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Background

DKG in the dlog setting

* n is the total number of parties
* tis an upper bound on the number of corrupted parties

* G is a cyclic group of prime order g, with generator g

Distributed protocol for n parties to generate

* (Common) public key y = g*
-out-of- i Al i
* (t+ 1)-out-of-n secret sharing?® {o;}"_; of the private key x

* (Optional) common commitments {g? }"_, to the parties’ shares

?Assume Shamir secret sharing here, but it could also be n-out-of-n additive sharing.
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Background
Applications

A DKG protocol as described could be used for, e.g.,
® Threshold ECDSA, EdDSA /Schnorr, or BLS signing
® Threshold ElGamal decryption
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Background

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a
threshold cryptosystem (here taken to be signing for concreteness):

® (Monolithic approach:) Design DKG protocol + signing protocol
jointly, and prove security of the combination

® (Modular approach:) Design a signing protocol, and prove security
when used with any DKG protocol satisfying certain properties
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Background

Advantages of a modular approach

e Can streamline/simplify security proofs and analysis
® Can use one DKG for multiple threshold protocols

e Can replace one DKG protocol with another satisfying the same
requirements
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Simulation-based security

Simulation-based security

High-level idea
Specify the real-world execution of some protocol [1

Define an ideal-world execution in which honest parties and the adversary
interact with some ideal functionality F

I t-securely realizes F if the actions of any adversary corrupting < t
parties in the real world can be simulated by a corresponding adversary in
the ideal world
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Simulation-based security

|deal functionalities for (dlog-based) DKG

There are multiple functionalities one could consider for DKG

We illustrate several possibilities here
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Simulation-based security

Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0}y < SS¢(x). For i € [n], set y; := g7; let
Y =, -y ¥n)
® For i€ [n], send (y,0;,Y) to P;. Send (y, Y) to the adversary.
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Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0}y < SS¢(x). For i € [n], set y; := g7; let
Y =1, - Yn)

® For i € [n], send (y,0;, Y) to P;. Send (y, Y) to the adversary.

Adversary given (y, Y)

* Those values are public, and are revealed even to an eavesdropping
adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)
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Simulation-based security

Strongest(?) ideal functionality

Foie
® Choose x < Zg and compute y := g*.

® Compute {0;}7_ < SS¢(x). For i € [n], set y; := g7, let
Y =1, -y ¥Yn)
® For i € [n], send (y,0i, Y) to P;. Send (y, Y) to the adversary.

Impossible to t-securely realize unless t < n/2
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Simulation-based security

Alternate (robust) functionality |

Let adversary choose its own shares

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Receive {0;};cc from the adversary.
® Choose x < Zq and set y := g*. Choose g < Z4 for i € C' \ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and f(i) = o; for i € C'. Set o; := (i) for i € [n] \ C’.

© Forie[n], sety :=g%. Let Y :=(y1,...,¥n)
® For i€ [n], send (y,0i, Y) to P;. Send (y, Y) to the adversary.
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Simulation-based security

Alternate (robust) functionality I

Let adversary choose its own shares, depending on y

Foie
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Choose x < Zg4 and set y := g*. Send y to the adversary S.
® Receive {o;}icc from S. Choose g; < Z, for i € C'\ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and f(i) = o; for i € C'. Set o; := (i) for i € [n] \ C’.

© Forie[n], sety :=g%. Let Y :=(y1,...,¥n)
® For i€ [n], send (y,0;, Y) to P;. Send Y to the adversary.
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Simulation-based security

Non-robust functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Receive {0;}icc from the adversary S.
® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and (i) = o; for i € C'. Set g; := (i) for i € [n] \ C’.
© Foriec[n]sety :=g%. Let Y = (y1,...,¥n).

® Send (y,Y) to S, who responds with either abort or continue. If
abort and |C| > 1 then send L to all honest parties and stop.
Otherwise, for i € [n] send (y, 0, Y) to P;.
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Simulation-based security

Non-robust functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].
® Receive {0;}icc from the adversary S.
® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let 1 be the polynomial of degree at most t such that f(0) = x
and (i) = o; for i € C'. Set g; := (i) for i € [n] \ C’.
© Foriec[n]sety :=g%. Let Y = (y1,...,¥n).

® Send (y,Y) to S, who responds with either abort or continue. If
abort and |C| > 1 then send L to all honest parties and stop.
Otherwise, for i € [n] send (y, 0, Y) to P;.

Allows S to bias the public key
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Simulation-based security

Fair (non-robust) functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].

® S sends either abort or {o;};cc. If abort and |C| > 1 then send
L to all honest parties and stop. Otherwise, continue.

® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let f be the polynomial of degree at most t such that f(0) = x
and f(i) =oj for i € C'. Set oj := f(i) for i € [n] \ C'.

@ Foric|n], sety, :=g%. Let Y :=(y1,...,Yn)
® For i€ [n], send (y,0i,Y) to P;. Send (y, Y) to the adversary.
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Simulation-based security

Fair (non-robust) functionality

Foke
Let C’ be an arbitrary set of size t with C C C’ C [n].

® S sends either abort or {o;};cc. If abort and |C| > 1 then send
L to all honest parties and stop. Otherwise, continue.

® Choose x < Zg and set y := g*. Choose o < Zq for i € C'\ C.

® Let f be the polynomial of degree at most t such that f(0) = x
and f(i) =oj for i € C'. Set oj := f(i) for i € [n] \ C'.

