Standardizing Protocols for Threshold ECDSA

Jonathan Katz
Chief Scientist, Dfns

Sept. 26, 2023
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Thanks to Denis Varlakov, Nik Sorokovikov, and Antoine Urban for helpful discussions
Overview of the talk

- Threshold cryptography (signing) in a "key-management network"
- Applies to schemes beyond ECDSA
Overview of the talk

- Threshold cryptography (signing) in a “key-management network”
 - Applies to schemes beyond ECDSA
- Standardizing threshold ECDSA protocols
 - No-honest-majority setting
 - Honest-majority setting
Key-management networks

Most (all?) treatments of threshold cryptography in the literature assume a single user distributing a key among n parties.

- Users act independently, and may choose different sets of parties.
- Even if users choose (some of) the same parties, protocol executions for different users’ keys are considered in isolation.
Most (all?) treatments of threshold cryptography in the literature assume a single user distributing a key among n parties.

- Users act independently, and may choose different sets of parties.
- Even if users choose (some of) the same parties, protocol executions for different users' keys are considered in isolation.

Key-management network: a dedicated set of n parties holding shares of multiple keys on behalf of multiple users.
Most (all?) treatments of threshold cryptography in the literature assume a single user distributing a key among n parties
- Users act independently, and may choose different sets of parties
- Even if users choose (some of) the same parties, protocol executions for different users' keys are considered in isolation

Key-management network: a dedicated set of n parties holding shares of multiple keys on behalf of multiple users

Technical advantages:
- Each party's state can be shared across protocol executions involving different keys
- Possibility of parallelization/batch processing across keys
Example

The robust KeyGen protocol I described previously
Suggestions

- Proposers should be encouraged to highlight potential optimizations of their protocols when run in a key-management network.
- Schemes should be evaluated (among other factors) based on their performance in a “key-management network” setting.
ECDSA

G is a cyclic group of prime order q, with generator g

Private key x ∈ ℤ_q; public key y = g^x

To sign a (hashed) message m:

Choose k ← ℤ_q; compute R := g^k and r := F(R)

Compute s := k^{-1} \cdot (m + rx)
ECDSA

- \mathbb{G} is a cyclic group of prime order q, with generator g
- Private key $x \in \mathbb{Z}_q$; public key $y = g^x$
- To sign a (hashed) message m:
 - Choose $k \leftarrow \mathbb{Z}_q$; compute $R := g^k$ and $r := F(R)$
 - Compute $s := k^{-1} \cdot (m + rx)$

Threshold ECDSA

- n is the total number of parties
- t is an upper bound on the number of corrupted parties
- Honest majority: $t < n/2$; no-honest majority: $n/2 \leq t < n$
Threshold ECDSA in the no-honest-majority setting

Will focus on the CGGMP protocol
- Goal is *not* to present the protocol in detail
- Will highlight some optimizations/issues that arise in a key-management network setting

We would be interested in collaborating on a submission to NIST

- Is it possible to merge with a DKLS submission?
CGGMP protocol offers

- Support for any $t < n$
- Presigning + one-round online signing
- Universally composable
- Security for adaptive adversaries
- Can incorporate identifiable abort
CGGMP protocol (high level)

Key generation and provisioning

- Run DKG protocol to generate shares of a private key (denoted $[x]_t$)
- Each party P_i generates a Paillier key N_i, values $s_i, t_i \in \mathbb{Z}_{N_i}^*$, and ZK proofs of various properties of those parameters
No-honest-majority ECDSA

CGGMP protocol (high level)

Key generation and provisioning
- Run DKG protocol to generate shares of a private key (denoted \([x]_t\))
- Each party \(P_i\) generates a Paillier key \(N_i\), values \(s_i, t_i \in \mathbb{Z}_{N_i}^*\), and ZK proofs of various properties of those parameters

Signing
- Generate random \([k^{-1}]_t, [a]_t\)
- Compute \([ak^{-1}]_t\) and \([xk^{-1}]_t\) using a multiplication protocol
- Reconstruct \(g^a\) and \(ak^{-1}\); use these to compute \(g^k\) and \(r := F(g^k)\)
- Locally compute \(m \cdot [k^{-1}]_t + r \cdot [xk^{-1}]_t = [k^{-1} \cdot (m + rx)]_t\)
Provisioning is somewhat slow...
Provisioning is somewhat slow...

