Building Threshold Cryptosystems over a SMR/Blockchain channel

Aniket Kate
Purdue University / Supra Research

NIST Workshop on Multi-Party Threshold Schemes (MPTS) 2023
Presented on September 28, 2023
Threshold Cryptosystem with Honest Majorities

Properties: Robustness, Guaranteed Output Delivery, Fairness, ...

Typical Communication Model

Synchronous Point-to-point Secure Links

Broadcast Channel

Can the Internet be considered synchronous enough to build Broadcast channels?
Unless latency per round in minutes is acceptable, the Internet may not be considered to be synchronous.
Communication Model for the Internet

System Setting
- \(n \) parties and an \(f \)-limited adversary
- point-to-point links

Asynchrony
- For any message sent, the adversary can delay its delivery by any finite amount of time.
- there is no bound on the time to deliver a message but,
- each message must eventually be delivered.

Partial Synchrony
- Assumption: There exists known finite time bound \(\Delta \) and a special event GST (Global Stabilization Time).
- The adversary must cause the GST event to eventually happen after some unknown finite time.
- Any message sent at time \(x \) must be delivered by time \(\Delta + \max(x, GST) \).
Byzantine Broadcast

Problem Setting
- n parties and an f-limited adversary
- A distinguished broadcaster p

With bounded synchrony
- **Agreement.**
 If two honest parties commit values v and v' respectively, then $v = v'$.
- **Validity.**
 If the broadcaster is honest, then all honest parties commit the broadcaster's value.
- **Termination.**
 All honest parties commit and terminate.

With partial synchrony
- **Agreement.**
 same as above.
- **Validity.**
 If the broadcaster is honest and GST = 0, then all honest replicas commit the broadcaster's value.
- **Termination.**
 All honest replicas commit and terminate after GST.
Threshold Cryptosystem beyond Synchrony

- Lower Bound:
 - $\frac{2}{3}$
 - Super Honest Majority required

- Increased complexity of development:
 - dealing with the asynchronous network with common coins
 - dealing with timeouts, view-change, responsiveness in partial synchrony
Existing Threshold Crypto based Blockchain
CONSENSUS

State Machine Replication (SMR)

output: a transactions log = [tx₀, tx₁, . . . , txⱼ]

Safety:
If [tx₀, tx₁, . . . , txⱼ] and [tx'₀, tx'₁, . . . , tx'ⱼ] are output by two honest nodes, then txᵢ = tx'ᵢ for all i ≤ min(j, j').

Liveness:
If a transaction tx is input to at least an honest node, then every honest replica eventually outputs a log containing tx.

Informally,
(i) Senders’ messages appear on the blockchain eventually.
(ii) Different receivers observe messages at different points in time.
(iii) However, all the nodes eventually observe messages in the exact same total order.
Byzantine Broadcast

Problem Setting
- n parties and an f-limited adversary
- A distinguished broadcaster p

Agreement:
If two honest parties commit values v and v' respectively, then $v = v'$.

Validity:
If the broadcaster is honest, then all honest parties commit the broadcaster’s value.

Termination:
All honest parties commit and terminate.
SMRs are not Broadcast Channels

<table>
<thead>
<tr>
<th>Message Delay</th>
<th>Employed Broadcast Channel</th>
<th>Efficient SMR / Blockchain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A fixed Δ</td>
<td>Only eventual guarantee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receivers View</th>
<th>Employed Broadcast Channel</th>
<th>Efficient SMR / Blockchain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All messages by the end of the round</td>
<td>Only a prefix-order guarantee</td>
</tr>
</tbody>
</table>
SMR-assisted Protocol Design
Making broadcast-based primitives to work in the environment with SMR
Non-interactive VSS for $n>2f$

- VSS has termination only for honest dealers
 - we can replace SMR by Bracha's reliable broadcast (RBC)
- Reasonable computational efficiency
- NI-VSS can only offer computational hiding property
Verifiable Secret Sharing (VSS)

VSS with Broadcast Channel
- 51% Honest Nodes required
- Even for unconditional hiding property

Asynchronous VSS
- 67% Honest Nodes required
- The bound holds for different AVSS versions

SMR/RBC-Assisted VSS
- 51% Honest Nodes required
- Unconditional hiding is not achievable
Building DKG for $n > 2f$

- Agreement of common subset (ACS) comes free with SMR.
- SMR determines the network assumption for DKG.
- Robustness property [Jon Katz's talk] is possible with an additional asynchronous round.
Distributed Key Generation (DKG)

Partially Synchronous / Async DKG
67% Honest Nodes required
Calculation of a shared public key for a random, unknown private key

SMR-assisted DKG
51% Honest Nodes required
The protocol with a broadcast channel and a SMR channel are almost equivalent
Threshold Cryptography with SMR Channels

Threshold BLS Signatures / VRF
Purely asynchronous communication process over point-to-point links

Threshold ECDSA / EdDSA
We will need secure multi-party computation (MPC) capability

MPC over SMR Channels for n>2f
CDN MPC Framework [EUROCRYPT '01] based On Threshold Linearly Homomorphic Encryption
MPC over SMR Channels for $n > 2f$

Threshold Linear Homomorphic Encryption Setup
- public key pk
- secret key is shared among the parties

Example Setups
Paillier Encryption, Class-group Encryption, Exponentiated ElGamal Encryption

Secure Scalar Operations: (local or on SMR)
Given $Enc(a)$ and $Enc(b)$
- Compute $Enc(a) \cdot Enc(b)^x = Enc(a+bx)$

Secure Multiplication:
Given $Enc(a)$ and $Enc(b)$
- Publish $Enc(d_i)$ and $Enc(b.d_i)$
 (wait for $f+1$ tuples)
- Compute and threshold decrypt $Enc(a+ \Sigma d_i)$
- Publish decrypted share & compute $(a+ \Sigma d_i)$
- Compute secure product as $(a+ \Sigma d_i) \cdot E(b) - \Sigma Enc(b.d_i) = E(a \cdot b)$

Input (m) Processing:
- Compute ciphertext $c = Enc(pk, m)$
Conclusion and Unresolved Issues

Several Open Problems
1. Proving lower-bound $n > 3f$ for unconditional hiding (i.e. using secure and authenticated channels)
2. MPC for $n > 3f$ with unconditional hiding towards avoiding encryptions and NIZK...

Proposed VSS/DKG/MPC with SMR Channel
- Honest Nodes required: 51%
- Computational Hiding
 - Key Overhead: Encryption + NIZK

Achieving Unconditional Hiding
- Honest Nodes required: 67%
- Converting Feldman/Pedersen VSS to work on SMR

Copyright © 2023 Supra
Thanks!

Twitter/X: https://twitter.com/aniketpkate
Email: aniket@purdue.edu