hash)
return encrypted_auth

def send ack():
encrypted_auth = authentication()
ack = 'message_receilived’
return encrypted_auth, ack

def day_log_battery():
log = []
X = True
tic = perf_counter()
while X == True:
battery_level = check_battery_level(sensorid)
log.append(battery_level)
sleep(300) # 300 seconds = 5 min
toc = perf_counter()
if toc - tic == 86400: # 86400 seconds = 1 day
X = False
return log

There 1s a sensor and a pump, which 1s sending data from sensor to pump.
There will be a acknowledgement from pump to sensor.

The data will be send in integers.

Spoofing = act as an pump.

Tampering = interrupt data.

Information disclosure = intercept and capture sensor data.

DOS = battery drainage and send garbage.

#Psuedocode

#loon]

def data_encrypt(key, nonce, associateddata, plaintext, data):

ascon.encrypt(key, nonce, associateddata, plaintext, variant="Ascon-128")
data = b"blahblahblah"

print(data.hex())

return data.hex

def data_decyrpt(key, nonce, associateddata, plaintext, data):

ascon.decrypt(key, nonce, associateddata, plaintext, variant="Ascon-128a")
data = b"blahblahblah"

print(data.hex())

return data.hex

#Sensor:

measure blood

create uid for message

encrypt message + uid

Send ecnrypted message to pump

1f ack with uid not received in less than 10 seconds, send message again.
after ack: uid + 1

#Pump:

receive data

decrypt data

send ack to sensor with uid

send insulilne

if uid 1s lower than or equal to last_uid, drop package
otherwise: send insuline and set last uid to current uid

|
=

uid

def sensor_send():

last_five = []
measurement = random.choice([1, 2, 3])
message = str(uid) + ':' + str(measurement)

b = message.encode('utf-8")
message = message.hex()

Random ideas for future work:

— Use of ‘AEAD’ and ‘XOF’, not ‘MAC’ or ‘hash’
— Define standard serialisation, e.g. AD |n | C| t
— Appropriate parameter ordering for functions
— Creation of a compatible user-friendly wrapper

— Impact of programming paradigm on output

RC 9265 (#40713) 2/17/82
Computer Science 6 pages

Using the ""Thinking-aloud" Method in Cognitive Interface Design

Clayton Lewis

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract: "'Thinking-aloud" is a2 method for studying mental processes in which participants
are asked to make spoken comments as they work on a task. The method is appropriate for
studying the cognitive problems that people have in learning to use a computer system. This

note discusses the strengths and weaknesses of the method, and gives some suggestions about
its use based on laboratory experience at Yorktown.

SCA Evaluation & Benchmarking of
Finalists in the NIST Lightweight
Cryptography Standardization Process

Jens-Peter Kaps
& Kris Gaj

/GEORGE
MASON

UNIVERSITY

Communication/—}

Communication

Impediments

Environmental
Stimuli

Interference

Human Receiver

Personal
Variables

Demographics
and Personal
Characteristics

Knowledge
and
Experience

Intentions

Attitudes
and Beliefs

Motivation

Capabilities

Communication Communication

Application

Delivery

Processing

Attention Switch

v

Attention
Maintenance

v

Comprehension

v

Knowledge
Acquisition

v

Knowledge
Retention

v

Knowledge
Transfer

—>

Behavior

Y

How might we How would you
integrate usability like your designs
into our process? to be evaluated?

Provide structures and incentives for assurance

NIST Internal Report
NIST IR 8454

Status Report on the Final Round of
the NIST Lightweight Cryptography
Standardization Process

Meltem Sonmez Turan
Kerry McKay
Donghoon Chang

T ' O OAs ol aVAaYaY E Dﬂﬂﬂlﬂﬂm

Software performance Protected performance

— AScon — ASscon

— GIFT-COFB * — ISAP

— SPARKLE — Xoodyak

— Xoodyak — TinyJAMBU

— TinyJAMBU

Hardware performance Modified after external analysis
— Ascon — Grain-128AEAD

— Xoodyak — TinyJAMBU

— TinyJAMBU

* might be vulnerable to a cache-timing attack

Ascon Xoodyak

There are some additional considerations,
such as nonce-misuse security, releasing
unverified plaintext security, the impact of
state recovery, and post-quantum security
of the candidates.

