

Overview of the Talk

1. NIST Computer Security Division – Overview

2. NIST Lightweight Cryptography Standardization Process

3. Evaluation of the Finalists and the Selection of Ascon

4. Next steps

National Institute of Standards and Technology

Non-regulatory federal agency within U.S. Department of Commerce.

Founded in 1901, known as National Bureau of Standards (NBS) prior to 1988.

3,500+
ASSOCIATES

5NOBEL PRIZES

MISSION

to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

Laboratory Programs → Information Technology Lab → Computer Security Division

Computer Security Division (CSD)

Developing Crypto Standards

- International "competitions" e.g., AES, SHA-3, PQC, Lightweight Crypto
- Adoption of existing standards e.g., RSA, HMAC
- Open call for proposals: e.g., block cipher modes of operations

CSD Publications

- Federal Information Processing Standards (FIPS): Specify approved crypto standards
- NIST Special Publications (SPs): Guidelines, technical specifications, recommendations etc.
- NIST Internal or Interagency Reports (IR): Reports of research findings

Principles

Transparency, openness, balance, integrity, technical merit, global acceptability, usability, continuous improvement, innovation and intellectual property etc.

Lightweight Cryptography – Motivation Nust

CONSTRAINED DEVICES

e.g., RFID tags, sensors, IoT devices

NEW APPLICATIONS

e.g., home automation, healthcare, smart city

PRIVATE INFORMATION

e.g., location, health data

LACK OF CRYPTOGRAPHY **STANDARDS**

NIST crypto standards are optimized for general-purpose computers.

NIST Lightweight Cryptography Standardization

Public competition-like process with multiple rounds like AES, SHA3 and PQC standardization

Develop new guidelines, recommendations and standards optimized for constrained devices

Authenticated Encryption and (optional) hashing for constrained software and hardware environments

Call for Submissions and Requirements

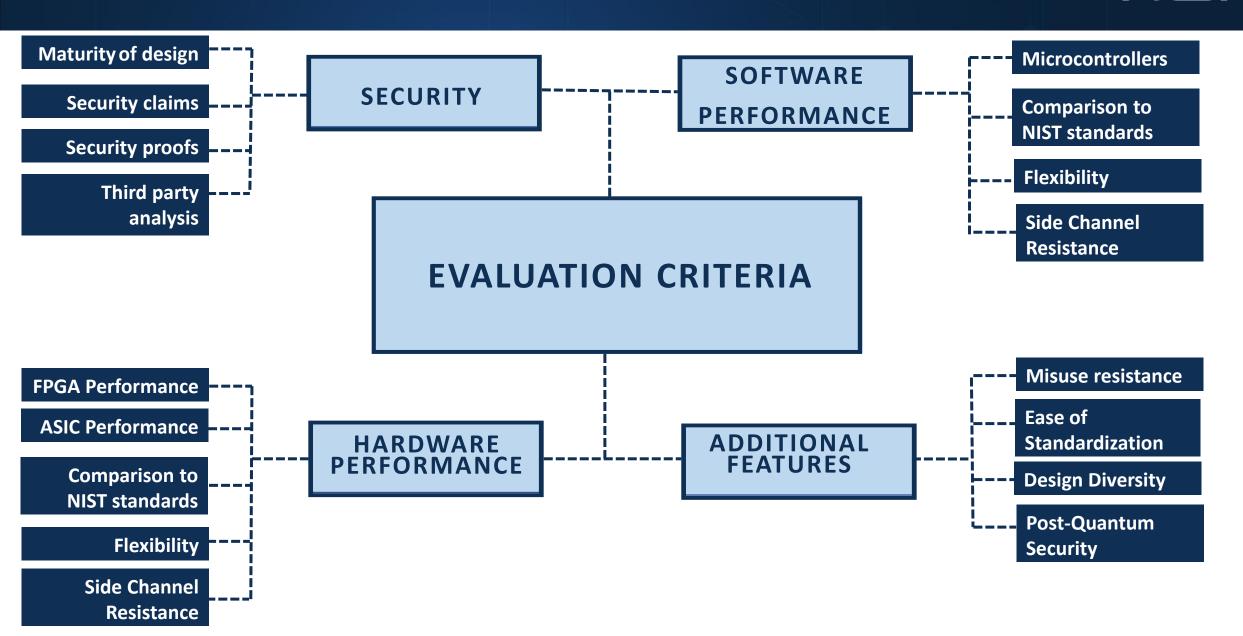
In August 2018, NIST published 'Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process'. Submission deadline: February 2019

