
A New Leakage Exploitation Framework and Its
Application to Authenticated Encryption

Vahid Jahandideh, Léo Weissbart, Bart Mennink, Lejla Batina

Radboud University (The Netherlands)

NIST Lightweight Cryptography Workshop

June 21-22, 2023

1 / 19

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

2 / 19

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

2 / 19

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

2 / 19

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

2 / 19

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

2 / 19

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

2 / 19

• Showing how mode and primitive design impact leakage mitigation.

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

2 / 19

Motivation

Side-channel analysis (SCA) aware cipher design.

• Ciphers in the real world should be protected against SCA.

• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

2 / 19

Applying:

• To recover a secret, we need to fnd enough XOR operations.

Illustrating:

• We demonstrate the applicability of the approach on ASCON.

Deploying:

• Using this framework, we study the SC properties of the fnalists.

Our approach

Starting:

• We perform DPA on 32-bit software XOR instructions.

• Demonstrate how execution leakage can uncover its operands.

• This experiment forms the basis of our framework.

3 / 19

Illustrating:

• We demonstrate the applicability of the approach on ASCON.

Deploying:

• Using this framework, we study the SC properties of the fnalists.

Our approach

Starting:

• We perform DPA on 32-bit software XOR instructions.

• Demonstrate how execution leakage can uncover its operands.

• This experiment forms the basis of our framework.

Applying:

• To recover a secret, we need to fnd enough XOR operations.

3 / 19

Deploying:

• Using this framework, we study the SC properties of the fnalists.

Our approach

Starting:

• We perform DPA on 32-bit software XOR instructions.

• Demonstrate how execution leakage can uncover its operands.

• This experiment forms the basis of our framework.

Applying:

• To recover a secret, we need to fnd enough XOR operations.

Illustrating:

• We demonstrate the applicability of the approach on ASCON.

3 / 19

Our approach

Starting:

• We perform DPA on 32-bit software XOR instructions.

• Demonstrate how execution leakage can uncover its operands.

• This experiment forms the basis of our framework.

Applying:

• To recover a secret, we need to fnd enough XOR operations.

Illustrating:

• We demonstrate the applicability of the approach on ASCON.

Deploying:

• Using this framework, we study the SC properties of the fnalists.

3 / 19

Main SC observation. If Ti and f(pi⊕k) are dependent, and f is “sufciently”
non-linear, then with enough {pi,Ti}Ni=1, an attacker can recover k.

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

• Usually, f is an S-box function.

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.
• Chunks of the target secret are processed similarly through f . This

divide-and-conquer property is required for DPA attacks.

DPA in a nutshell

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as
Ti.

4 / 19

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

• Usually, f is an S-box function.

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.
• Chunks of the target secret are processed similarly through f . This

divide-and-conquer property is required for DPA attacks.

DPA in a nutshell

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as
Ti.

Main SC observation. If Ti and f(pi ⊕ k) are dependent, and f is “sufciently”
non-linear, then with enough {pi, Ti}Ni=1, an attacker can recover k.

4 / 19

• Usually, f is an S-box function.

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.
• Chunks of the target secret are processed similarly through f . This

divide-and-conquer property is required for DPA attacks.

DPA in a nutshell

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as
Ti.

Main SC observation. If Ti and f(pi ⊕ k) are dependent, and f is “sufciently”
non-linear, then with enough {pi, Ti}Ni=1, an attacker can recover k.

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

4 / 19

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.
• Chunks of the target secret are processed similarly through f . This
divide-and-conquer property is required for DPA attacks.

DPA in a nutshell

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as
Ti.

Main SC observation. If Ti and f(pi ⊕ k) are dependent, and f is “sufciently”
non-linear, then with enough {pi, Ti}Ni=1, an attacker can recover k.

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

• Usually, f is an S-box function.

4 / 19

• Chunks of the target secret are processed similarly through f . This
divide-and-conquer property is required for DPA attacks.

DPA in a nutshell

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as
Ti.

Main SC observation. If Ti and f(pi ⊕ k) are dependent, and f is “sufciently”
non-linear, then with enough {pi, Ti}Ni=1, an attacker can recover k.

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

• Usually, f is an S-box function.

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.

