
Threshold Cryptography in MP-SPDZ
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Marcel Keller

CSIRO’s Data61

26 September 2023



Imagine a Magic Black Box Between a Set of Parties

a+ b = c

Parties

▶ Have handles to values

▶ Don’t know the values

▶ Can input values

▶ Can agree on computations
creating new values

▶ Can agree on outputting values



Secure Multiparty Computation: Black Box as Protocol

A

B

z

y

x

Wanted: f (x , y , z)

▶ Computation on secret inputs

▶ Replace black box
▶ Central questions in MPC

▶ How many honest parties?
▶ Dishonest parties still follow the protocol?

▶ MP-SPDZ supports > 40 protocol variants
across all properties



Unifying MPC: Basic Operations

Addition Multiplication

Communication ✗ ✓

Shamir/Replicated Add shares Reshare
SPDZ/TinyOT Add shares/MACs Beaver



Unified C++ Interface

for (int i = 0; i < n; i++)

sum[i] = a[i] + b[i];

protocol.init_mul();

for (int i = 0; i < n; i++)

protocol.prepare_mul(a[i], b[i]);

protocol.exchange();

for (int i = 0; i < n; i++)

product[i] = protocol.finalize_mul();

▶ Addition is straightforward

▶ Similar for multiplication would lead
to sequential execution

▶ Prepare/exchange/finalize minimal
interface for parallel execution



C++ Templating

Rep3<Rep3Share<Z2<64>>> proto;

Rep3<Rep3Share<gfp_<0, 2>>> proto;

Shamir<ShamirShare<gfp_<0, 2>>> proto;

Shamir<ShamirShare<gf2n>>> proto;

Beaver<SemiShare<Z2<64>>> proto;

Beaver<SemiShare<gfp_<0, 2>>> proto;

Beaver<LowGearShare<gfp_<0, 2>>> proto;

Beaver<HighGearShare<gfp_<0, 2>>> proto;

▶ Share type defines protocol variant

▶ Share types are templated on domain

▶ Maximal code reuse across variants



Threshold ECDSA with Black-Box MPC

ECDSA Signature

s = k−1(H(M) + sk · rx)

where

▶ k secret randomness in Zp

▶ rx a coordinate of kG in group of order p

Black-Box MPC
▶ Use black box for secret key sk and k

▶ Need to publish kG but not k

▶ Secret sharing scheme over Zp implies one over the group with local conversion



MP-SPDZ Domain Interface for EC Group

▶ Uses OpenSSL for EC functionality

▶ 200 lines of code

▶ 7 static members, 10 overloaded operators, 4 constructors, (de)serialization

P256Element P256Element::operator +(const P256Element& other) const

{

P256Element res;

assert(EC_POINT_add(curve, res.point, point, other.point, 0) != 0);

return res;

}



ECDSA in MP-SPDZ (Simplified)

s = k−1(H(M) + sk · rx)

Scalar hash = hash_to_scalar(message);

Share<Scalar> k, b, c;

get_random_triple(k, b, c);

Share<Scalar> k_inv = b / open(c);

Scalar r_x = open(Share<P256Element>(k)).x();

Scalar s = open(mul(k_inv, hash + sk * rx));



Supported Protocols

Name Honest Majority Malicious

Rep3 Y N https://ia.cr/2016/768

Mal-Rep3 Y Y https://ia.cr/2017/816

Shamir Y N https://ia.cr/2000/037

Mal-Shamir Y Y https://ia.cr/2017/816

Semi N N https://ia.cr/2016/505

MASCOT N Y https://ia.cr/2016/505

ATLAS N N https://ia.cr/2021/833

Rep4 N Y https://ia.cr/2020/1330

SPDZ-wise Rep3 N Y https://ia.cr/2018/570

https://ia.cr/2016/768
https://ia.cr/2017/816
https://ia.cr/2000/037
https://ia.cr/2017/816
https://ia.cr/2016/505
https://ia.cr/2016/505
https://ia.cr/2021/833
https://ia.cr/2020/1330
https://ia.cr/2018/570


Links

https://github.com/data61/MP-SPDZ

https://ia.cr/2020/521

https://ia.cr/2019/889

https://mp-spdz.readthedocs.io/en/latest/ecdsa.html

https://twitter.com/mkskeller

https://github.com/data61/MP-SPDZ
https://ia.cr/2020/521
https://ia.cr/2019/889
https://mp-spdz.readthedocs.io/en/latest/ecdsa.html
https://twitter.com/mkskeller

