
Distributed Key Generation (DKG) in the Discrete-Logarithm Setting

Jonathan Katz
Chief Scientist, Dfns

Sept. 26, 2023
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Thanks to Anna Kaplan and Chelsea Komlo for helpful discussions

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
1 / 23

Overview

Overview of the talk

Part 1

Standardizing DKG protocols as independent primitives

Defining DKG security via a simulation-based approach

Part 2

A (round-optimal) robust DKG protocol in the honest-majority setting

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
2 / 23

Overview

Overview of the talk

Part 1

Standardizing DKG protocols as independent primitives

Defining DKG security via a simulation-based approach

Part 2

A (round-optimal) robust DKG protocol in the honest-majority setting

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
2 / 23

Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

(Common) public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

(Optional) common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 23

Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

(Common) public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

(Optional) common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 23

Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

(Common) public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

(Optional) common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 23

Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

(Common) public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

(Optional) common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 23

Background

Applications

A DKG protocol as described could be used for, e.g.,

Threshold ECDSA, EdDSA/Schnorr, or BLS signing

Threshold ElGamal decryption

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
4 / 23

Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

(Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

(Modular approach:) Design a signing protocol, and prove security
when used with any DKG protocol satisfying certain properties

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
5 / 23

Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

(Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

(Modular approach:) Design a signing protocol, and prove security
when used with any DKG protocol satisfying certain properties

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
5 / 23

Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

(Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

(Modular approach:) Design a signing protocol, and prove security
when used with any DKG protocol satisfying certain properties

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
5 / 23

Background

Advantages of a modular approach

Can streamline/simplify security proofs and analysis

Can use one DKG for multiple threshold protocols

Can replace one DKG protocol with another satisfying the same
requirements

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
6 / 23

Background

Advantages of a modular approach

Can streamline/simplify security proofs and analysis

Can use one DKG for multiple threshold protocols

Can replace one DKG protocol with another satisfying the same
requirements

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
6 / 23

Background

Advantages of a modular approach

Can streamline/simplify security proofs and analysis

Can use one DKG for multiple threshold protocols

Can replace one DKG protocol with another satisfying the same
requirements

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
6 / 23

Background

Advantages of a modular approach

Can streamline/simplify security proofs and analysis

Can use one DKG for multiple threshold protocols

Can replace one DKG protocol with another satisfying the same
requirements

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
6 / 23

Simulation-based security

Simulation-based security

High-level idea

Specify the real-world execution of some protocol Π

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

Π t-securely realizes F if the actions of any adversary corrupting ≤ t
parties in the real world can be simulated by a corresponding adversary in
the ideal world

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
7 / 23

Simulation-based security

Simulation-based security

High-level idea

Specify the real-world execution of some protocol Π

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

Π t-securely realizes F if the actions of any adversary corrupting ≤ t
parties in the real world can be simulated by a corresponding adversary in
the ideal world

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
7 / 23

Simulation-based security

Simulation-based security

High-level idea

Specify the real-world execution of some protocol Π

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

Π t-securely realizes F if the actions of any adversary corrupting ≤ t
parties in the real world can be simulated by a corresponding adversary in
the ideal world

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
7 / 23

Simulation-based security

Simulation-based security

High-level idea

Specify the real-world execution of some protocol Π

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

Π t-securely realizes F if the actions of any adversary corrupting ≤ t
parties in the real world can be simulated by a corresponding adversary in
the ideal world

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
7 / 23

Simulation-based security

Ideal functionalities for (dlog-based) DKG

There are multiple functionalities one could consider for DKG

We illustrate several possibilities here

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
8 / 23

Simulation-based security

Strongest(?) ideal functionality

F t,n
DKG

1 Choose x ← Zq and compute y := g x .

2 Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let
Y := (y1, . . . , yn).

3 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Notes

Adversary given (y ,Y)

Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
9 / 23

Simulation-based security

Strongest(?) ideal functionality

F t,n
DKG

1 Choose x ← Zq and compute y := g x .

2 Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let
Y := (y1, . . . , yn).