4 / 19

DPA in a nutshell

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as
Ti.

Main SC observation. If Ti and f(pi ⊕ k) are dependent, and f is “sufciently”
non-linear, then with enough {pi, Ti}Ni=1, an attacker can recover k.

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

• Usually, f is an S-box function.

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.
• Chunks of the target secret are processed similarly through f . This

divide-and-conquer property is required for DPA attacks.
4 / 19

For
example,

• In ASCON: for tag generation, the key is XORed with the state directly
(f is identity).

• In ISAP: inside the initialization, divide-and-conquer is thwarted.

• In Xoodyak: during encryption, if nonce uniqueness is preserved, N is
bounded.

Relaxing the requirements. What happens if f is linear or identity function?
Can we still recover k given enough {pi,Ti}Ni=1?

DPA challenges

Limitations. For some fnalists, the requirements of DPA are not satisfed.

5 / 19

• In ISAP: inside the initialization, divide-and-conquer is thwarted.

• In Xoodyak: during encryption, if nonce uniqueness is preserved, N is
bounded.

Relaxing the requirements. What happens if f is linear or identity function?
Can we still recover k given enough {pi,Ti}Ni=1?

DPA challenges

Limitations. For some fnalists, the requirements of DPA are not satisfed. For
example,

• In ASCON: for tag generation, the key is XORed with the state directly
(f is identity).

5 / 19

• In Xoodyak: during encryption, if nonce uniqueness is preserved, N is
bounded.

Relaxing the requirements. What happens if f is linear or identity function?
Can we still recover k given enough {pi,Ti}Ni=1?

DPA challenges

Limitations. For some fnalists, the requirements of DPA are not satisfed. For
example,

• In ASCON: for tag generation, the key is XORed with the state directly
(f is identity).

• In ISAP: inside the initialization, divide-and-conquer is thwarted.

5 / 19

Relaxing the requirements. What happens if f is linear or identity function?
Can we still recover k given enough {pi,Ti}Ni=1?

DPA challenges

Limitations. For some fnalists, the requirements of DPA are not satisfed. For
example,

• In ASCON: for tag generation, the key is XORed with the state directly
(f is identity).

• In ISAP: inside the initialization, divide-and-conquer is thwarted.

• In Xoodyak: during encryption, if nonce uniqueness is preserved, N is
bounded.

5 / 19

DPA challenges

Limitations. For some fnalists, the requirements of DPA are not satisfed. For
example,

• In ASCON: for tag generation, the key is XORed with the state directly
(f is identity).

• In ISAP: inside the initialization, divide-and-conquer is thwarted.

• In Xoodyak: during encryption, if nonce uniqueness is preserved, N is
bounded.

Relaxing the requirements. What happens if f is linear or identity function?
Can we still recover k given enough {pi, Ti}N

i=1?

5 / 19

Setup:

• A chipwhisperer CW308 UFO board using ARMv7-M architecture.

• Trace collection is synchronized at 7.37 MHz.

Processing tools:

• Correlation power analysis (CPA), linear regression (LR), combined with
deep learning (DL) techniques.

Results:

• Attacks work with around 10K traces using 100K for profling.

Experimenting with XOR

Assembly code snippet to test XOR leakage.

... : r3 = k r9 = p
8000aa8: bf00 nop
8000aaa: ea89 0903 eor.w r9, r9, r3 ; r9 = r9 ⊕ r3
8000aae: bf00 nop

Heading/trailing nops to flter out efects of neighboring operations.

6 / 19

Processing tools:

• Correlation power analysis (CPA), linear regression (LR), combined with
deep learning (DL) techniques.

Results:

• Attacks work with around 10K traces using 100K for profling.

Experimenting with XOR

Assembly code snippet to test XOR leakage.

... : r3 = k r9 = p
8000aa8: bf00 nop
8000aaa: ea89 0903 eor.w r9, r9, r3 ; r9 = r9 ⊕ r3
8000aae: bf00 nop

Heading/trailing nops to flter out efects of neighboring operations.

Setup:

• A chipwhisperer CW308 UFO board using ARMv7-M architecture.

• Trace collection is synchronized at 7.37 MHz.

6 / 19

Experimenting with XOR

Assembly code snippet to test XOR leakage.