Requirements

Security requirements

At least 112-bit security level for messages up to 2⁵⁰ bytes, etc.

Design requirements


Perform better than NIST standards, optimized for short messages etc.

Implementation requirements

Reference and optimized implementation compatible with API etc.

Evaluation Criteria

	Date	Event
	July 2015	First Lightweight Cryptography Workshop at NIST
	October 2016	Second Lightweight Cryptography Workshop at NIST
	March 2017	Publication – NISTIR 8114 Report on Lightweight Cryptography
	August 2018	Submission call
- Mary	February 2019	Submission deadline
5-	April 2019	Announcement of the first-round candidate
00	August 2019	Announcement of the second-round candidates
	October 2019	NISTIR 8268, First Round Status Report
E 45	November 2019	Third Lightweight Cryptography Workshop at NIST
	October 2020	Fourth Lightweight Cryptography Workshop (virtual)
	March 2021	Announcement of the finalists
40	July 2021	NISTIR 8369, Second Round Status Report
	May 2022	Fifth Lightweight Cryptography Workshop (virtual)
	February 2023	Announcement of the selection
	June 2023	Sixth Lightweight Cryptography Workshop (virtual)

Rounds of Evaluation

Round 1

April 2019 – August 2019
56 Round–1 Candidates
Evaluation based on security

Round 2

August 2019 – March 2021 32 Round–2 Candidates Evaluation based on security and performance

Round 3

March 2021 – February 2023 10 Finalists

Evaluation based on security, performance (including protected implementations) and additional features

Finalists

ASCON Elephant GIFT-COFB Grain-128aead ISAP

Photon-Beetle Romulus Sparkle TinyJambu Xoodyak

Variants

Finalist	# Variants	Key size (bits)	Nonce size (bits)	Tag size (bits)	Digest size (bits)
Ascon	2 AEAD 2 hash	128 	128 	128 	 256
Elephant	3 AEAD	128	96	64-128	
GIFT-COFB	1 AEAD	128	128	128	
Grain-128aead	1 AEAD	128	96	64	
ISAP	4 AEAD	128	128	128	
PHOTON-Beetle	2 AEAD 1 hash	128 	128 	128 	 256
Romulus	3 AEAD 1 hash	128 	128 	128 	 256
Sparkle	4 AEAD 2 hash	128-256 	128-256 	128-256 	 256-384
TinyJambu	3 AEAD	128-256	96	64	
Xoodyak	1 AEAD 1 hash	128 	128 	128 	 256

Underlying Components of the Finalists NIST

AEAD-only

Permutation

Elephant

ISAP

Block Cipher

GIFT-COFB

TinyJAMBU

Stream cipher

Grain-128AEAD

AEAD and Hashing

Permutation

ASCON

PHOTON-Beetle

SPARKLE

Xoodyak

Tweakable block cipher

Romulus

Software Benchmarking

Microcontroller benchmarking by NIST LWC Team

Devices:

- 8-bit AVR
- 32-bit ARM Cortex
 M0+, M4, M3
- MIPS32 M4K
- Tensilica L106

Metrics:

- Code size
- Speed

Microcontroller benchmarking by Renner et al.