3 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Notes

Adversary given (y ,Y)

Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
9 / 23

Simulation-based security

Strongest(?) ideal functionality

F t,n
DKG

1 Choose x ← Zq and compute y := g x .

2 Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let
Y := (y1, . . . , yn).

3 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Notes

Adversary given (y ,Y)

Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
9 / 23

Simulation-based security

Strongest(?) ideal functionality

F t,n
DKG

1 Choose x ← Zq and compute y := g x .

2 Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let
Y := (y1, . . . , yn).

3 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Notes

Impossible to t-securely realize unless t < n/2

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
10 / 23

Simulation-based security

Alternate (robust) functionality I

Let adversary choose its own shares

F t,n
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Receive {σi}i∈C from the adversary.

2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
11 / 23

Simulation-based security

Alternate (robust) functionality II

Let adversary choose its own shares, depending on y

F t,n
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Choose x ← Zq and set y := g x . Send y to the adversary S.
2 Receive {σi}i∈C from S. Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y) to Pi . Send Y to the adversary.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
12 / 23

Simulation-based security

Non-robust functionality

F⊥
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Receive {σi}i∈C from the adversary S.
2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n] set yi := gσi . Let Y := (y1, . . . , yn).

5 Send (y ,Y) to S, who responds with either abort or continue. If
abort and |C| ≥ 1 then send ⊥ to all honest parties and stop.
Otherwise, for i ∈ [n] send (y , σi ,Y) to Pi .

Note

Allows S to bias the public key

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
13 / 23

Simulation-based security

Non-robust functionality

F⊥
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Receive {σi}i∈C from the adversary S.
2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n] set yi := gσi . Let Y := (y1, . . . , yn).

5 Send (y ,Y) to S, who responds with either abort or continue. If
abort and |C| ≥ 1 then send ⊥ to all honest parties and stop.
Otherwise, for i ∈ [n] send (y , σi ,Y) to Pi .

Note

Allows S to bias the public key

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
13 / 23

Simulation-based security

Fair (non-robust) functionality

F⊥
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 S sends either abort or {σi}i∈C . If abort and |C| ≥ 1 then send
⊥ to all honest parties and stop. Otherwise, continue.

2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Note

Could also incorporate identifiable abort

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
14 / 23

Simulation-based security

Fair (non-robust) functionality

F⊥
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 S sends either abort or {σi}i∈C . If abort and |C| ≥ 1 then send
⊥ to all honest parties and stop. Otherwise, continue.

2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y) to Pi . Send (y ,Y) to the adversary.

Note

Could also incorporate identifiable abort

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
14 / 23

Simulation-based security

DKG with shift

F∆
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Choose x ′ ← Zq and set y ′ := g x′
. Send y ′ to the adversary S.

2 Receive {σi}i∈C ,∆ from S. Set x := x ′ +∆ and y := g x .
Choose σi ← Zq for i ∈ C′ \ C.

3 Let f be the polynomial of degree at most t such that f (0) = x
and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.

4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y) to Pi . Send Y to the adversary.

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
15 / 23

Simulation-based security

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

Define required properties of the DKG
Prove security of the protocol using a DKG satisfying those properties
(Optional) specify a DKG that satisfies those properties

Specify required properties for DKG via an ideal functionality

Possibly using a common template

In general, encourage submissions not only of gadgets to be used by
other protocols, but also of protocols relying on abstract gadgets

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
16 / 23

Simulation-based security

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

Define required properties of the DKG
Prove security of the protocol using a DKG satisfying those properties
(Optional) specify a DKG that satisfies those properties

Specify required properties for DKG via an ideal functionality

Possibly using a common template

In general, encourage submissions not only of gadgets to be used by
other protocols, but also of protocols relying on abstract gadgets

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
16 / 23

Simulation-based security

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

Define required properties of the DKG
Prove security of the protocol using a DKG satisfying those properties
(Optional) specify a DKG that satisfies those properties