... : r3 = k r9 = p
8000aa8: bf00 nop
8000aaa: ea89 0903 eor.w r9, r9, r3 ; r9 = r9 ⊕ r3
8000aae: bf00 nop

Heading/trailing nops to flter out efects of neighboring operations.

Setup:

• A chipwhisperer CW308 UFO board using ARMv7-M architecture.

• Trace collection is synchronized at 7.37 MHz.

Processing tools:

• Correlation power analysis (CPA), linear regression (LR), combined with
deep learning (DL) techniques.

Results:

• Attacks work with around 10K traces using 100K for profling. 6 / 19

Byte by Byte CPA. To estimate byte j of the key, the attacker computes em-
pirical correlation cor(HW(k∗⊕ p[j]),T) for all values 0 ≤ k∗ ≤ 255, and sorts
the key hypothesis based on the results.

Drawback. In targeting each byte, the value of the other bytes is considered as
noise. This increases the number of required traces for a successful attack.

More on the attack tools

Leakage model. For some noise n and constant a, the leakage buried in the
traces is described as l = aHW(k ⊕ p) + n.

7 / 19

Drawback. In targeting each byte, the value of the other bytes is considered as
noise. This increases the number of required traces for a successful attack.

More on the attack tools

Leakage model. For some noise n and constant a, the leakage buried in the
traces is described as l = aHW(k ⊕ p) + n.

Byte by Byte CPA. To estimate byte j of the key, the attacker computes em-
pirical correlation cor(HW(k∗ ⊕ p[j]), T) for all values 0 ≤ k∗ ≤ 255, and sorts
the key hypothesis based on the results.

7 / 19

More on the attack tools

Leakage model. For some noise n and constant a, the leakage buried in the
traces is described as l = aHW(k ⊕ p) + n.

Byte by Byte CPA. To estimate byte j of the key, the attacker computes em-
pirical correlation cor(HW(k∗ ⊕ p[j]), T) for all values 0 ≤ k∗ ≤ 255, and sorts
the key hypothesis based on the results.

Drawback. In targeting each byte, the value of the other bytes is considered as
noise. This increases the number of required traces for a successful attack.

7 / 19

Using LR for the attack. If v is k ⊕ p, output leakage of the XOR can be
expressed in basis of bits of p as:

l =

wX
j=1

aj(k[j]⊕ p[j]) + n =
X

k[j]=0

ajp[j] +
X

k[j]=1

aj(1− p[j]) + n

=
X

k[j]=0

ajp[j]−
X

k[j]=1

ajp[j] + b,

for some key-independent value b. The sign of coefcient of p[j] reveals k[j].

More on the attack tools

Using LR for adjusting weights. Using the traces, leakage l of a variable v inP wterms of its bits can be estimated with LR as l = j=1 aj v[j] + n.

8 / 19

More on the attack tools

Using LR for adjusting weights. Using the traces, leakage l of a variable v inP wterms of its bits can be estimated with LR as l = j=1 aj v[j] + n.

Using LR for the attack. If v is k ⊕ p, output leakage of the XOR can be
expressed in basis of bits of p as:

wX X X
l = aj (k[j] ⊕ p[j]) + n = aj p[j] + aj (1 − p[j]) + n

j=1 k[j]=0 k[j]=1X X
= aj p[j] − aj p[j] + b,

k[j]=0 k[j]=1

for some key-independent value b. The sign of coefcient of p[j] reveals k[j].

8 / 19

More on the attack tools

Combining CPA/LR with DL. To decrease the number of required traces,
HW(k ⊕ pi) can be estimated from {pi, Ti} with DL. j in Ti[j] and pi[j]
denotes samples and bits, respectively.

. . .

. . .

. . .
.

