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Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

(Common) public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

(Optional) common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.
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Background

Applications

A DKG protocol as described could be used for, e.g.,

Threshold ECDSA, EdDSA/Schnorr, or BLS signing

Threshold ElGamal decryption
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Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

(Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

(Modular approach:) Design a signing protocol, and prove security
when used with any DKG protocol satisfying certain properties
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Background

Advantages of a modular approach

Can streamline/simplify security proofs and analysis

Can use one DKG for multiple threshold protocols

Can replace one DKG protocol with another satisfying the same
requirements
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Simulation-based security

Simulation-based security

High-level idea

Specify the real-world execution of some protocol Π

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

Π t-securely realizes F if the actions of any adversary corrupting ≤ t
parties in the real world can be simulated by a corresponding adversary in
the ideal world
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Simulation-based security

Ideal functionalities for (dlog-based) DKG

There are multiple functionalities one could consider for DKG

We illustrate several possibilities here
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Simulation-based security

Strongest(?) ideal functionality

F t,n
DKG

1 Choose x ← Zq and compute y := g x .

2 Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let
Y := (y1, . . . , yn).

3 For i ∈ [n], send (y , σi ,Y ) to Pi . Send (y ,Y ) to the adversary.

Notes

Adversary given (y ,Y )

Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)
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Simulation-based security

Strongest(?) ideal functionality

F t,n
DKG

1 Choose x ← Zq and compute y := g x .

2 Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let
Y := (y1, . . . , yn).

3 For i ∈ [n], send (y , σi ,Y ) to Pi . Send (y ,Y ) to the adversary.

Notes

Impossible to t-securely realize unless t < n/2
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Simulation-based security

Alternate (robust) functionality I

Let adversary choose its own shares

F t,n
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Receive {σi}i∈C from the adversary.

2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y ) to Pi . Send (y ,Y ) to the adversary.
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Simulation-based security

Alternate (robust) functionality II

Let adversary choose its own shares, depending on y

F t,n
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Choose x ← Zq and set y := g x . Send y to the adversary S.
2 Receive {σi}i∈C from S. Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y ) to Pi . Send Y to the adversary.
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Simulation-based security

Non-robust functionality

F⊥
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Receive {σi}i∈C from the adversary S.
2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n] set yi := gσi . Let Y := (y1, . . . , yn).

5 Send (y ,Y ) to S, who responds with either abort or continue. If
abort and |C| ≥ 1 then send ⊥ to all honest parties and stop.
Otherwise, for i ∈ [n] send (y , σi ,Y ) to Pi .

Note

Allows S to bias the public key
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Simulation-based security

Fair (non-robust) functionality

F⊥
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 S sends either abort or {σi}i∈C . If abort and |C| ≥ 1 then send
⊥ to all honest parties and stop. Otherwise, continue.

2 Choose x ← Zq and set y := g x . Choose σi ← Zq for i ∈ C′ \ C.
3 Let f be the polynomial of degree at most t such that f (0) = x

and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.
4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y ) to Pi . Send (y ,Y ) to the adversary.

Note

Could also incorporate identifiable abort
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Simulation-based security

DKG with shift

F∆
DKG

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1 Choose x ′ ← Zq and set y ′ := g x′
. Send y ′ to the adversary S.

2 Receive {σi}i∈C ,∆ from S. Set x := x ′ +∆ and y := g x .
Choose σi ← Zq for i ∈ C′ \ C.

3 Let f be the polynomial of degree at most t such that f (0) = x
and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.

4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y ) to Pi . Send Y to the adversary.
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Simulation-based security

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

Define required properties of the DKG
Prove security of the protocol using a DKG satisfying those properties
(Optional) specify a DKG that satisfies those properties

Specify required properties for DKG via an ideal functionality

Possibly using a common template

In general, encourage submissions not only of gadgets to be used by
other protocols, but also of protocols relying on abstract gadgets
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Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting

Assuming broadcast, synchrony

Note: recommend abstracting broadcast channel

Efficient for small t, n

Round optimality

Protocol has one round of preprocessing, followed by a 2-round online
phase that can be executed an unbounded number of times

Robust (unbiased) DKG is impossible in one round regardless of prior setup
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Robust DKG

Motivating robustness

Most practical applications need robustness (in a broader sense)

Can potentially achieve by other means, but less efficient (and
possibly less secure)

Robustness is an advantage of working in the honest-majority setting
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Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sn−t,n be the collection of all subsets of [n] of size n − t

For S ∈ Sn−t,n, let ZS ∈ Zq[X ] be the t-degree polynomial with ZS(0) = 1
and ZS(i) = 0 for i ∈ [n] \ S

F : {0, 1}κ × {0, 1}n → Zq is a pseudorandom function

Assume for all S ∈ Sn−t,n and all i ∈ S , party Pi holds kS ∈ {0, 1}κ

Given a nonce N ∈ {0, 1}n, each party Pi can compute share

σi :=
∑

S∈Sn−t,n : i∈S FkS (N) · ZS(i)

This is a (t + 1)-out-of-n Shamir secret sharing of

xN =
∑

S∈Sn−t,n
FkS (N) · ZS(0) =

∑
S∈Sn−t,n

FkS (N)
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Robust DKG

Background: Pseudorandom secret sharing (PRSS)

Notes

PRSS is not DKG (still need to interact to compute y = g xN )

PRSS typically assumes a trusted dealer; without a trusted dealer, it is not
clear how to ensure correctness
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Robust DKG

A robust DKG protocol

Preprocessing: For S ∈ Sn−t,n, a designated party in S chooses kS ← Zq

and sends it to {Pi}i∈S . Each Pi lets ki ,S be the value received

Key generation: Given nonce N, each party Pi does:

Round 1: For all S ∈ Sn−t,n with i ∈ S : compute ŷi ,S := g
Fki,S

(N)
and

hi ,S := H(ŷi ,S); then broadcast hi ,S

Round 2: Initialize I := ∅. For each S ∈ Sn−t,n, do:

If there is a value hS s.t. hj ,S = hS for all j ∈ S , add S to I.
Broadcast {ŷi ,S}S∈I : i∈S
Output determination: For S ∈ I, if any Pj broadcasted ŷj ,S with
H(ŷj ,S) = hS , set ŷS := ŷj ,S . Then:

1 Set σi :=
∑

S∈I : i∈S Fki,S (N) · ZS(i)

2 Set y :=
∏

S∈I ŷS , and for j ∈ [n] set yj :=
∏

S∈I : j∈S ŷ
ZS (j)
S
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S∈I : i∈S Fki,S (N) · ZS(i)

2 Set y :=
∏

S∈I ŷS , and for j ∈ [n] set yj :=
∏

S∈I : j∈S ŷ
ZS (j)
S
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Robust DKG

A robust DKG protocol

Preprocessing: For S ∈ Sn−t,n, a designated party in S chooses kS ← Zq
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Fki,S

(N)
and
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Robust DKG

A robust DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle.
Then for t < n/2 this protocol t-securely realizes F t,n

DKG

Easy to modify to achieve adaptive security as well

Paper available at https://eprint.iacr.org/2023/1094

We would be interested in collaborating on a submission to NIST
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Thank you!
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