Specify required properties for DKG via an ideal functionality

Possibly using a common template

In general, encourage submissions not only of gadgets to be used by
other protocols, but also of protocols relying on abstract gadgets

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
16 / 23

Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting

Assuming broadcast, synchrony

Note: recommend abstracting broadcast channel

Efficient for small t, n

Round optimality

Protocol has one round of preprocessing, followed by a 2-round online
phase that can be executed an unbounded number of times

Robust (unbiased) DKG is impossible in one round regardless of prior setup

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
17 / 23

Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting

Assuming broadcast, synchrony

Note: recommend abstracting broadcast channel

Efficient for small t, n

Round optimality

Protocol has one round of preprocessing, followed by a 2-round online
phase that can be executed an unbounded number of times

Robust (unbiased) DKG is impossible in one round regardless of prior setup

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
17 / 23

Robust DKG

Motivating robustness

Most practical applications need robustness (in a broader sense)

Can potentially achieve by other means, but less efficient (and
possibly less secure)

Robustness is an advantage of working in the honest-majority setting

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
18 / 23

Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sn−t,n be the collection of all subsets of [n] of size n − t

For S ∈ Sn−t,n, let ZS ∈ Zq[X] be the t-degree polynomial with ZS(0) = 1
and ZS(i) = 0 for i ∈ [n] \ S

F : {0, 1}κ × {0, 1}n → Zq is a pseudorandom function

Assume for all S ∈ Sn−t,n and all i ∈ S , party Pi holds kS ∈ {0, 1}κ

Given a nonce N ∈ {0, 1}n, each party Pi can compute share

σi :=
∑

S∈Sn−t,n : i∈S FkS (N) · ZS(i)

This is a (t + 1)-out-of-n Shamir secret sharing of

xN =
∑

S∈Sn−t,n
FkS (N) · ZS(0) =

∑
S∈Sn−t,n

FkS (N)

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
19 / 23

Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sn−t,n be the collection of all subsets of [n] of size n − t

For S ∈ Sn−t,n, let ZS ∈ Zq[X] be the t-degree polynomial with ZS(0) = 1
and ZS(i) = 0 for i ∈ [n] \ S

F : {0, 1}κ × {0, 1}n → Zq is a pseudorandom function

Assume for all S ∈ Sn−t,n and all i ∈ S , party Pi holds kS ∈ {0, 1}κ

Given a nonce N ∈ {0, 1}n, each party Pi can compute share

σi :=
∑

S∈Sn−t,n : i∈S FkS (N) · ZS(i)

This is a (t + 1)-out-of-n Shamir secret sharing of

xN =
∑

S∈Sn−t,n
FkS (N) · ZS(0) =

∑
S∈Sn−t,n

FkS (N)

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
19 / 23

Robust DKG

Background: Pseudorandom secret sharing (PRSS)

Notes

PRSS is not DKG (still need to interact to compute y = g xN)

PRSS typically assumes a trusted dealer; without a trusted dealer, it is not
clear how to ensure correctness

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
20 / 23

Robust DKG

A robust DKG protocol

Preprocessing: For S ∈ Sn−t,n, a designated party in S chooses kS ← Zq

and sends it to {Pi}i∈S . Each Pi lets ki ,S be the value received

Key generation: Given nonce N, each party Pi does:

Round 1: For all S ∈ Sn−t,n with i ∈ S : compute ŷi ,S := g
Fki,S

(N)
and

hi ,S := H(ŷi ,S); then broadcast hi ,S

Round 2: Initialize I := ∅. For each S ∈ Sn−t,n, do:

If there is a value hS s.t. hj ,S = hS for all j ∈ S , add S to I.
Broadcast {ŷi ,S}S∈I : i∈S
Output determination: For S ∈ I, if any Pj broadcasted ŷj ,S with
H(ŷj ,S) = hS , set ŷS := ŷj ,S . Then:

1 Set σi :=
∑

S∈I : i∈S Fki,S (N) · ZS(i)