Ti[1]

Ti[2]

Ti[m]

pi[1]

pi[2]

pi[32]

Pr(HW(k ⊕ pi) = 0)

Pr(HW(k ⊕ pi) = 1)

Pr(HW(k ⊕ pi) = 2)

Pr(HW(k ⊕ pi) = 32)

S
elect th

e h
igh

est valu
e

A
p
p
ly C

P
A

 or L
R

9 / 19

More on the attack tools

Attack Results

Average rank of the correct key byte Average number of incorrect key bits

102 103 104 102 103 104

Number of traces Number of traces

80

70

60

50

40

30

20

10
5

CPA 2nd byte
DL+CPA 1st byte
CPA other bytes
DL+CPA other bytes

2

4

6

8

10

12
LR 4 bytes
DL+LR 4 bytes

Figure: (Left) CPA with and without DL. The CPA attack for the 2nd byte produces
slightly better results. DL+CPA in the used model worked better for the 1st byte.
Results for other bytes are also shown. (Right) LR with and without DL.

10 / 19

Application. We investigate the running assembly to fnd enough XOR instruc-
tions that are merging random (and known) operands with secret parameters.

Our framework

nAssumption. If w-bit chunks of an n-bit target secret are processed in w
separate XOR operations, each with a known random operand, the attacker
can learn that secret.

11 / 19

Our framework

nAssumption. If w-bit chunks of an n-bit target secret are processed in w
separate XOR operations, each with a known random operand, the attacker
can learn that secret.

Application. We investigate the running assembly to fnd enough XOR instruc-
tions that are merging random (and known) operands with secret parameters.

11 / 19

• K is used both in the initialization and fnalization phases.

• State recovery in middle phases will not lead to key recovery or tag
forgery.

• So, only the initialization and fnalization need protection.

• This property is referred to as leveled masking.

Application to ASCON

πa

As Mt−1Ct−1 MtCt

K∥0†

T

128

IV∥K∥N K

πa

0†∥K

A1

πb πb

0†∥1

M1C1

πb πb

Initialization Associated Data Plaintext Finalization

Figure: ASCON-Encryption. a and b denote the number of permutation rounds.

12 / 19

Application to ASCON

πa

As Mt−1Ct−1 MtCt

K∥0†

T

128

IV∥K∥N K

πa

0†∥K

A1

πb πb

0†∥1

M1C1

πb πb

Initialization Associated Data Plaintext Finalization

Figure: ASCON-Encryption. a and b denote the number of permutation rounds.

• K is used both in the initialization and fnalization phases.

• State recovery in middle phases will not lead to key recovery or tag
forgery.

• So, only the initialization and fnalization need protection.

• This property is referred to as leveled masking.

12 / 19

Instructions for K1 and K3 are given

... ; r0 contains address of parameters
10b60: e9d0 1205 ldrd r1, r2, [r0, #20]; r1 = K2, r2 = N1
10b64: e9d0 7601 ldrd r7, r6, [r0, #4] ; r7 = IV 0, r6 = K1
10b68: e9d0 5403 ldrd r5, r4, [r0, #12]; r5 = K0, r4 = K3
... ; r1, r2, r4, r5, r6, r7 are not touched
10b7e: e9d0 ec08 ldrd lr, ip, [r0, #32]; lr = N3, ip = N2
10b82: 69c3 ldr r3, [r0, #28] ; r3 = N0
10b84: f8d0 8000 ldr.w r8, [r0] ; r8 = IV 1
10b88: f084 04f0 eor.w r4, r4, #240 ; K3 = K3⊕ 0xf0
10b8c: ea86 0904 eor.w r9, r6, r4 ; r9 = K1⊕K3
10b90: ea88 0a0e eor.w sl, r8, lr ; sl = IV 1⊕N3
10b94: ea82 0b0e eor.w fp, r2, lr ; fp = N1⊕N3
10b98: ea62 0e0e orn lr, r2, lr ; lr = N1|(∼ N3)
10b9c: ea8e 0e09 eor.w lr, lr, r9; lr = r9⊕ lr = K1⊕K3⊕N1|(∼ N3)
10ba0: ea82 0206 eor.w r2, r2, r6 ; r2 = N1⊕K1

A profling phase is required to identify the sample index of target instructions.

Application to ASCON

Applying our framework. An optimized implementation of the initialization
contains 4 32-bit XOR operations. .

IV∥K∥N

πa

0†∥K

Initialization

13 / 19

A profling phase is required to identify the sample index of target instructions.

Application to ASCON

Applying our framework. An optimized implementation of the initialization
contains 4 32-bit XOR operations. Instructions for K1 and K3 are given.

