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• But, protections are usually costly.

• So, ciphers are desired to help to lower this cost.

• Yet, there are no fully clear design guidelines.

We contribute in this direction by:

• Building a new diferential power analysis (DPA) framework.

• Applying this framework to NIST LWC (2018-2023) fnalists.

• Showing how mode and primitive design impact leakage mitigation.

Motivation 

Side-channel analysis (SCA) aware cipher design. 

• Ciphers in the real world should be protected against SCA. 
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Applying:

• To recover a secret, we need to fnd enough XOR operations.

Illustrating:

• We demonstrate the applicability of the approach on ASCON.

Deploying:

• Using this framework, we study the SC properties of the fnalists.

Our approach 

Starting: 

• We perform DPA on 32-bit software XOR instructions. 

• Demonstrate how execution leakage can uncover its operands. 

• This experiment forms the basis of our framework. 
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Main SC observation. If Ti and f(pi⊕k) are dependent, and f is “sufciently”
non-linear, then with enough {pi,Ti}Ni=1, an attacker can recover k.

In practice,

• If yi = f(pi ⊕ k) is an intermediate variable, Ti has the required
dependency.

• Usually, f is an S-box function.

• w is bit-width of the implementation, usually w ∈ {8, 32, 64}.
• Chunks of the target secret are processed similarly through f . This

divide-and-conquer property is required for DPA attacks.

DPA in a nutshell 

Assumption. pi ∈r {0, 1}w are known and k ∈ {0, 1}w is unknown. For N 
tries, indexed by i, f(pi ⊕ k) is computed, and the power trace is recorded as 
Ti. 
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For
example,

• In ASCON: for tag generation, the key is XORed with the state directly
(f is identity).

• In ISAP: inside the initialization, divide-and-conquer is thwarted.

• In Xoodyak: during encryption, if nonce uniqueness is preserved, N is
bounded.

Relaxing the requirements. What happens if f is linear or identity function?
Can we still recover k given enough {pi,Ti}Ni=1?

DPA challenges 

Limitations. For some fnalists, the requirements of DPA are not satisfed. 
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Setup:

• A chipwhisperer CW308 UFO board using ARMv7-M architecture.

• Trace collection is synchronized at 7.37 MHz.

Processing tools:

• Correlation power analysis (CPA), linear regression (LR), combined with
deep learning (DL) techniques.

Results:

• Attacks work with around 10K traces using 100K for profling.

Experimenting with XOR 

Assembly code snippet to test XOR leakage. 

... : r3 = k r9 = p 
8000aa8: bf00 nop 
8000aaa: ea89 0903 eor.w r9, r9, r3 ; r9 = r9 ⊕ r3 
8000aae: bf00 nop 

Heading/trailing nops to flter out efects of neighboring operations. 
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Byte by Byte CPA. To estimate byte j of the key, the attacker computes em-
pirical correlation cor(HW(k∗⊕ p[j]),T) for all values 0 ≤ k∗ ≤ 255, and sorts
the key hypothesis based on the results.

Drawback. In targeting each byte, the value of the other bytes is considered as
noise. This increases the number of required traces for a successful attack.

More on the attack tools 

Leakage model. For some noise n and constant a, the leakage buried in the 
traces is described as l = aHW(k ⊕ p) + n. 

7 / 19 



Drawback. In targeting each byte, the value of the other bytes is considered as
noise. This increases the number of required traces for a successful attack.

More on the attack tools 

Leakage model. For some noise n and constant a, the leakage buried in the 
traces is described as l = aHW(k ⊕ p) + n. 

Byte by Byte CPA. To estimate byte j of the key, the attacker computes em-
pirical correlation cor(HW(k∗ ⊕ p[j]), T) for all values 0 ≤ k∗ ≤ 255, and sorts 
the key hypothesis based on the results. 

7 / 19 



More on the attack tools 

Leakage model. For some noise n and constant a, the leakage buried in the 
traces is described as l = aHW(k ⊕ p) + n. 

Byte by Byte CPA. To estimate byte j of the key, the attacker computes em-
pirical correlation cor(HW(k∗ ⊕ p[j]), T) for all values 0 ≤ k∗ ≤ 255, and sorts 
the key hypothesis based on the results. 

Drawback. In targeting each byte, the value of the other bytes is considered as 
noise. This increases the number of required traces for a successful attack. 

7 / 19 



Using LR for the attack. If v is k ⊕ p, output leakage of the XOR can be
expressed in basis of bits of p as:

l =

wX
j=1

aj(k[j]⊕ p[j]) + n =
X

k[j]=0

ajp[j] +
X

k[j]=1

aj(1− p[j]) + n

=
X

k[j]=0

ajp[j]−
X

k[j]=1

ajp[j] + b,

for some key-independent value b. The sign of coefcient of p[j] reveals k[j].

More on the attack tools 

Using LR for adjusting weights. Using the traces, leakage l of a variable v inP wterms of its bits can be estimated with LR as l = j=1 aj v[j] + n. 
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More on the attack tools 

Combining CPA/LR with DL. To decrease the number of required traces, 
HW(k ⊕ pi) can be estimated from {pi, Ti} with DL. j in Ti[j] and pi[j] 
denotes samples and bits, respectively. 
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More on the attack tools 

Attack Results 

Average rank of the correct key byte Average number of incorrect key bits 

102 103 104 102 103 104 

Number of traces Number of traces 
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CPA 2nd byte 
DL+CPA 1st byte 
CPA other bytes 
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LR 4 bytes 
DL+LR 4 bytes 

Figure: (Left) CPA with and without DL. The CPA attack for the 2nd byte produces 
slightly better results. DL+CPA in the used model worked better for the 1st byte. 
Results for other bytes are also shown. (Right) LR with and without DL. 
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Application. We investigate the running assembly to fnd enough XOR instruc-
tions that are merging random (and known) operands with secret parameters.