Ascon Xoodyak

Xoodyak 1s a permutation-based AEAD and hashing scheme. Xoodyak 1s built from a
fixed 384-bit permutation (called Xoodoo) operated 1in Cyclist mode. The design approach
of Xo00doo 1s closely related to that of the KECCAK permutation. The 384-bit state 1s
arranged 1n a three-dimensional array of 3 x 4 x 32 bits, nonlinearity 1s provided by sim-
ple operations on 3-bit columns, linear mixing 1s provided by mixing between sheets and
moving the bits within the sheets around, and a constant addition ensures that there 1s some
difference between rounds. Cyclist mode takes a fixed permutation and provides the func-
tionality of both hashing (sponge mode) and AEAD (duplex mode) along with some new
functionality, including tuple hashing, XOFs, and the generation of rolling subkeys.

Submission updates. In the final round, the key and nonce are processed together in a single
call instead of separately in two calls, resulting in 12 fewer rounds needed to compute,
which leads to fast processing of short messages.

Variants. The variants of the Xoodyak family are listed below.

Key S.lze Noonce. size ng S.lze .Ra{e C.apa.czty 4B T
(1n bits) (1n bits) (in bits) (1n bits) (in bits)

Xoodyak 128 128 128 192 192 12

AEAD variants

Digest size Rate Capacity
(nbits) (inbits) (inbits) T oUnds
Xoodyak 256 130 254 12

| XOF variants

Hash variants

submitters 1dentify all known intellectual property that could be infringed by implementing
their candidate algorithm. Among the finalists, applicable patents were only identified
for PHOTON-Beetle [31]. After the review process was completed, intellectual property
considerations did not factor into decisions made during the selection process.

2.2.1. Selection of ASCON

After evaluating the finalists according to the criteria presented above, NIST has selected
the ASCON family for standardization.

The ASCON family includes AEAD and hash functions, as well as additional XOFs. This
allows 1t to satisfy a wide range of application needs and there 1s low additional cost to
implement additional functionalities thanks to its permutation-based design.

ASCON 1s the most mature of the finalists in terms of security. While some of the other
finalists were not published prior to the lightweight standardization process, the AEAD
variants of the ASCON family had already been presented and analyzed as part of the
CAESAR competition.” Three profiles were created during the competition, including one
for lightweight authenticated encryption. Ultimately, the AEAD variants of ASCON were
selected as the primary choice for lightweight applications in the final CAESAR portfolio.
ASCON’s maturity can also be seen in the tweaks for the final round, where there were
additional variants added but none of the second-round variants were modified. This 1s in
contrast to some other finalists that included design tweaks to address attacks.

With ASCON’s long history comes a wealth of analyses. It was the submission with the

most third-party analysis and implementations. Despite the head-start on cryptanalytical
attacks, ASCON has remained strong. AEAD variants of the ASCON family provide a high

5. Next Steps

In June 2023, NIST will host the Sixth Lightweight Cryptography Workshop to further
explain the selection process and to discuss various aspects of standardization. Among the
topics of interest are additional variants, functionalities, and parameter selection. There
has been public interest 1in possible extensions to the scope of the lightweight cryptography
project. In particular, the community has expressed interest in the development of MAC
and deterministic random bit generator standards based on the ASCON permutation.

NIST will work with the ASCON designers to draft the new lightweight cryptography
standard. There will be a public comment period of at least 45 days during which NIST
will solicit public feedback on the draft and publish the comments that were received. NIST
will address each of the comments by making minor edits to the document or noting issues
raised for future consideration.

The final version of NIST’s ASCON standard will be published shortly after public com-
ments have been resolved. At this time, the validation tests and procedures will be de-
veloped, followed by inclusion in validation processes under the cryptographic algorithm
validation program and cryptographic module validation program.

Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024
Journal of Research of the National Institute of Standards and Technology

Development of the Advanced Encryption
Standard

Miles E. Smid

Formerly: Computer Security Division,
National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

mesmid@verizon.net

Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication
discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic
algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the
U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s
development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the
Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and
Technology, where he was responsible for the AES development.

Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security
requirements, SKIPJACK.

