Distributed Key Generation (DKG) in the Discrete-Logarithm Setting

Jonathan Katz Chief Scientist, Dfns

Sept. 26, 2023 MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Thanks to Anna Kaplan and Chelsea Komlo for helpful discussions

In making	- 1/ - t-
Jonatha	n nalz

Overview of the talk

Part 1

Standardizing DKG protocols as independent primitives

Defining DKG security via a simulation-based approach

lon	nth	120	K -	17
2011	au	Iall	1/6	112

Overview of the talk

Part 1

Standardizing DKG protocols as independent primitives

Defining DKG security via a simulation-based approach

Part 2

A (round-optimal) robust DKG protocol in the honest-majority setting

ot. 26, 2023MPTS 2023: NIST Worksho

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

pt. 26, 2023MPTS 2023: NIST Worksho

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

• (Common) public key $y = g^{x}$

pt. 26, 2023MPTS 2023: NIST Worksho

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

- (Common) public key $y = g^{x}$
- (t+1)-out-of-*n* secret sharing^a $\{\sigma_i\}_{i=1}^n$ of the private key x
- (Optional) common commitments $\{g^{\sigma_i}\}_{i=1}^n$ to the parties' shares

^aAssume Shamir secret sharing here, but it could also be *n*-out-of-*n* additive sharing.

Applications

A DKG protocol as described could be used for, e.g.,

- Threshold ECDSA, EdDSA/Schnorr, or BLS signing
- Threshold ElGamal decryption

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a threshold cryptosystem (here taken to be signing for concreteness):

ot. 26, 2023MPTS 2023: NIST Worksho

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a threshold cryptosystem (here taken to be signing for concreteness):

 (Monolithic approach:) Design DKG protocol + signing protocol jointly, and prove security of the combination

Designing threshold schemes

At a high level, there are two approaches to designing and proving secure a threshold cryptosystem (here taken to be signing for concreteness):

- (Monolithic approach:) Design DKG protocol + signing protocol jointly, and prove security of the combination
- (Modular approach:) Design a signing protocol, and prove security when used with any DKG protocol satisfying certain properties

Jonathan Katz	Distributed KeyGen	6/23

• Can streamline/simplify security proofs and analysis

la mak		1/
Jonat	nan	Nalz

Can streamline/simplify security proofs and analysis
 Can use one DKG for multiple threshold protocols

- Can streamline/simplify security proofs and analysis
- Can use one DKG for multiple threshold protocols
- Can replace one DKG protocol with another satisfying the same requirements

High-level idea

	0.	s + l	220	K -	+
2	UI	lati	Iall	I\c	ilz

t. 26, 2023MPTS 2023: NIST Worksh

High-level idea

Specify the *real-world execution* of some protocol Π

	2	22	÷ 1	220	ĸ		÷
Ľ	U.	16		Iall	\mathbf{r}	e	UΖ

pt. 26, 2023MPTS 2023: NIST Worksh

High-level idea

Specify the *real-world execution* of some protocol Π

Define an *ideal-world execution* in which honest parties and the adversary interact with some ideal functionality \mathcal{F}

High-level idea

Specify the *real-world execution* of some protocol Π

Define an *ideal-world execution* in which honest parties and the adversary interact with some ideal functionality \mathcal{F}

 Π *t-securely realizes* \mathcal{F} if the actions of any adversary corrupting $\leq t$ parties in the real world can be *simulated* by a corresponding adversary in the ideal world

t. 26, 2023MPTS 2023: NIST Worksh

Ideal functionalities for (dlog-based) DKG

There are multiple functionalities one could consider for DKG

We illustrate several possibilities here

	natk	220	Kat-
10	llati	Iall	Malz

pt. 26, 2023MPTS 2023: NIST Worksho

$$\mathcal{F}_{\mathsf{DKG}}^{t,n}$$

$$(1) Choose x \leftarrow \mathbb{Z}_q \text{ and compute } y := g^x.$$

$$(2) Compute \{\sigma_i\}_{i=0}^n \leftarrow \mathsf{SS}_t(x). \text{ For } i \in [n], \text{ set } y_i := g^{\sigma_i}; \text{ let } Y := (y_1, \dots, y_n).$$