Our framework 

nAssumption. If w-bit chunks of an n-bit target secret are processed in w 
separate XOR operations, each with a known random operand, the attacker 
can learn that secret. 
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• K is used both in the initialization and fnalization phases.

• State recovery in middle phases will not lead to key recovery or tag
forgery.

• So, only the initialization and fnalization need protection.

• This property is referred to as leveled masking.

Application to ASCON 

πa 

As Mt−1Ct−1 MtCt 

K∥0† 

T 

128 

IV∥K∥N K 

πa 

0†∥K 

A1 

πb πb 

0†∥1 

M1C1 

πb πb 

Initialization Associated Data Plaintext Finalization 

Figure: ASCON-Encryption. a and b denote the number of permutation rounds. 
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Instructions for K1 and K3 are given

... ; r0 contains address of parameters
10b60: e9d0 1205 ldrd r1, r2, [r0, #20]; r1 = K2, r2 = N1
10b64: e9d0 7601 ldrd r7, r6, [r0, #4] ; r7 = IV 0, r6 = K1
10b68: e9d0 5403 ldrd r5, r4, [r0, #12]; r5 = K0, r4 = K3
... ; r1, r2, r4, r5, r6, r7 are not touched
10b7e: e9d0 ec08 ldrd lr, ip, [r0, #32]; lr = N3, ip = N2
10b82: 69c3 ldr r3, [r0, #28] ; r3 = N0
10b84: f8d0 8000 ldr.w r8, [r0] ; r8 = IV 1
10b88: f084 04f0 eor.w r4, r4, #240 ; K3 = K3⊕ 0xf0
10b8c: ea86 0904 eor.w r9, r6, r4 ; r9 = K1⊕K3
10b90: ea88 0a0e eor.w sl, r8, lr ; sl = IV 1⊕N3
10b94: ea82 0b0e eor.w fp, r2, lr ; fp = N1⊕N3
10b98: ea62 0e0e orn lr, r2, lr ; lr = N1|(∼ N3)
10b9c: ea8e 0e09 eor.w lr, lr, r9; lr = r9⊕ lr = K1⊕K3⊕N1|(∼ N3)
10ba0: ea82 0206 eor.w r2, r2, r6 ; r2 = N1⊕K1

A profling phase is required to identify the sample index of target instructions.

Application to ASCON 

Applying our framework. An optimized implementation of the initialization 
contains 4 32-bit XOR operations. . 

IV∥K∥N 

πa 

0†∥K 

Initialization 
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A profling phase is required to identify the sample index of target instructions. 
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K∥0†
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Finalization

K

T

128

... ; r4 address of state, r5 address of key
109ae: e9d5 0100 ldrd r0, r1, [r5] ; r0 = K0, r1 = K1
109b2: 69a2 ldr r2, [r4, #24] ; r2 = S0
109b4: 69e3 ldr r3, [r4, #28] ; r3 = S1
109b6: 4050 eors r0, r2 ; r0 = K0⊕ S0 (T0 = r0)
... ; r0, r2 are not touched and r4 has not changed

K is also XORed with the state before the fnal permutation. However, there
is no known data associated with this instruction. These operations can be
targeted with a second-order DPA.

Application to ASCON 

In the fnalization phase, for generating tag, words of K are operands of 4 XOR 
operations. The corresponding instructions for K0 are highlighted. 
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• The interval for K1 is one instruction after that of K3.

• Peaks should be compared only in their target interval.

• The attack at the fnalization works, but peaks are negative.

Application to ASCON 
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Figure: CPA results for attacking the initialization phase of ASCON. 
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Encrypt-then-MAC construction can prevent plaintext recovery attacks.

Application to ASCON 

DPA for plaintext recovery. To decrypt C∗ (without knowing a valid tag), an1 
attacker can ask for decryption of random C1 using the same (N∗, A∗) and 
perform DPA over the XOR defned by M∗ = C1 

∗ ⊕ Trunc(S∗ , r).1 
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• We skip the initialization and focus on the associated data absorption phase.

• Associated data is absorbed with rate r = 44 · 8 and state size is 48 · 8.
• If the attacker is allowed to repeat the nonce, SC attack can recover the state.

• The permutation chain upgrades a state recovery attack to a key recovery attack.
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Application to the other fnalists 

Cipher (A) (B) (C) (D) (E) (F) (G) 

ASCON 
Elephant 
GIFT-COFB 
Grain128-AEAD 
ISAP 
TinyJambu 
Xoodyak 

✓ 32 bit ✓ × 
✓ 8 bit × ✓ 
✓ 32 bit × × 
× × ✓ 1 bit ✓ × 
× × × 32 bit ✓ ✓ ✓ 
✓ 32 bit × × 
× ✓ 8 bit × × × 

• (A) is checked if there is a frst-order DPA key recovery attack. 

• (B) is checked if there is a frst-order DPA key recovery attack in the fxed nonce setting. 

• (C) is checked if there is only a second-order DPA key recovery attack. 

• (D) shows the bit-width of the studied assembly implementation. 

• (E) is checked if leveled masking is possible. 

• (F) is checked if DPA for plaintext recovery is not possible. 

• (G) is checked if there is an SCA-aware version that is not computationally heavier. 
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• Our proposed framework efectively evaluates the SC security of ASCON.

• This approach has been applied successfully to evaluate the SC security
of NIST LWC fnalists.

• However, it requires knowledge of the running assembly to carry out the
attack.

Thank you for your attention!

Conclusion 

• Our study identifed XOR operations as a source for diferential power 
analysis. 
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