Distributed Key Generation (DKG) in the Discrete-Logarithm Setting J

Jonathan Katz
Chief Scientist, Dfns

Sept. 26, 2023
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Thanks to Anna Kaplan and Chelsea Komlo for helpful discussions

Distributed KeyGen. ..

Overview

Overview of the talk

Standardizing DKG protocols as independent primitives

Defining DKG security via a simulation-based approach

Jonathan Katz Distributed KeyGen. .. 2/23

Overview

Overview of the talk

Standardizing DKG protocols as independent primitives

Defining DKG security via a simulation-based approach

A (round-optimal) robust DKG protocol in the honest-majority setting

Jonathan Katz Distributed KeyGen. .. 2/23

Background

DKG in the dlog setting

* nis the total number of parties
* tis an upper bound on the number of corrupted parties

* G is a cyclic group of prime order g, with generator g

Jonathan Katz Distributed KeyGen. .. 3/23

Background

DKG in the dlog setting

* n is the total number of parties
* tis an upper bound on the number of corrupted parties

* G is a cyclic group of prime order g, with generator g

Distributed protocol for n parties to generate

Jonathan Katz Distributed KeyGen. . . 3/23

Background

DKG in the dlog setting

* n is the total number of parties
* tis an upper bound on the number of corrupted parties

* G is a cyclic group of prime order g, with generator g

Distributed protocol for n parties to generate

* (Common) public key y = g*

Jonathan Katz Distributed KeyGen. . . 3/23

Background

DKG in the dlog setting

* n is the total number of parties
* tis an upper bound on the number of corrupted parties

* G is a cyclic group of prime order g, with generator g

Distributed protocol for n parties to generate

* (Common) public key y = g*
-out-of- i Al i
* (t+ 1)-out-of-n secret sharing?® {o;}"_; of the private key x

* (Optional) common commitments {g? }"_, to the parties’ shares

?Assume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.

Jonathan Katz Distributed KeyGen. . . 3/23

Background
Applications

A DKG protocol as described could be used for, e.g.,
® Threshold ECDSA, EdDSA /Schnorr, or BLS signing
® Threshold ElGamal decryption

Jonathan Katz Distributed KeyGen. .. 4/23

Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

Jonathan Katz Distributed KeyGen. .. 5/23

Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

® (Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

Jonathan Katz Distributed KeyGen. .. 5/23

Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

® (Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

® (Modular approach:) Design a signing protocol, and prove security
when used with any DKG protocol satisfying certain properties

Jonathan Katz Distributed KeyGen. .. 5/23

Background

Advantages of a modular approach

Jonathan Katz Distributed KeyGen. .. 6/23

Background

Advantages of a modular approach

e Can streamline/simplify security proofs and analysis

Jonathan Katz Distributed KeyGen. .. 6/23

Background

Advantages of a modular approach

e Can streamline/simplify security proofs and analysis

® Can use one DKG for multiple threshold protocols

Jonathan Katz Distributed KeyGen. .. 6/23

Background

Advantages of a modular approach

e Can streamline/simplify security proofs and analysis
® Can use one DKG for multiple threshold protocols

e Can replace one DKG protocol with another satisfying the same
requirements

Jonathan Katz Distributed KeyGen. .. 6/23

Simulation-based security

Simulation-based security

High-level idea

Jonathan Katz Distributed KeyGen. .. 7/23

Simulation-based security

Simulation-based security

High-level idea
Specify the real-world execution of some protocol [1

Jonathan Katz Distributed KeyGen. .. 7/23

Simulation-based security

Simulation-based security

High-level idea
Specify the real-world execution of some protocol [1

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

Jonathan Katz Distributed KeyGen. .. 7/23

Simulation-based security

Simulation-based security

High-level idea
Specify the real-world execution of some protocol [1

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

I t-securely realizes F if the actions of any adversary corrupting < t
parties in the real world can be simulated by a corresponding adversary in
the ideal world

Jonathan Katz Distributed KeyGen. .. 7/23

Simulation-based security

|deal functionalities for (dlog-based) DKG

There are multiple functionalities one could consider for DKG

We illustrate several possibilities here

Jonathan Katz Distributed KeyGen. .. 8/23

Simulation-based security

Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0}y < SS¢(x). For i € [n], set y; := g7; let
Y =, -y ¥n)
® For i€ [n], send (y,0;,Y) to P;. Send (y, Y) to the adversary.

Jonathan Katz Distributed KeyGen. .. 9/23

Simulation-based security

Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0}y < SS¢(x). For i € [n], set y; := g7; let
Y =1, - Yn)

® For i € [n], send (y,0;, Y) to P;. Send (y, Y) to the adversary.

Adversary given (y, Y)

* Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

Jonathan Katz Distributed KeyGen. .. 9/23

Simulation-based security

Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0}y < SS¢(x). For i € [n], set y; := g7; let
Y =1, - Yn)

® For i € [n], send (y,0;, Y) to P;. Send (y, Y) to the adversary.