Accepted: June 18, 2021
Published: August 16, 2021; Current Version: August 23, 2021

This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST.

https://doi.org/10.6028/jres.126.024

1. Introduction

In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it
was going to specify a new cryptographic algorithm standard for the protection of U.S. government and
commercial data. The current standard was showing signs of age and would not be up to the task of
providing strong security much longer. NIST could step aside and let some other entity manage the
development of new cryptographic standards, it could propose a short-term fix with a limited lifetime, or it
could establish a procedure to develop a completely new algorithm. In January 1997, NIST decided to
move forward with a proposal for developing an Advanced Encryption Standard (AES), which would be
secure enough to last well into the next millennium. In December of 2001, after five years of effort, the
finished standard was approved and published. The journey from initial concept to final standard was not
straightforward. This paper covers the motivation for the development of the AES, the process that was
followed, and the problems that were encountered and solved along the way. It documents a significant
milestone in the history of NIST’s computer security program, which will be celebrating its 50th
anniversary in 2022.

1 How to cite this article:
Smid ME (2021) Development of the Advanced Encryption Standard.
J Res Natl Inst Stan 126:126024. https://doi.org/10.6028/jres.126.024

NISTIR 8319

Review of the Advanced Encryption
Standard

Nicky Mouha

This publication is available free of charge from:
https://do1.org/10.6028/NIST.IR.8319

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8319.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8319.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8319.pdf
https://nvlpubs.nist.gov/nistpubs/jres/126/jres.126.024.pdf
https://nvlpubs.nist.gov/nistpubs/jres/126/jres.126.024.pdf
https://nvlpubs.nist.gov/nistpubs/jres/126/jres.126.024.pdf

N Isr Modes of Operation

HOME Home Page

Guidelines for Submissions of Modes of Operation

Submissions should specify a mode of operation for a symmetric (secret) key block cipher algorithm. At a minimum, the mode should support underlying
block ciphers with key-block combinations of 128-128, 192-128, and 256-128 bits. However, the specification should be generic — i.e., written to handle
other key-block combinations, if they can be supported. Example modes include, but are not limited to, techniques for performing encryption, message
authentication, hashing, and random bit generation. It will be helpful to receive variations of Counter mode arising from alternative methods/guidelines for
prescribing the generation of counters.

NIST requests that submissions of modes of operation include the following six items:

cover sheet

mode specification

summary of properties

test vectors

performance estimates

intellectual property statements/agreements/disclosures.

These items are discussed below.

Cover Sheet

The cover sheet shall contain the following information:

name of submitted mode of operation;

principal submitter’'s name, telephone, fax, organization, postal address, e-mail address;
name(s) of auxiliary submitter(s);

name of mode’s inventor(s)/developer(s);

name of owner, if any, of the mode (typically, the owner will be the same as the submitter).

Mode Specification
A complete written specification of the mode of operation should be provided, including all mathematical equations, tables, diagrams, and parameters that

are needed to implement the mode. NIST encourages submitters to elaborate on the intended use(s) of the mode, the design rationale, the relevant
properties, proofs (if any), the comparison with other modes, and the mode’s overall advantages/disadvantages.

Summary of Properties

To assist NIST and the public to draw comparisons and contrasts between the various candidate modes, the submissions should include a table or outline
that identifies the following characteristics:

4 JULY 2001

DUAL COUNTER MODE

MIKE BOYLE

CHRIS SALTER

INTRODUCTION

For the past 18 months, the NSA has been developing a high-speed encryption mode for IP packets.
The mode that we designed is identical in many aspects to Jutla’s Integrity Aware Parallelizable Mode
(IAPM). There is one important difference in our proposal. In the IP world, a large number of
packets might arrive out of order. Integrity Aware Parallelizable Mode (IAPM) and the proposed
variations incur a large overhead for out of order packets[JU 01]. Each packet requires at least the
time to perform a full decryption to obtain an IV before decryption of the cipher can begin. This
note describes our solution to this problem.

First, we describe the basic mode and its features. We then describe how to implement this mode for
IPSec.

