Vector Oblivious Linear Evaluation, PCGs and Correlated Randomness

Peter Scholl
NIST MPTC Workshop, 28 September 2023
Overview

PCGs

Correlated Randomness

VOLE

MPC

Threshold schemes

ZK
Vector Oblivious Linear Evaluation

[ADINZ 17, BCGI 18, Roy 22]

\[\vec{q} = \vec{w} \Delta + \vec{v} \]

Variants:
- Subfield VOLE (e.g. correlated OT)
- Subspace VOLE
Sender-Private VOLE (aka VOLE-in-the-head)

\[\hat{\mathbf{v}}, \mathbf{w} \in \mathbb{F}^n \]

- Especially useful if protocol is public-coin
- Note: VOLE \Rightarrow sender-private VOLE

[BBdSKORS 23]
Building Sender-Private VOLE (in small fields)

[BBdSKORS 23]

All-but-one vector commitment

Commit to n random strings

Challenge Δ

Open $n - 1$

Convert to VOLE (in \mathbb{F}_n)

$\tilde{q} = \tilde{u}\Delta + \tilde{v}$

[Roy 22]
Case Study: Zero-Knowledge from VOLE

VOLE-ZK: fast, linear-size proofs for Boolean and/or arithmetic statements

- More efficient
- Good enough for many threshold protocols
- Non-interactive
 - Good for PQ signatures, e.g. FAEST
 - Can help with public verifiability/identifiable abort

Designated Verifier
[DIO 21, WYKW 21, ...]

Publicly Verifiable
[BBdSKORS 23]
Case Study: Zero-Knowledge from VOLE

VOLE

LPN Base OT + PRG

SoftSpokenVOLE [Roy 22]

Sender-private VOLE

PRG + hash

SoftSpokenVOLE-in-the-Head [BBdSKORS 23]

[DIO 21, WYKW 21]

[SGRR 19, BCGIKRS 19, YWLZW 20], ...

NIZK

Random oracle

(desigated verifier) ZK

(public coin) ZK

Peter Scholl
Other Applications of VOLE

• Authenticated garbling [WRK 17, ...]
 • Correlated OT (\mathbb{F}_2)

• Threshold ECDSA [DKLS, ...]
 • Scalar-vector multiplication in \mathbb{F}_p

• General-purpose MPC in large fields [DPSZ 12, ...]
 • SPDZ etc.
Pseudorandom Correlation Generators (PCGs)

[BCGI 18, BCGIKS 19]

• Target correlation: \((R_0, R_1)\)

• Algorithms Gen, Expand:

\[
(k_0, k_1) \leftarrow \text{Gen}(1^λ)
\]

\[
\tilde{R}_0 \leftarrow \text{Expand}(k_0)
\]

\[
\tilde{R}_1 \leftarrow \text{Expand}(k_1)
\]

Security: \((\tilde{R}_0, \tilde{R}_1) \approx (R_0, R_1)\), when given \(k_b\)
Example PCG Constructions

• VOLE/OT:
 • Via learning parity with noise (LPN) [BCGI 18, BCGIKS 19]

• Multiplication triples
 • Ring LPN [BCGIKS 20]

• Also: pseudorandom correlation functions (PCF) for VOLE
 • Unbounded # of outputs
 • Paillier [OSY 21], or variants of LPN [BCGIKRS 22]
Is a trusted setup acceptable?

• PCG Gen algorithm: inherent trusted setup
 • Maybe OK if trusted client can generate keys
 • What happens when correlated randomness is used up?
 • PCF avoids this issue

• Distributed setup protocol
 • Securely set-up keys with multi-party protocol
 • Analogous to DKG
Distributed setup protocols: a definitional challenge

• Naïve solution: Π securely realizes Gen functionality
 • OK for passive security
 • Active security: not always practical!

• Current practice: Π securely computes correlated randomness (R_0, R_1)
 • With succinct communication

• Is there a better definition?
 • If not, distributed PCG protocols are just a special case of correlated randomness protocols
Conclusion

VOLE is an important form of correlated randomness
• Seems useful to consider for standardization
• Possible submission from FAEST team:
 • VOLE-ZK/VOLE-in-the-head

• PCGs/PCFs
 • Useful tool for saving bandwidth
 • Harder to standardize as a gadget
 (application-dependent)