πa

IV∥K∥N 0†∥K

Initialization

... ; r0 contains address of parameters
10b60: e9d0 1205 ldrd r1, r2, [r0, #20]; r1 = K2, r2 = N1
10b64: e9d0 7601 ldrd r7, r6, [r0, #4] ; r7 = IV 0, r6 = K1
10b68: e9d0 5403 ldrd r5, r4, [r0, #12]; r5 = K0, r4 = K3
... ; r1, r2, r4, r5, r6, r7 are not touched
10b7e: e9d0 ec08
10b82: 69c3
10b84: f8d0 8000
10b88: f084 04f0
10b8c: ea86 0904
10b90: ea88 0a0e
10b94: ea82 0b0e
10b98: ea62 0e0e
10b9c: ea8e 0e09
10ba0: ea82 0206

ldrd lr, ip, [r0, #32]; lr = N3, ip = N2
ldr r3, [r0, #28] ; r3 = N0
ldr.w r8, [r0] ; r8 = IV 1
eor.w r4, r4, #240 ; K3 = K3 ⊕ 0xf0
eor.w r9, r6, r4 ; r9 = K1 ⊕ K3
eor.w sl, r8, lr ; sl = IV 1 ⊕ N 3
eor.w fp, r2, lr ; fp = N1 ⊕ N3
orn lr, r2, lr ; lr = N1|(∼ N3)
eor.w lr, lr, r9; lr = r9 ⊕ lr = K1 ⊕ K3 ⊕ N1|(∼ N3)
eor.w r2, r2, r6 ; r2 = N1 ⊕ K1

13 / 19

Application to ASCON

Applying our framework. An optimized implementation of the initialization
contains 4 32-bit XOR operations. Instructions for K1 and K3 are given.

πa

IV∥K∥N 0†∥K

Initialization

... ; r0 contains address of parameters
10b60: e9d0 1205 ldrd r1, r2, [r0, #20]; r1 = K2, r2 = N1
10b64: e9d0 7601 ldrd r7, r6, [r0, #4] ; r7 = IV 0, r6 = K1
10b68: e9d0 5403 ldrd r5, r4, [r0, #12]; r5 = K0, r4 = K3
... ; r1, r2, r4, r5, r6, r7 are not touched
10b7e: e9d0 ec08
10b82: 69c3
10b84: f8d0 8000
10b88: f084 04f0
10b8c: ea86 0904
10b90: ea88 0a0e
10b94: ea82 0b0e
10b98: ea62 0e0e
10b9c: ea8e 0e09
10ba0: ea82 0206

ldrd lr, ip, [r0, #32]; lr = N3, ip = N2
ldr r3, [r0, #28] ; r3 = N0
ldr.w r8, [r0] ; r8 = IV 1
eor.w r4, r4, #240 ; K3 = K3 ⊕ 0xf0
eor.w r9, r6, r4 ; r9 = K1 ⊕ K3
eor.w sl, r8, lr ; sl = IV 1 ⊕ N 3
eor.w fp, r2, lr ; fp = N1 ⊕ N3
orn lr, r2, lr ; lr = N1|(∼ N3)
eor.w lr, lr, r9; lr = r9 ⊕ lr = K1 ⊕ K3 ⊕ N1|(∼ N3)
eor.w r2, r2, r6 ; r2 = N1 ⊕ K1

A profling phase is required to identify the sample index of target instructions.
13 / 19

K∥0†

πa

Finalization

K

T

128

... ; r4 address of state, r5 address of key
109ae: e9d5 0100 ldrd r0, r1, [r5] ; r0 = K0, r1 = K1
109b2: 69a2 ldr r2, [r4, #24] ; r2 = S0
109b4: 69e3 ldr r3, [r4, #28] ; r3 = S1
109b6: 4050 eors r0, r2 ; r0 = K0⊕ S0 (T0 = r0)
... ; r0, r2 are not touched and r4 has not changed

K is also XORed with the state before the fnal permutation. However, there
is no known data associated with this instruction. These operations can be
targeted with a second-order DPA.

Application to ASCON

In the fnalization phase, for generating tag, words of K are operands of 4 XOR
operations. The corresponding instructions for K0 are highlighted.