Devices:

- 8-bit AVR
- 32-bit ARM Cortex M3, M7
- Tensilica Xtensa LX6
- RISC-V

Metrics:

- ROM, RAM usage
- Speed

Microcontroller benchmarking by Weatherly

Devices:

- AVR
- ARM Cortex-M3
- Tensilica Xtensa LX6

Metrics:

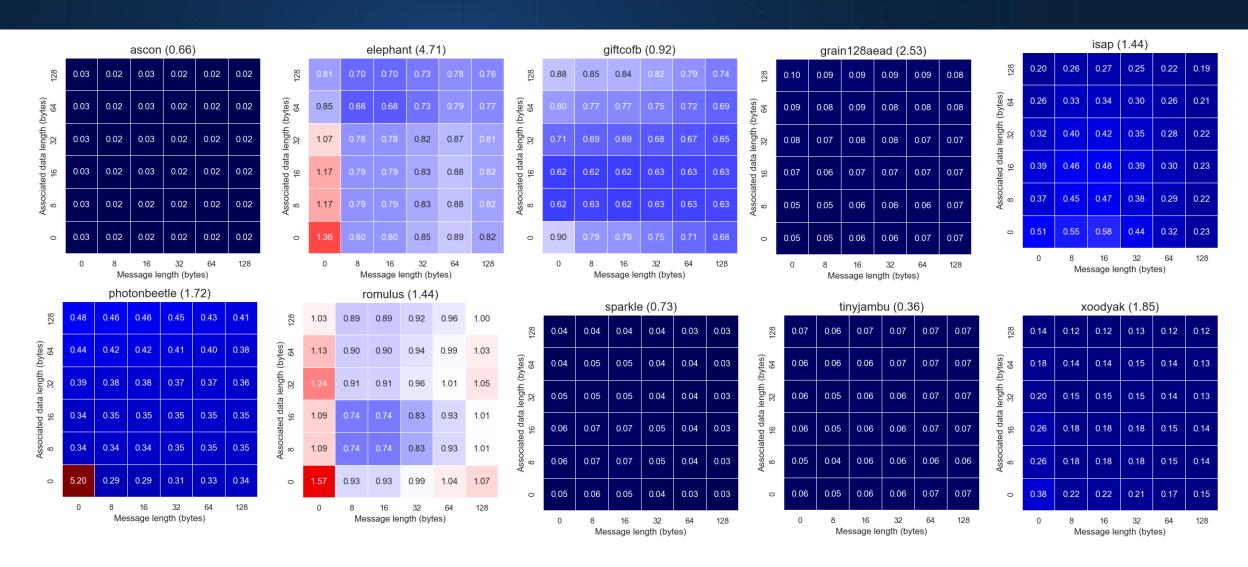
Speed

eBACS (ECRYPT
Benchmarking of
Cryptographic Systems)
by Lange and Bernstein

Devices:

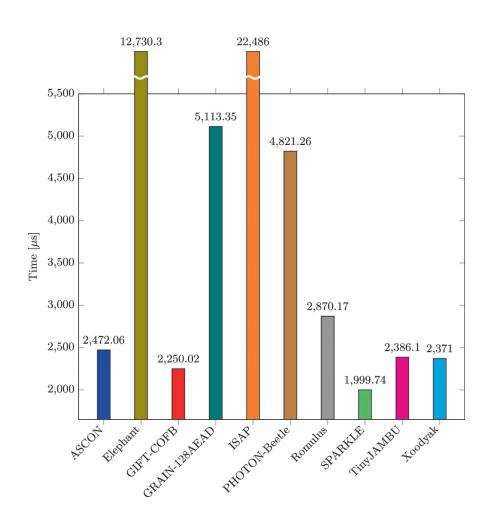
 Many systems covering ARM, AMD, Intel, PPC, RISC V, and MIPS architectures