Observation: provisioning can be done *once* for a given network of parties (rather than on a per-key basis)
Provisioning

Provisioning is somewhat slow...

Observation: provisioning can be done *once* for a given network of parties (rather than on a per-key basis)

Of course, need to prove that this does not affect security
Using precomputation to optimize signing

The signing protocol involves many ZK proofs

One bottleneck: $\approx 20t$ computations of the form $s_j^x t_j^y \mod N_j$, where $\|x\| \approx 500$, $\|y\| \approx 3500$, and $\|N_i\| \approx 3000$
Using precomputation to optimize signing

The signing protocol involves many ZK proofs.

One bottleneck: \(\approx 20t \) computations of the form \(s_j^x t_j^y \mod N_j \), where \(\|x\| \approx 500 \), \(\|y\| \approx 3500 \), and \(\|N_i\| \approx 3000 \)

Observation: do precomputation during provisioning to speed up fixed-base multi-exponentiations

- E.g., for parameters above, \(\approx 8 \times \) speedup by storing \(\approx 300KB \)
(Key-dependent) presigning

CGGMP presigning computes g^k, $[k^{-1}]_t$, and $[xk^{-1}]_t$

- Given this information and m, can sign in one round
(Key-dependent) presigning

CGGMP presigning computes g^k, $[k^{-1}]_t$, and $[xk^{-1}]_t$
- Given this information and m, can sign in one round

Note that presigning is key-dependent
- Key-dependent presigning is not great in practice
(Key-dependent) presigning

CGGMP presigning computes g^k, $[k^{-1}]_t$, and $[xk^{-1}]_t$

- Given this information and m, can sign in one round

Note that presigning is *key-dependent*

- Key-dependent presigning is not great in practice

Question: is (efficient) *key-independent* presigning (with one-round online signing) possible in the no-honest-majority setting?
We see value in honest-majority ECDSA protocols. They can be more efficient, while offering "equivalent" security for some applications. They can also offer better availability and security properties (e.g., robustness) not achievable otherwise. We would be interested in collaborating on a submission to NIST.
Honest-majority ECDSA

We see value in honest-majority ECDSA protocols

- Can be more efficient, while offering “equivalent” security for some applications
- Can offer better availability
- Can offer security properties (e.g., robustness) not achievable otherwise

We would be interested in collaborating on a submission to NIST
In the honest-majority setting, the number of parties running the protocol is (at least) $2t + 1$.
Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol is (at least) $2t + 1$

Damgård et al. (2020) show an efficient honest-majority ECDSA protocol

- Appears covered by US Patent 11,757,657 assigned to Sepior APS
In the honest-majority setting, the number of parties running the protocol is (at least) $2t + 1$

Damgård et al. (2020) show an efficient honest-majority ECDSA protocol

- Appears covered by US Patent 11,757,657 assigned to Sepior APS

Will sketch an alternate approach

- One possibility...
Honest-majority ECDSA (high level)

Provisioning and key generation
- Provision parties with setup for PRSS (cf. DKG talk)
- Honest-majority DKG to generate \([x]_t\)

Presigning
- Generate random \([k^{-1}]_t, [a]_t\)
- Compute \([ak^{-1}]_t\) using a multiplication protocol
- Reconstruct \(ak^{-1}\); compute \([k]_t, g^k\), and \(r := F(g^k)\)

Signing
- Compute \(m \cdot [k^{-1}]_t + r \cdot [k^{-1}]_t \cdot [x]_t = [k^{-1} \cdot (m + rx)]_{2t}\)
Honest-majority ECDSA (high level)

Provisioning and key generation
- Provision parties with setup for PRSS (cf. DKG talk)
- Honest-majority DKG to generate $[x]_t$

Key-independent presigning
- Generate random $[k^{-1}]_t, [a]_t$
- Compute $[ak^{-1}]_t$ using a multiplication protocol
- Reconstruct ak^{-1}; compute $[k]_t, g^k$, and $r := F(g^k)$

Signing
- Compute $m \cdot [k^{-1}]_t + r \cdot [k^{-1}]_t \cdot [x]_t = [k^{-1} \cdot (m + rx)]_{2t}$
Batch presigning

Presigning needs a multiplication protocol resilient to malicious behavior
Batch presigning

Presigning needs a multiplication protocol resilient to malicious behavior.