14 / 19

... ; r4 address of state, r5 address of key
109ae: e9d5 0100 ldrd r0, r1, [r5] ; r0 = K0, r1 = K1
109b2: 69a2 ldr r2, [r4, #24] ; r2 = S0
109b4: 69e3 ldr r3, [r4, #28] ; r3 = S1
109b6: 4050 eors r0, r2 ; r0 = K0⊕ S0 (T0 = r0)
... ; r0, r2 are not touched and r4 has not changed

K is also XORed with the state before the fnal permutation. However, there
is no known data associated with this instruction. These operations can be
targeted with a second-order DPA.

Application to ASCON

In the fnalization phase, for generating tag, words of K are operands of 4 XOR
operations. The corresponding instructions for K0 are highlighted.

K∥0†

πa

K

T

128

Finalization

14 / 19

K is also XORed with the state before the fnal permutation. However, there
is no known data associated with this instruction. These operations can be
targeted with a second-order DPA.

Application to ASCON

In the fnalization phase, for generating tag, words of K are operands of 4 XOR
operations. The corresponding instructions for K0 are highlighted.

K∥0†

πa

K

T ... ; r4 address of state, r5 address of key
109ae: e9d5 0100 ldrd r0, r1, [r5] ; r0 = K0, r1 = K1

128 109b2: 69a2 ldr r2, [r4, #24] ; r2 = S0
109b4: 69e3 ldr r3, [r4, #28] ; r3 = S1
109b6: 4050 eors r0, r2 ; r0 = K0 ⊕ S0 (T 0 = r0)
... ; r0, r2 are not touched and r4 has not changed

Finalization

14 / 19

Application to ASCON

In the fnalization phase, for generating tag, words of K are operands of 4 XOR
operations. The corresponding instructions for K0 are highlighted.

K∥0†

πa

K

T ... ; r4 address of state, r5 address of key
109ae: e9d5 0100 ldrd r0, r1, [r5] ; r0 = K0, r1 = K1

128 109b2: 69a2 ldr r2, [r4, #24] ; r2 = S0
109b4: 69e3 ldr r3, [r4, #28] ; r3 = S1
109b6: 4050 eors r0, r2 ; r0 = K0 ⊕ S0 (T 0 = r0)
... ; r0, r2 are not touched and r4 has not changed

Finalization

K is also XORed with the state before the fnal permutation. However, there
is no known data associated with this instruction. These operations can be
targeted with a second-order DPA.

14 / 19

• The interval for K1 is one instruction after that of K3.

• Peaks should be compared only in their target interval.

• The attack at the fnalization works, but peaks are negative.

Application to ASCON

10 20 30 40 50 60 70 80 90

0

0.1

−0.1

0.2

−0.2

0.3

−0.3

0.4

−0.4

CPA for two frst bytes of K1

CPA for two frst bytes of K3

CPA value for othe bytes of K1

CPA value for othe bytes of K3

CPA for wrong hypothesis

C
or
re
la
ti
on

 C
o
ef

ci
en
t

Time (trace samples)

Figure: CPA results for attacking the initialization phase of ASCON.

15 / 19

• Peaks should be compared only in their target interval.

• The attack at the fnalization works, but peaks are negative.

Application to ASCON

10 20 30 40 50 60 70 80 90

0

0.1

−0.1

0.2

−0.2

0.3

−0.3

0.4

−0.4

CPA for two frst bytes of K1

CPA for two frst bytes of K3

CPA value for othe bytes of K1

CPA value for othe bytes of K3

CPA for wrong hypothesis

C
or
re
la
ti
on

 C
o
ef

ci
en
t

Time (trace samples)

Figure: CPA results for attacking the initialization phase of ASCON.

• The interval for K1 is one instruction after that of K3.

15 / 19

• The attack at the fnalization works, but peaks are negative.

Application to ASCON

10 20 30 40 50 60 70 80 90

0

0.1

−0.1

0.2

−0.2

0.3

−0.3

0.4

−0.4

CPA for two frst bytes of K1

CPA for two frst bytes of K3

CPA value for othe bytes of K1

CPA value for othe bytes of K3

CPA for wrong hypothesis

C
or
re
la
ti
on

 C
o
ef

ci
en
t

Time (trace samples)

Figure: CPA results for attacking the initialization phase of ASCON.