DUAL COUNTER MODE

Dual counter mode is a hybrid of ECB mode and counter mode. Let E represent encryption by a
codebook of width W. Let R, P, .., P; be j blocks of plaintext and let G, G, ..., G be the
corresponding ciphertext. Let f be a polynomial of degree W for a primitive linear feedback shift
register. Also, let {xi} be the sequence of fills generated by this polynomial. The first fill, x, is a
secret shared between the two peers. This initial fill is most easily derived from the key exchange!.
Dual counter mode can be described as follows:

i = # of datablocks
Fori=1,..,]
i = f(xi1)
C=EP ®x)®x

Quite likely the cipherblocks will travel in packets. If the packets arrive in order, the receiver does not
lose track of the fill needed to decrypt the cipher.

TWO IMPLEMENTATION M ODES

We knew that many implementers would want to verify the data integrity of packets. This mode has
the property that any change to a ciphertext block causes the decrypted plaintext to be garbled. Thus
it is easy to add a checksum to verify data integrity.

1 Of course, care should be taken in producing this value. For example, the designers of the key exchange for IPsec used
secure hashes such as SHA-1 to isolate keying material.

A Note on NSA’s Dual Counter Mode of
Encryption

Pompiliu Donescu * Virgil D. Gligor ** David Wagner **~*
pompiliu@eng.umd.edu gligor@eng.umd.edu daw@cs.berkeley.edu

September 28, 2001

Abstract. We show that both variants of the Dual Counter Mode of
encryption (DCM) submitted for consideration as an AES mode of op-
eration to NIST by M. Boyle and C. Salter of the NSA are insecure with
respect to both secrecy and integrity in the face of chosen-plaintext at-
tacks. We argue that DCM cannot be easily changed to satisfy its stated
performance goal and be secure. Hence repairing DCM does not appear
worthwhile.

1 Introduction

On August 1, 2001, M. Boyle and C. Salter of the NSA submitted two variants
of the Dual Counter Mode (DCM) of encryption [1] for consideration as an AES
mode of operation to NIST. The DCM goals are: (1) to protect both the secrecy
and integrity of IP packets (as this mode is intended to satisfy the security goals
of Jutla’s TAPM mode [4]), and (2) to avoid the delay required before commenc-
ing the decryption of out-of-order IP packets, thereby decreasing the decryption
latency of IAPM. DCM is also intended to allow high rates of encryption.

The authors argue that DCM satisfies the first goal because “an error in a
cipher block causes all data in the packet to fail the integrity check”. DCM ap-
pears to satisfy the second goal because it maintains a “shared secret negotiated
during the key exchange,” which avoids the delay inherent to the decryption of
a secret IV before the first out-of-order packet arrival can be decrypted. The
authors note correctly that Jutla’s IAPM mode does not satisfy their second
goal.

In this note, we show that both variants of DCM are insecure with respect
to both secrecy and integrity in the face of chosen-plaintext attacks. Further, we
argue that DCM cannot be easily changed to satisfy its stated performance goal
for the decryption of out-of-order packets and be secure. We conclude since other
proposed AES modes satisfy the proposed goals for DCM, even if repairing DCM
is possible, which we doubt, such an exercise does not appear to be worthwhile.

! VDG Inc., 6009 Brookside Drive, Chevy Chase, MD 20815.

2 Electrical and Computer Engineering Department, University of Maryland, College
Park, Maryland 20742.

3 Computer Science Division, EECS Department, University of California Berkeley,
Berkeley, CA. 94720.

Cryptanalysis of OCB2

Akiko Inoue and Kazuhiko Minematsu

NEC Corporation, Japan
a-inoue@cj. jp.nec.com, k-minematsu@ah. jp.nec.com

Abstract. We present practical attacks against OCB2, an ISO-standard
authenticated encryption (AE) scheme. OCB2 is a highly-efficient block-
cipher mode of operation. It has been extensively studied and widely
believed to be secure thanks to the provable security proofs. Our attacks
allow the adversary to create forgeries with single encryption query of
almost-known plaintext. This attack can be further extended to powerful
almost-universal and universal forgeries using more queries. The source
of our attacks is the way OCB2 implements AE using a tweakable block-
cipher, called XEX™. We have verified our attacks using a reference code
of OCB2. Our attacks do not break the privacy of OCB2, and are not
applicable to the others, including OCB1 and OCBS3.

Keywords: OCB, Authenticated Encryption, Cryptanalysis, Forgery,
XEX

1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that pro-
vides both confidentiality and authenticity of messages. Now it is widely accepted

Research Assurance

Cryptographic competitions

Daniel J. Bernsteint»?

! Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7045, USA
* Horst Gortz Institute for IT Security, Ruhr University Bochum, Germany
djb@cr.yp.to

Abstract. Competitions are widely viewed as the safest way to select
cryptographic algorithms. This paper surveys procedures that have been
used in cryptographic competitions, and analyzes the extent to which
those procedures reduce security risks.

Keywords: cryptography, competitions, DES, AES, eSTREAM, SHA-3,
CAESAR, NISTPQC, NISTLWC

1 Introduction

The CoV individual reports point out several shortcomings and pro-
cedural weaknesses that led to the inclusion of the Dual EC' DRBG
algorithm in SP 800-90 and propose several steps to remedy them. . ..
The VCAT strongly encourages standard development through open

https://eprint.iacr.org/2020/1608.pdf
https://eprint.iacr.org/2020/1608.pdf

github.com/arnepadmos/hackathon

O digital-sovereignty-hack.sparkboard.com ‘e C

Making and breaking loT protocol development and evaluation
processes

An exploration into the influence of competition structure on the assurance provided by an
adversarial process. Participants will propose competition blueprints and identify problems
related to incentives (mis)alignment, exploring how to shape the dynamics of adversarial
engineering design competitions such that they incentivise and align security engineering and
assurance efforts in the loT domain.

Digital

sSwa» Sovereignty
Hack -

[] i_ll

ko
O
P

o~
\

Making and brvegking lof

A ’ o
protocol development and
evaluation droce(;%es |

Project description

The precise project description, including the format and detailed content, will be determined
based on input gathered before the start of the hackathon to ensure that it aligns with the
interest of potential participants. Key aspects of the hackathon structure that have already been

|

Explore secure channels and record protocols

As 1llustrated by BLINKER, Strobe, SHOE, and Cyclist,
sponges can be the basis for simple, lightweight two-
party half-duplex record protocols.

.

B S i e S i e et S e e ey G G e) G S s S A G) Sy (s
- -

- ——
-

o I S° D Eh D Gb D Gh Gp GB Gh GD GB GD G Gh Gh GB.GD Gh Gh Gh Gh Gh Gh Gh GD Gh Gh Gh Gh G5 b GD AL Gh Gh Gh) G5 D W GL WD WS TR =D G D R "D G W T - G) Gh -h Gh - G - S D G- - G5 G =R T G- Gh G G G G = G G Gh G G G- G =D G G G G G G S G G G G G G G5, Gh Gh G Gh, Gb b G D, > G» G G S W 0 .
- -

- T ———
- -

Sponge
a) low-level.
Done by

Sponge hash function designers

4

/ / / ~

[lnltuallze capacuty() permute() read rate_element()] [add_rate_element() J

T S o ‘g o e i s g s g s 2 At s s i A U

-
A S S S S S S S S A S S S S S S ————————————

S

[Staft()] [Absorb()] [SQUEGZG() J [FlniSh()] gf:\zg:dog;egs;lo libraries

- -
g S S g g S5 g S S S g S S S g g S g S S A S S S g S S S S S S S S S S S g M S S A S ———

Applications

Aumasson et al., 2023

The complete symmetric crypto API

absorb ()

squeeze ()

SlefliccZic T clef)

Seuieaze ke

megeta e nge)

Slciaob dot achoda)

cleiciSiNsIstiTa C e d ()

ratchet ()

e ver 1Ty ()

OpenSSL

disco-c libdisco (go)

2,000 LOC

v
% ‘ 700,000 LOC
A

1,000 LOC 4,000 LOC

DiscoNet* (C#)

https://permutationbasedcrypto.org/2018/slides/David_Wong.pdf

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.
» Design with mathematical and legal provability in mind.

» Aim at simplicity and small footprint: use a single sponge permutation for key
derivation, confidentiality, integrity, etc. (Instead of distinct algorithms.)

» Use a single state variable in both directions, instead of 8+ cryptovariables.

» |deally this protocol would be realizable with semi-autonomous integrated
hardware, without much CPU or MCU involvement.