$$(3) \text{ For } i \in [n], \text{ send } (y, \sigma_i, Y) \text{ to } P_i. \text{ Send } (y, Y) \text{ to the adversary.}$$

$$\mathcal{F}_{\mathsf{DKG}}^{t,n}$$

$$(1) Choose x \leftarrow \mathbb{Z}_q \text{ and compute } y := g^x.$$

$$(2) Compute \{\sigma_i\}_{i=0}^n \leftarrow \mathsf{SS}_t(x). \text{ For } i \in [n], \text{ set } y_i := g^{\sigma_i}; \text{ let } Y := (y_1, \dots, y_n).$$

$$(3) \text{ For } i \in [n], \text{ send } (y, \sigma_i, Y) \text{ to } P_i. \text{ Send } (y, Y) \text{ to the adversary.}$$

Notes

Adversary given (y, Y)

 Those values are public, and are revealed even to an eavesdropping adversary who corrupts no one

$$\mathcal{F}_{\mathsf{DKG}}^{t,n}$$

$$(1) Choose x \leftarrow \mathbb{Z}_q \text{ and compute } y := g^x.$$

$$(2) Compute \{\sigma_i\}_{i=0}^n \leftarrow \mathsf{SS}_t(x). \text{ For } i \in [n], \text{ set } y_i := g^{\sigma_i}; \text{ let } Y := (y_1, \dots, y_n).$$

$$(3) \text{ For } i \in [n], \text{ send } (y, \sigma_i, Y) \text{ to } P_i. \text{ Send } (y, Y) \text{ to the adversary.}$$

Notes

Adversary given (y, Y)

• Those values are public, and are revealed even to an eavesdropping adversary who corrupts no one

This functionality ensures robustness (aka guaranteed output delivery)

Jonathan Katz	Distributed KeyGen	9/23

$$\mathcal{F}_{\mathsf{DKG}}^{t,n}$$

$$(1) Choose x \leftarrow \mathbb{Z}_q \text{ and compute } y := g^x.$$

$$(2) Compute \{\sigma_i\}_{i=0}^n \leftarrow \mathsf{SS}_t(x). \text{ For } i \in [n], \text{ set } y_i := g^{\sigma_i}; \text{ let } Y := (y_1, \dots, y_n).$$

$$(3) \text{ For } i \in [n], \text{ send } (y, \sigma_i, Y) \text{ to } P_i. \text{ Send } (y, Y) \text{ to the adversary.}$$

Notes

Impossible to *t*-securely realize unless t < n/2

Jonathan Katz	Distributed KeyGen	10/23

Alternate (robust) functionality I

Let adversary choose its own shares

\$\mathcal{F}_{\mathsf{DKG}}^{t,n}\$
Let \$\mathcal{C}'\$ be an arbitrary set of size \$t\$ with \$\mathcal{C} ⊆ \mathcal{C}' ⊂ [n]\$.
1. Receive \$\{\sigma_i\}_{i \in \mathcal{C}}\$ from the adversary.
2. Choose \$x ← \mathcal{Z}_q\$ and set \$y := g^x\$. Choose \$\sigma_i ← \mathcal{Z}_q\$ for \$i ∈ \mathcal{C}' \mathcal{C}\$.
3. Let \$f\$ be the polynomial of degree at most \$t\$ such that \$f(0) = x\$ and \$f(i) = \sigma_i\$ for \$i ∈ \mathcal{C}'\$. Set \$\sigma_i := f(i)\$ for \$i ∈ [n] \mathcal{C}'\$.
4. For \$i ∈ [n]\$, set \$y_i := g^{\sigma_i}\$. Let \$Y := (y_1, \ldots, y_n)\$.
5. For \$i ∈ [n]\$, send \$(y, \sigma_i, Y)\$ to \$P_i\$. Send \$(y, Y)\$ to the adversary.