• The interval for K1 is one instruction after that of K3.

• Peaks should be compared only in their target interval.

15 / 19

Application to ASCON

C
or
re
la
ti
on

 C
o
ef

ci
en
t

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

10 20 30 40 50 60 70 80 90

CPA for two frst bytes of K1

CPA for two frst bytes of K3

CPA value for othe bytes of K1

CPA value for othe bytes of K3

CPA for wrong hypothesis

Time (trace samples)

Figure: CPA results for attacking the initialization phase of ASCON.

• The interval for K1 is one instruction after that of K3.

• Peaks should be compared only in their target interval.

• The attack at the fnalization works, but peaks are negative.

15 / 19

Encrypt-then-MAC construction can prevent plaintext recovery attacks.

Application to ASCON

DPA for plaintext recovery. To decrypt C∗ (without knowing a valid tag), an1
attacker can ask for decryption of random C1 using the same (N∗, A∗) and
perform DPA over the XOR defned by M∗ = C1

∗ ⊕ Trunc(S∗ , r).1

πa

CtMt

K∥0†

?′As Mt−1Ct−1 T = T

128

IV∥K∥N K

πa

0†∥K

A1

πb πb

0†∥1

C1M1

r

πb πb

Initialization Associated Data Plaintext Finalization

Figure: ASCON-Decryption

16 / 19

Application to ASCON

DPA for plaintext recovery. To decrypt C∗ (without knowing a valid tag), an1
attacker can ask for decryption of random C1 using the same (N∗, A∗) and
perform DPA over the XOR defned by M∗ = C1

∗ ⊕ Trunc(S∗ , r).1

πa

CtMt

K∥0†

?′As Mt−1Ct−1 T = T

128

IV∥K∥N K

πa

0†∥K

A1

πb πb

0†∥1

C1M1

r

πb πb

Initialization Associated Data Plaintext Finalization

Figure: ASCON-Decryption

Encrypt-then-MAC construction can prevent plaintext recovery attacks.

16 / 19

• We skip the initialization and focus on the associated data absorption phase.

• Associated data is absorbed with rate r = 44 · 8 and state size is 48 · 8.
• If the attacker is allowed to repeat the nonce, SC attack can recover the state.

• The permutation chain upgrades a state recovery attack to a key recovery attack.

Application to Xoodyak

A2∥0x01 As∥

π π π π

π

0†∥0x40

π

010x M1∥0x01C1 M2∥0x01C2 Mt∥0x01Ct T

0†∥0x80P(K, N)

π

0†∥0x03

A1∥0x01

π π π

Initialization Associated Data Plaintext Finalization

Figure: Xoodyak-Encryption, with P(K, N) = K∥N∥0x80∥0x01∥0†∥0x02.

17 / 19

• Associated data is absorbed with rate r = 44 · 8 and state size is 48 · 8.
• If the attacker is allowed to repeat the nonce, SC attack can recover the state.

• The permutation chain upgrades a state recovery attack to a key recovery attack.

Application to Xoodyak

A2∥0x01 As∥

π π π π

π

0†∥0x40

π

010x M1∥0x01C1 M2∥0x01C2 Mt∥0x01Ct T

0†∥0x80P(K, N)

π

0†∥0x03

A1∥0x01

π π π

Initialization Associated Data Plaintext Finalization

Figure: Xoodyak-Encryption, with P(K, N) = K∥N∥0x80∥0x01∥0†∥0x02.

• We skip the initialization and focus on the associated data absorption phase.

17 / 19

• If the attacker is allowed to repeat the nonce, SC attack can recover the state.

• The permutation chain upgrades a state recovery attack to a key recovery attack.

Application to Xoodyak

A2∥0x01 As∥

π π π π

π

0†∥0x40

π

010x M1∥0x01C1 M2∥0x01C2 Mt∥0x01Ct T

0†∥0x80P(K, N)

π

0†∥0x03

A1∥0x01

π π π

Initialization Associated Data Plaintext Finalization

Figure: Xoodyak-Encryption, with P(K, N) = K∥N∥0x80∥0x01∥0†∥0x02.

• We skip the initialization and focus on the associated data absorption phase.