Adversary given (y, Y)

* Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)

Jonathan Katz Distributed KeyGen. .. 9/23

Simulation-based security

Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0;}7_ < SS¢(x). For i € [n], set y; := g7, let
Y =1, -y ¥Yn)
® For i € [n], send (y,0i, Y) to P;. Send (y, Y) to the adversary.

Impossible to t-securely realize unless t < n/2

Jonathan Katz Distributed KeyGen. .. 10/23

Simulation-based security

Alternate (robust) functionality |

Let adversary choose its own shares

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Receive {0;};cc from the adversary.
® Choose x < Zq and set y := g*. Choose g < Z4 for i € C' \ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and f(i) = o; for i € C'. Set o; := (i) for i € [n] \ C’.

© Forie[n], sety :=g%. Let Y :=(y1,...,¥n)
® For i€ [n], send (y,0i, Y) to P;. Send (y, Y) to the adversary.

Jonathan Katz Distributed KeyGen. .. 11/23

Simulation-based security

Alternate (robust) functionality I

Let adversary choose its own shares, depending on y

Foie
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Choose x < Zg4 and set y := g*. Send y to the adversary S.
® Receive {o;}icc from S. Choose g; < Z, for i € C'\ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and f(i) = o; for i € C'. Set o; := (i) for i € [n] \ C’.

© Forie[n], sety :=g%. Let Y :=(y1,...,¥n)
® For i€ [n], send (y,0;, Y) to P;. Send Y to the adversary.

Jonathan Katz Distributed KeyGen. .. 12/23

Simulation-based security

Non-robust functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Receive {0;}icc from the adversary S.
® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and (i) = o; for i € C'. Set g; := (i) for i € [n] \ C’.
© Foriec[n]sety :=g%. Let Y = (y1,...,¥n).

® Send (y,Y) to S, who responds with either abort or continue. If
abort and |C| > 1 then send L to all honest parties and stop.
Otherwise, for i € [n] send (y, 0, Y) to P;.

Jonathan Katz Distributed KeyGen. .. 13/23

Simulation-based security

Non-robust functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Receive {0;}icc from the adversary S.
® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and (i) = o; for i € C'. Set g; := (i) for i € [n] \ C’.
© Foriec[n]sety :=g%. Let Y = (y1,...,¥n).

® Send (y,Y) to S, who responds with either abort or continue. If
abort and |C| > 1 then send L to all honest parties and stop.
Otherwise, for i € [n] send (y, 0, Y) to P;.

Allows S to bias the public key

Jonathan Katz Distributed KeyGen. .. 13/23

Simulation-based security

Fair (non-robust) functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].

® S sends either abort or {o;};cc. If abort and |C| > 1 then send
L to all honest parties and stop. Otherwise, continue.

® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let f be the polynomial of degree at most t such that f(0) = x
and f(i) =oj for i € C'. Set oj := f(i) for i € [n] \ C'.

@ Foric|n], sety, :=g%. Let Y :=(y1,...,Yn)
® For i€ [n], send (y,0i,Y) to P;. Send (y, Y) to the adversary.

Jonathan Katz Distributed KeyGen. .. 14 /23

Simulation-based security

Fair (non-robust) functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].

® S sends either abort or {o;};cc. If abort and |C| > 1 then send
L to all honest parties and stop. Otherwise, continue.

® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let f be the polynomial of degree at most t such that f(0) = x
and f(i) =oj for i € C'. Set oj := f(i) for i € [n] \ C'.

@ Foric|n], sety, :=g%. Let Y :=(y1,...,Yn)
® For i€ [n], send (y,0i,Y) to P;. Send (y, Y) to the adversary.

Could also incorporate identifiable abort

Jonathan Katz Distributed KeyGen. .. 14 /23

Simulation-based security

Fbka
Let C’ be an arbitrary set of size t with C C C’ C [n].
@ Choose x' Z, and set y’ := g*'. Send y’ to the adversary S.

® Receive {0;}icc, A from S. Set x :=x' + A and y := g*.
Choose o < Zq for i € C"\ C.

® Let f be the polynomial of degree at most t such that £(0) = x
and f(i) = o for i € C'. Set o; := f(i) for i € [n] \ C'.

@ Foric|n] sety :=g% Let Y :=(y1,...,¥n)
® For i € [n], send (y,0;, Y) to P;. Send Y to the adversary.