Jo	nati	nan	ĸ	atz

Alternate (robust) functionality II

Let adversary choose its own shares, depending on y

lon	athar	ı Katz
201	acitai	1 1 1 1 1 2

Non-robust functionality

 $\mathcal{F}_{\mathsf{DKG}}^{\perp}$ Let \mathcal{C}' be an arbitrary set of size t with $\mathcal{C} \subseteq \mathcal{C}' \subset [n]$. Receive $\{\sigma_i\}_{i \in C}$ from the adversary S. (1)Choose $x \leftarrow \mathbb{Z}_a$ and set $y := g^x$. Choose $\sigma_i \leftarrow \mathbb{Z}_a$ for $i \in \mathcal{C}' \setminus \mathcal{C}$. <u>3 Let f be the polynomial of degree at most t such that f(0) = x</u> and $f(i) = \sigma_i$ for $i \in \mathcal{C}'$. Set $\sigma_i := f(i)$ for $i \in [n] \setminus \mathcal{C}'$. 4 For $i \in [n]$ set $y_i := g^{\sigma_i}$. Let $Y := (y_1, \ldots, y_n)$. **(5)** Send (y, Y) to S, who responds with either abort or continue. If abort and $|\mathcal{C}| \geq 1$ then send \perp to all honest parties and stop. Otherwise, for $i \in [n]$ send (y, σ_i, Y) to P_i .

Non-robust functionality

Fair (non-robust) functionality

Fair (non-robust) functionality

Could also incorporate *identifiable abort*

lon	athan	Katz
101	atilali	INALZ

DKG with shift

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

- Define required properties of the DKG
- Prove security of the protocol using a DKG satisfying those properties
- (Optional) specify a DKG that satisfies those properties

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

- Define required properties of the DKG
- Prove security of the protocol using a DKG satisfying those properties
- (Optional) specify a DKG that satisfies those properties
- Specify required properties for DKG via an ideal functionality
 - Possibly using a common template

Recommendations

Submissions of threshold (dlog) protocols should modularize the DKG

- Define required properties of the DKG
- Prove security of the protocol using a DKG satisfying those properties
- (Optional) specify a DKG that satisfies those properties
- Specify required properties for DKG via an ideal functionality
 - Possibly using a common template
- In general, encourage submissions not only of gadgets to be used by other protocols, but also of protocols relying on abstract gadgets

A round-optimal, robust DKG protocol in the honest-majority setting

- Assuming broadcast, synchrony
 - Note: recommend abstracting broadcast channel
- Efficient for small t, n

A round-optimal, robust DKG protocol in the honest-majority setting

- Assuming broadcast, synchrony
 - Note: recommend abstracting broadcast channel
- Efficient for small t, n

Round optimality

Protocol has one round of preprocessing, followed by a 2-round online phase that can be executed an unbounded number of times

Robust (unbiased) DKG is impossible in one round regardless of prior setup

an Nalz

Motivating robustness

- Most practical applications need robustness (in a broader sense)
- Can potentially achieve by other means, but less efficient (and possibly less secure)
- Robustness is an advantage of working in the honest-majority setting

Background: Pseudorandom secret sharing [CDI05]

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S \in S_{n-t,n}$, let $Z_S \in Z_q[X]$ be the *t*-degree polynomial with $Z_S(0) = 1$ and $Z_S(i) = 0$ for $i \in [n] \setminus S$

 $F: \{0,1\}^{\kappa} imes \{0,1\}^n o \mathbb{Z}_q$ is a pseudorandom function

Background: Pseudorandom secret sharing [CDI05]

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S \in S_{n-t,n}$, let $Z_S \in Z_q[X]$ be the *t*-degree polynomial with $Z_S(0) = 1$ and $Z_S(i) = 0$ for $i \in [n] \setminus S$

 $F: \{0,1\}^{\kappa} \times \{0,1\}^n \to \mathbb{Z}_q$ is a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$ Given a nonce $N \in \{0,1\}^n$, each party P_i can compute share

$$\sigma_i := \sum_{S \in \mathbb{S}_{n-t,n} : i \in S} F_{k_S}(N) \cdot Z_S(i)$$

This is a (t + 1)-out-of-*n* Shamir secret sharing of

$$x_{N} = \sum_{S \in \mathbb{S}_{n-t,n}} F_{k_{S}}(N) \cdot Z_{S}(0) = \sum_{S \in \mathbb{S}_{n-t,n}} F_{k_{S}}(N)$$