• Associated data is absorbed with rate r = 44 · 8 and state size is 48 · 8.

17 / 19

• The permutation chain upgrades a state recovery attack to a key recovery attack.

Application to Xoodyak

A2∥0x01 As∥

π π π π

π

0†∥0x40

π

010x M1∥0x01C1 M2∥0x01C2 Mt∥0x01Ct T

0†∥0x80P(K, N)

π

0†∥0x03

A1∥0x01

π π π

Initialization Associated Data Plaintext Finalization

Figure: Xoodyak-Encryption, with P(K, N) = K∥N∥0x80∥0x01∥0†∥0x02.

• We skip the initialization and focus on the associated data absorption phase.

• Associated data is absorbed with rate r = 44 · 8 and state size is 48 · 8.
• If the attacker is allowed to repeat the nonce, SC attack can recover the state.

17 / 19

Application to Xoodyak

A2∥0x01 As∥

π π π π

π

0†∥0x40

π

010x M1∥0x01C1 M2∥0x01C2 Mt∥0x01Ct T

0†∥0x80P(K, N)

π

0†∥0x03

A1∥0x01

π π π

Initialization Associated Data Plaintext Finalization

Figure: Xoodyak-Encryption, with P(K, N) = K∥N∥0x80∥0x01∥0†∥0x02.

• We skip the initialization and focus on the associated data absorption phase.

• Associated data is absorbed with rate r = 44 · 8 and state size is 48 · 8.
• If the attacker is allowed to repeat the nonce, SC attack can recover the state.

• The permutation chain upgrades a state recovery attack to a key recovery attack.

17 / 19

Application to the other fnalists

Cipher (A) (B) (C) (D) (E) (F) (G)

ASCON
Elephant
GIFT-COFB
Grain128-AEAD
ISAP
TinyJambu
Xoodyak

✓ 32 bit ✓ ×
✓ 8 bit × ✓
✓ 32 bit × ×
× × ✓ 1 bit ✓ ×
× × × 32 bit ✓ ✓ ✓
✓ 32 bit × ×
× ✓ 8 bit × × ×

• (A) is checked if there is a frst-order DPA key recovery attack.

• (B) is checked if there is a frst-order DPA key recovery attack in the fxed nonce setting.

• (C) is checked if there is only a second-order DPA key recovery attack.

• (D) shows the bit-width of the studied assembly implementation.

• (E) is checked if leveled masking is possible.

• (F) is checked if DPA for plaintext recovery is not possible.

• (G) is checked if there is an SCA-aware version that is not computationally heavier.

18 / 19

• Our proposed framework efectively evaluates the SC security of ASCON.

• This approach has been applied successfully to evaluate the SC security
of NIST LWC fnalists.

• However, it requires knowledge of the running assembly to carry out the
attack.

Thank you for your attention!

Conclusion

• Our study identifed XOR operations as a source for diferential power
analysis.

19 / 19

• This approach has been applied successfully to evaluate the SC security
of NIST LWC fnalists.

• However, it requires knowledge of the running assembly to carry out the
attack.

Thank you for your attention!

Conclusion

• Our study identifed XOR operations as a source for diferential power
analysis.

• Our proposed framework efectively evaluates the SC security of ASCON.

19 / 19

• However, it requires knowledge of the running assembly to carry out the
attack.

Thank you for your attention!

Conclusion

• Our study identifed XOR operations as a source for diferential power
analysis.

• Our proposed framework efectively evaluates the SC security of ASCON.

• This approach has been applied successfully to evaluate the SC security
of NIST LWC fnalists.

19 / 19

Thank you for your attention!

Conclusion

• Our study identifed XOR operations as a source for diferential power
analysis.

• Our proposed framework efectively evaluates the SC security of ASCON.

• This approach has been applied successfully to evaluate the SC security
of NIST LWC fnalists.

• However, it requires knowledge of the running assembly to carry out the
attack.

19 / 19

Conclusion

• Our study identifed XOR operations as a source for diferential power
analysis.

• Our proposed framework efectively evaluates the SC security of ASCON.

• This approach has been applied successfully to evaluate the SC security
of NIST LWC fnalists.

• However, it requires knowledge of the running assembly to carry out the
attack.

Thank you for your attention!

19 / 19