Can amortize cost of multiplication by doing batch presigning.

- This becomes practical when presigning is key-independent!
Given \{[a_i]_t\}_{i=1}^{m+1}, \{[b_i]_t\}_{i=1}^{m+1}
Batch multiplication [Nordholt-Veeningen (2018)]

Given \(\{[a_i]_t\}_{i=1}^{m+1}, \{[b_i]_t\}_{i=1}^{m+1} \)

Let \(F, G \) be degree-\(m \) polynomials with \(F(i) = a_i, G(i) = b_i \) for \(i \in [m] \); locally compute \(\{[a_j = F(j)]_t\}_{j=m+2}^{2m+1} \) and \(\{[b_j = G(j)]_t\}_{j=m+2}^{2m+1} \)
Batch multiplication [Nordholt-Veeningen (2018)]

Given $\{[a_i]_t\}_{i=1}^{m+1}, \{[b_i]_t\}_{i=1}^{m+1}$

Let F, G be degree-m polynomials with $F(i) = a_i, G(i) = b_i$ for $i \in [m]$; locally compute $\{[a_j = F(j)]_t\}_{j=m+2}^{2m+1}$ and $\{[b_j = G(j)]_t\}_{j=m+2}^{2m+1}$

For $i \in [2m + 1]$, use “passively secure” multiplication to get $\{[c_i]_t\}_{i=1}^{2m+1}$
Batch multiplication [Nordholt-Veeningen (2018)]

Given \(\{[a_i]_t\}_{i=1}^{m+1}, \{[b_i]_t\}_{i=1}^{m+1}\)

Let \(F, G\) be degree-\(m\) polynomials with \(F(i) = a_i, G(i) = b_i\) for \(i \in [m]\);
locally compute \(\{[a_j = F(j)]_t\}_{j=m+2}^{2m+1}\) and \(\{[b_j = G(j)]_t\}_{j=m+2}^{2m+1}\)

For \(i \in [2m+1]\), use “passively secure” multiplication to get \(\{[c_i]_t\}_{i=1}^{2m+1}\)

Let \(H\) be degree-\(2m\) polynomial with \(H(i) = c_i\) for \(i \in [2m+1]\)
 - If everyone was honest, then \(H(X) = F(X) \cdot G(X)\)
Batch multiplication [Nordholt-Veeningen (2018)]

Given \{[a_i]_t\}_{i=1}^{m+1}, \{[b_i]_t\}_{i=1}^{m+1}

Let \(F, G\) be degree-\(m\) polynomials with \(F(i) = a_i, G(i) = b_i\) for \(i \in [m]\);
locally compute \{[a_j = F(j)]_t\}_{j=m+2}^{2m+1} and \{[b_j = G(j)]_t\}_{j=m+2}^{2m+1}

For \(i \in [2m+1]\), use “passively secure” multiplication to get \{[c_i]_t\}_{i=1}^{2m+1}

Let \(H\) be degree-\(2m\) polynomial with \(H(i) = c_i\) for \(i \in [2m+1]\)

 * If everyone was honest, then \(H(X) = F(X) \cdot G(X)\)

Choose \(\alpha \leftarrow \mathbb{Z}_q\); reconstruct \(F(\alpha), G(\alpha), H(\alpha)\) and check correctness
Batch presigning

Note
Measuring performance for threshold signing of a single message is not indicative of the amortized performance when batch presigning is used.
Summary

Highlighted some (technical) considerations for threshold cryptography in “key-management networks”

- Should be taken into account in submissions/evaluation

Interest in standardizing CGGMP no-honest-majority protocol + honest-majority ECDSA protocol
Thank you!