Jonathan Katz Distributed KeyGen. .. 15/23

Simulation-based security

Recommendations

® Submissions of threshold (dlog) protocols should modularize the DKG

e Define required properties of the DKG
e Prove security of the protocol using a DKG satisfying those properties
e (Optional) specify a DKG that satisfies those properties

Jonathan Katz Distributed KeyGen. .. 16 /23

Simulation-based security

Recommendations

® Submissions of threshold (dlog) protocols should modularize the DKG

e Define required properties of the DKG
e Prove security of the protocol using a DKG satisfying those properties
e (Optional) specify a DKG that satisfies those properties

® Specify required properties for DKG via an ideal functionality
e Possibly using a common template

Jonathan Katz Distributed KeyGen. .. 16 /23

Simulation-based security

Recommendations

® Submissions of threshold (dlog) protocols should modularize the DKG

e Define required properties of the DKG
e Prove security of the protocol using a DKG satisfying those properties
e (Optional) specify a DKG that satisfies those properties

® Specify required properties for DKG via an ideal functionality
e Possibly using a common template

® In general, encourage submissions not only of gadgets to be used by
other protocols, but also of protocols relying on abstract gadgets

Jonathan Katz Distributed KeyGen. .. 16 /23

Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting

* Assuming broadcast, synchrony
+ Note: recommend abstracting broadcast channel

» Efficient for small t, n

Jonathan Katz Distributed KeyGen. .. 17 /23

Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting
* Assuming broadcast, synchrony
» Note: recommend abstracting broadcast channel

» Efficient for small t, n

Round optimality

Protocol has one round of preprocessing, followed by a 2-round online
phase that can be executed an unbounded number of times

Robust (unbiased) DKG is impossible in one round regardless of prior setup

Jonathan Katz Distributed KeyGen. .. 17 /23

Robust DKG

Motivating robustness

® Most practical applications need robustness (in a broader sense)

e Can potentially achieve by other means, but less efficient (and
possibly less secure)

® Robustness is an advantage of working in the honest-majority setting

Jonathan Katz Distributed KeyGen. .. 18/23

Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sy—¢,n be the collection of all subsets of [n] of size n —t

For S € Sp—¢,n, let Zs € Zg[X] be the t-degree polynomial with Zs(0) = 1
and Zs(i)=0for i€ [n]\S

F:{0,1}* x {0,1}" — Zq is a pseudorandom function

Jonathan Katz

Distributed KeyGen. .. 19/23

Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation
Let Sy—¢,n be the collection of all subsets of [n] of size n —t

For S € Sp—¢,n, let Zs € Zg[X] be the t-degree polynomial with Zs(0) = 1
and Zs(i)=0for i€ [n]\S

F:{0,1}* x {0,1}" — Zq is a pseudorandom function

Assume for all S € S,_; , and all i € S, party P; holds ks € {0,1}"
Given a nonce N € {0,1}", each party P; can compute share

i =Y ses, . ies Fks(N) - Zs(i)
This is a (t + 1)-out-of-n Shamir secret sharing of
XN =D ses,_n Fhks(N) - Zs(0) = D ses, .., Frs(N)

Jonathan Katz Distributed KeyGen. .. 19/23

Robust DKG

Background: Pseudorandom secret sharing (PRSS)

PRSS is not DKG (still need to interact to compute y = g*V)

PRSS typically assumes a trusted dealer; without a trusted dealer, it is not
clear how to ensure correctness

Jonathan Katz Distributed KeyGen. .. 20/23

Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Jonathan Katz Distributed KeyGen. .. 21/23

Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Key generation: Given nonce N, each party P; does:
(V)

® Round 1: Forall $ € S,_; , with / € S: compute y; s := ng"vS and

hi s :== H(¥i s); then broadcast h; s

Jonathan Katz Distributed KeyGen. .. 21/23

Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Key generation: Given nonce N, each party P; does:
(V)

® Round 1: Forall $ € S,_; , with / € S: compute y; s := ng"vS and

hi s :== H(¥i s); then broadcast h; s
® Round 2: Initialize Z := (). For each S € S;,_; p,, do:
If there is a value hs s.t. hjs = hs forall j€ S, add S to T.

Broadcast {yis}sez:ies

Jonathan Katz Distributed KeyGen. .. 21/23

Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Key generation: Given nonce N, each party P; does:
(V)

® Round 1: Forall $ € S,_; , with / € S: compute y; s := ng"vS and
hi s :== H(¥i s); then broadcast h; s
® Round 2: Initialize Z := (). For each S € S;,_; p,, do:
If there is a value hs s.t. hjs = hs forall j€ S, add S to T.
Broadcast {yis}sez:ies
e Output determination: For S € Z, if any P; broadcasted y; s with
H()/}j,S) = hg, set ys5 :=)/}j,S- Then:
@ Set i =3 sc7.ies Fus(N) - Zs(i)
©® Set y :=][sc79s, and for j € [n] set y; :=[[scz.jes ySZSU)

Jonathan Katz Distributed KeyGen. .. 21/23

Robust DKG

A robust DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle.
Then for t < n/2 this protocol t-securely realizes .7-"5’,2(_;

Easy to modify to achieve adaptive security as well
Paper available at https://eprint.iacr.org/2023/1094

We would be interested in collaborating on a submission to NIST

Jonathan Katz Distributed KeyGen. .. 22/23

Distributed KeyG

N
)
N
w

	Overview
	Background
	Simulation-based security
	Robust DKG
	