@ Foric|n], sety, :=g%. Let Y :=(y1,...,Yn)
® For i€ [n], send (y,0i,Y) to P;. Send (y, Y) to the adversary.

Could also incorporate identifiable abort
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Simulation-based security

Fbka
Let C’ be an arbitrary set of size t with C C C’ C [n].
@ Choose x'  Z, and set y’ := g*'. Send y’ to the adversary S.

® Receive {0;}icc, A from S. Set x :=x' + A and y := g*.
Choose o < Zq for i € C"\ C.

® Let f be the polynomial of degree at most t such that £(0) = x
and f(i) = o for i € C'. Set o; := f(i) for i € [n] \ C'.

@ Foric|n] sety :=g% Let Y :=(y1,...,¥n)
® For i € [n], send (y,0;, Y) to P;. Send Y to the adversary.
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Simulation-based security

Recommendations

® Submissions of threshold (dlog) protocols should modularize the DKG

e Define required properties of the DKG
e Prove security of the protocol using a DKG satisfying those properties
e (Optional) specify a DKG that satisfies those properties
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Simulation-based security

Recommendations

® Submissions of threshold (dlog) protocols should modularize the DKG

e Define required properties of the DKG
e Prove security of the protocol using a DKG satisfying those properties
e (Optional) specify a DKG that satisfies those properties

® Specify required properties for DKG via an ideal functionality
e Possibly using a common template

® In general, encourage submissions not only of gadgets to be used by
other protocols, but also of protocols relying on abstract gadgets
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Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting

* Assuming broadcast, synchrony
+ Note: recommend abstracting broadcast channel

» Efficient for small t, n
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Robust DKG

A robust DKG protocol

A round-optimal, robust DKG protocol in the honest-majority setting
* Assuming broadcast, synchrony
» Note: recommend abstracting broadcast channel

» Efficient for small t, n

Round optimality

Protocol has one round of preprocessing, followed by a 2-round online
phase that can be executed an unbounded number of times

Robust (unbiased) DKG is impossible in one round regardless of prior setup
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Robust DKG

Motivating robustness

® Most practical applications need robustness (in a broader sense)

e Can potentially achieve by other means, but less efficient (and
possibly less secure)

® Robustness is an advantage of working in the honest-majority setting
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Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sy—¢,n be the collection of all subsets of [n] of size n —t

For S € Sp—¢,n, let Zs € Zg[X] be the t-degree polynomial with Zs(0) = 1
and Zs(i)=0for i€ [n]\S

F:{0,1}* x {0,1}" — Zq is a pseudorandom function

Jonathan Katz
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Robust DKG

Background: Pseudorandom secret sharing [CDI05]

Notation
Let Sy—¢,n be the collection of all subsets of [n] of size n —t

For S € Sp—¢,n, let Zs € Zg[X] be the t-degree polynomial with Zs(0) = 1
and Zs(i)=0for i€ [n]\S

F:{0,1}* x {0,1}" — Zq is a pseudorandom function

Assume for all S € S,_; , and all i € S, party P; holds ks € {0,1}"
Given a nonce N € {0,1}", each party P; can compute share

i =Y ses, . ies Fks(N) - Zs(i)
This is a (t + 1)-out-of-n Shamir secret sharing of
XN =D ses,_n Fhks(N) - Zs(0) = D ses, .., Frs(N)
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Robust DKG

Background: Pseudorandom secret sharing (PRSS)

PRSS is not DKG (still need to interact to compute y = g*V)

PRSS typically assumes a trusted dealer; without a trusted dealer, it is not
clear how to ensure correctness
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Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received
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Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Key generation: Given nonce N, each party P; does:
(V)

® Round 1: Forall $ € S,_; , with / € S: compute y; s := ng"vS and

hi s :== H(¥i s); then broadcast h; s
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A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Key generation: Given nonce N, each party P; does:
(V)

® Round 1: Forall $ € S,_; , with / € S: compute y; s := ng"vS and

hi s :== H(¥i s); then broadcast h; s
® Round 2: Initialize Z := (). For each S € S;,_; p,, do:
If there is a value hs s.t. hjs = hs forall j€ S, add S to T.

Broadcast {yis}sez:ies
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Robust DKG

A robust DKG protocol

Preprocessing: For S € S,_¢ , a designated party in S chooses ks < Zg
and sends it to {P;}ics. Each Pj lets k; s be the value received

Key generation: Given nonce N, each party P; does:
(V)

® Round 1: Forall $ € S,_; , with / € S: compute y; s := ng"vS and
hi s :== H(¥i s); then broadcast h; s
® Round 2: Initialize Z := (). For each S € S;,_; p,, do:
If there is a value hs s.t. hjs = hs forall j€ S, add S to T.
Broadcast {yis}sez:ies
e Output determination: For S € Z, if any P; broadcasted y; s with
H()/}j,S) = hg, set ys5 := )/}j,S- Then:
@ Set i =3 sc7.ies Fus(N) - Zs(i)
©® Set y :=][sc79s, and for j € [n] set y; :=[[scz.jes ySZSU)
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Robust DKG

A robust DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle.
Then for t < n/2 this protocol t-securely realizes .7-"5’,2(_;

Easy to modify to achieve adaptive security as well
Paper available at https://eprint.iacr.org/2023/1094

We would be interested in collaborating on a submission to NIST
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