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S, P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S, C, pad) without knowledge of S is bound by a function

of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

,.f_l Fog S| g o g 4 g 4 =

99-

rf_l s:—

99— 99- 99—

99—

-:-.'-:-.'-:-.'
-:-r-u-r-u-r

: é{f{é} 99 T99=||999To/mW

ITE?Q o e m;m:ﬁi ﬂ§H$ 88 -5/|o ‘EE = F

= Sl rmfﬂ
ey

ﬂ’!ﬁ’!! A AR 4T AR
Far e — Il a——

GG
= =T
="

Zhis

Pl = E |g|!|I|:E | o} [

Protocol Builder's

Warkbench

Nadim Kobeissi, 2019

examples > firefoxsync.vp
16 principal ComputerB[]
17
18 principal Server|[]
i} 19
20 ComputerA — Server: username, h2, el
> 21
22 principal Server|
0 23 h3 = HASH(username, h2)
w 24]
25
26 principal ComputerB[
27 knows private username
28 knows private pass
29 knows public salt
30
31 hib, h2b = HKDF(pass, salt, nil)
32]
33
34 ComputerB — Server: usernameb, h2b
35
36 principal Server|
37 _ = ASSERT(username, usernameb)?
38 _ = ASSERT(h3, HASH(usernameb, h2b))?
39]
40
41 Server — ComputerB: ell
42
43 principal ComputerB[
Ll d1 = AEAD DEC(hlb, el, nil)?
45]
46
47 queries[
48 confidentiality? dat3
49 authentication? Server — ComputerB: el
50]
ol

i(:’\,%
v

£ master

firefoxsyncvp X

2000 ®OAS3

N« o o 0 0

usernameb = DEC(pass, ENC(pass, username)) // Terrible hack

<J Go Modules

firefoxsync.vp — verifpal

Verifpal Protocol Diagram X

firefoxsync.vp

Computera

u hi, h2 =

knows private username
knows private pass
knows public salt
knows private data

hashedpassword = HASH(pass, salt)
HKDF (pass, salt, nil)
el = AEAD_ENC(h1l, data, nil)
(|
username|,

Server

h2. el

Dl

h3 = HASH(username,

h2)

knows private username
knows private pass
knows public salt
usernameb = DEC(pass,

ENC(pass, username))

hlb, h2b = HKDF(pass, salt, nil)

usernameb, h2b 1
_ = ASSERT (username, usernameb)?
= ASSERT (h3, HASH(usernameb, h2b))?

r el

dl = AEAD_DEC(hlb, el, nil)?
Computerb
Verifpal: Analysis complete.
Verifpal: Running analysis...
¢ You,4monthsago Ln41,Col24 TabSize:4 UTF-8 LF Verifpal &' [®

Examples of protocol-related problems:

— Field, content, channel, domain, key confusion
— Key extraction allows decrypting prior traffic

— Drop, delay, preplay, reflect, reorder, replay, etc.
— Recovery of a wrapped key due to nonce reuse

— Not using safer features because of higher cost

Things that could use further study:

— Tuples and types, plus making these efficient
— Reuse of internal state for KDF and/or chaining
— Relevance of Ascon modes to [Turbo|SHAKE

— Support for sessions, including key ratcheting

— Multi-key attacks and key-reuse resistance

100

50
20
10
5
RELATIVE
CosT
TO
FIX
ERROR
1
0.5
0.2
0. 1

PHASE IN WHICH ERROR DETECTED

’f T
‘ll TAM-S0D
0
a
— GTE
0t A
80%
— i MEDIAN -- TRW SURVEY
20%
Q .
-
4] | L | |
REQUIREMENTS DESIGN CODE DEVELOPMENT ACCEPTANCE OPERATION
TEST TEST

NIST GCR 18-017

The Economic Impacts of the
Advanced Encryption Standard,
1996 - 2017

Byte Sub

Shift Row

Mix Column

David P. Leech

Stacey Ferris, CPA
John T. Scott, Ph.D.
September 2018

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

This publication is available free of charge from: https://doi.org/10.6028/NIST.GCR.18-017

Focus on understanding real-world failure cases
Test the toolbox with end-users for footguns
Provide structures and incentives for assurance

Explore secure channels and record protocols

~—

‘-‘.’s_‘.
'v'

.--'.‘

c.‘t
-
‘.

3 Y

hello@arnepadmos.com