2 Set y :=
∏

S∈I ŷS , and for j ∈ [n] set yj :=
∏

S∈I : j∈S ŷ
ZS (j)
S

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
21 / 23

Robust DKG

A robust DKG protocol

Preprocessing: For S ∈ Sn−t,n, a designated party in S chooses kS ← Zq

and sends it to {Pi}i∈S . Each Pi lets ki ,S be the value received

Key generation: Given nonce N, each party Pi does:

Round 1: For all S ∈ Sn−t,n with i ∈ S : compute ŷi ,S := g
Fki,S

(N)
and

hi ,S := H(ŷi ,S); then broadcast hi ,S

Round 2: Initialize I := ∅. For each S ∈ Sn−t,n, do:

If there is a value hS s.t. hj ,S = hS for all j ∈ S , add S to I.
Broadcast {ŷi ,S}S∈I : i∈S
Output determination: For S ∈ I, if any Pj broadcasted ŷj ,S with
H(ŷj ,S) = hS , set ŷS := ŷj ,S . Then:

1 Set σi :=
∑

S∈I : i∈S Fki,S (N) · ZS(i)

2 Set y :=
∏

S∈I ŷS , and for j ∈ [n] set yj :=
∏

S∈I : j∈S ŷ
ZS (j)
S

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
21 / 23

Robust DKG

A robust DKG protocol

Preprocessing: For S ∈ Sn−t,n, a designated party in S chooses kS ← Zq

and sends it to {Pi}i∈S . Each Pi lets ki ,S be the value received

Key generation: Given nonce N, each party Pi does:

Round 1: For all S ∈ Sn−t,n with i ∈ S : compute ŷi ,S := g
Fki,S

(N)
and

hi ,S := H(ŷi ,S); then broadcast hi ,S

Round 2: Initialize I := ∅. For each S ∈ Sn−t,n, do:

If there is a value hS s.t. hj ,S = hS for all j ∈ S , add S to I.
Broadcast {ŷi ,S}S∈I : i∈S

Output determination: For S ∈ I, if any Pj broadcasted ŷj ,S with
H(ŷj ,S) = hS , set ŷS := ŷj ,S . Then:

1 Set σi :=
∑

S∈I : i∈S Fki,S (N) · ZS(i)

2 Set y :=
∏

S∈I ŷS , and for j ∈ [n] set yj :=
∏

S∈I : j∈S ŷ
ZS (j)
S

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
21 / 23

Robust DKG

A robust DKG protocol

Preprocessing: For S ∈ Sn−t,n, a designated party in S chooses kS ← Zq

and sends it to {Pi}i∈S . Each Pi lets ki ,S be the value received

Key generation: Given nonce N, each party Pi does:

Round 1: For all S ∈ Sn−t,n with i ∈ S : compute ŷi ,S := g
Fki,S

(N)
and

hi ,S := H(ŷi ,S); then broadcast hi ,S

Round 2: Initialize I := ∅. For each S ∈ Sn−t,n, do:

If there is a value hS s.t. hj ,S = hS for all j ∈ S , add S to I.
Broadcast {ŷi ,S}S∈I : i∈S
Output determination: For S ∈ I, if any Pj broadcasted ŷj ,S with
H(ŷj ,S) = hS , set ŷS := ŷj ,S . Then:

1 Set σi :=
∑

S∈I : i∈S Fki,S (N) · ZS(i)

2 Set y :=
∏

S∈I ŷS , and for j ∈ [n] set yj :=
∏

S∈I : j∈S ŷ
ZS (j)
S

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
21 / 23

Robust DKG

A robust DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle.
Then for t < n/2 this protocol t-securely realizes F t,n

DKG

Easy to modify to achieve adaptive security as well

Paper available at https://eprint.iacr.org/2023/1094

We would be interested in collaborating on a submission to NIST

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
22 / 23

Thank you!

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
23 / 23

	Overview
	Background
	Simulation-based security
	Robust DKG
	