Background: Pseudorandom secret sharing (PRSS)

Notes

PRSS is not DKG (still need to interact to compute $y = g^{x_N}$)

PRSS typically assumes a trusted dealer; without a trusted dealer, it is not clear how to ensure correctness

Preprocessing: For $S \in \mathbb{S}_{n-t,n}$, a designated party in S chooses $k_S \leftarrow \mathbb{Z}_q$ and sends it to $\{P_i\}_{i \in S}$. Each P_i lets $k_{i,S}$ be the value received

Jonathan Katz	Distributed KeyGen	21 / 23

Preprocessing: For $S \in \mathbb{S}_{n-t,n}$, a designated party in S chooses $k_S \leftarrow \mathbb{Z}_q$ and sends it to $\{P_i\}_{i \in S}$. Each P_i lets $k_{i,S}$ be the value received

Key generation: Given nonce N, each party P_i does:

• Round 1: For all $S \in \mathbb{S}_{n-t,n}$ with $i \in S$: compute $\hat{y}_{i,S} := g^{F_{k_{i,S}}(N)}$ and $h_{i,S} := H(\hat{y}_{i,S})$; then broadcast $h_{i,S}$

Preprocessing: For $S \in \mathbb{S}_{n-t,n}$, a designated party in S chooses $k_S \leftarrow \mathbb{Z}_q$ and sends it to $\{P_i\}_{i \in S}$. Each P_i lets $k_{i,S}$ be the value received

Key generation: Given nonce N, each party P_i does:

• Round 1: For all $S \in \mathbb{S}_{n-t,n}$ with $i \in S$: compute $\hat{y}_{i,S} := g^{F_{k_{i,S}}(N)}$ and $h_{i,S} := H(\hat{y}_{i,S})$; then broadcast $h_{i,S}$

• Round 2: Initialize $\mathcal{I} := \emptyset$. For each $S \in \mathbb{S}_{n-t,n}$, do:

If there is a value h_S s.t. $h_{j,S} = h_S$ for all $j \in S$, add S to \mathcal{I} . Broadcast $\{\hat{y}_{i,S}\}_{S \in \mathcal{I} : i \in S}$

Preprocessing: For $S \in \mathbb{S}_{n-t,n}$, a designated party in S chooses $k_S \leftarrow \mathbb{Z}_q$ and sends it to $\{P_i\}_{i \in S}$. Each P_i lets $k_{i,S}$ be the value received

Key generation: Given nonce N, each party P_i does:

• Round 1: For all $S \in \mathbb{S}_{n-t,n}$ with $i \in S$: compute $\hat{y}_{i,S} := g^{F_{k_{i,S}}(N)}$ and $h_{i,S} := H(\hat{y}_{i,S})$; then broadcast $h_{i,S}$

• Round 2: Initialize $\mathcal{I} := \emptyset$. For each $S \in \mathbb{S}_{n-t,n}$, do:

If there is a value h_S s.t. $h_{j,S} = h_S$ for all $j \in S$, add S to \mathcal{I} . Broadcast $\{\hat{y}_{i,S}\}_{S \in \mathcal{I} : i \in S}$

Output determination: For S ∈ I, if any P_j broadcasted ŷ_{j,S} with H(ŷ_{j,S}) = h_S, set ŷ_S := ŷ_{j,S}. Then:
① Set σ_i := ∑_{S∈I:i∈S} F_{k_{i,S}}(N) · Z_S(i)
② Set y := ∏_{S∈I} ŷ_S, and for j ∈ [n] set y_j := ∏_{S∈I:j∈S} ŷ^{Z_S(j)}

Theorem

Let F be a pseudorandom function, and model H as a random oracle. Then for t < n/2 this protocol t-securely realizes $\mathcal{F}_{DKG}^{t,n}$

Easy to modify to achieve adaptive security as well

Paper available at https://eprint.iacr.org/2023/1094

We would be interested in collaborating on a submission to NIST

Thank you!

Jonat	han	Katz	

t. 26, 2023MPTS 2023: NIST Workshi