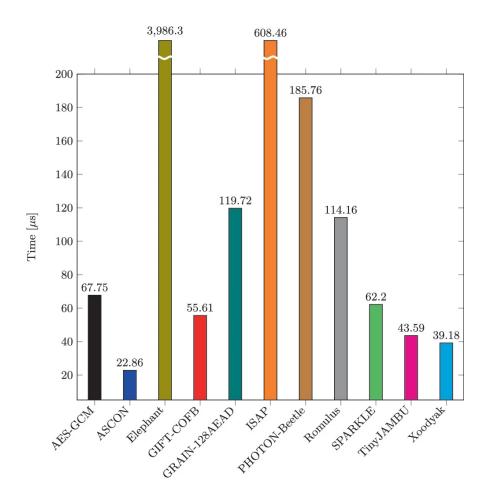
Metrics:


Speed

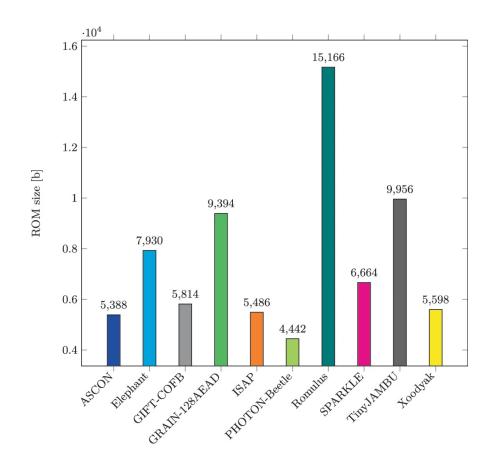
Number of available SW implementations Number

Finalist	#AEAD	#Hash	#Combined	Total
Ascon	120	110	52	282
Elephant	6	-	-	6
GIFT-COFB	11	-	-	11
Grain-128aead	6	-	-	6
ISAP	37	-	-	37
PHOTON-Beetle	20	10	16	46
Romulus	32	11	27	70
Sparkle	25	13	3	41
TinyJambu	9	-	-	9
Xoodyak	9	8	1	18
Total	275	152	99	526

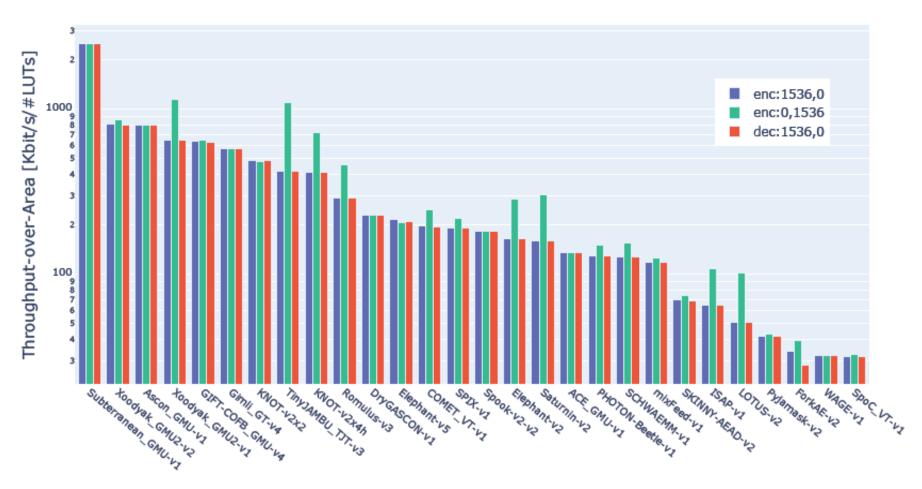

Comparison with AES-GCM



Execution time ratio of smallest primary AEAD implementations to AES-GCM on nRF52840



Speed comparison on Arduino Uno and ESP32 by Renner et al.



Code size comparison on Arduino Uno and Maixduino by Renner et al.

Hardware Benchmarking (Round 2)

Throughput-over-Area for Authenticated Encryption and Decryption of 1536-byte messages at 75MHz by GMU

The Selection Process

- Fair evaluation of finalists is challenging.
 - Assigning weights for different evaluation criteria (security, performance in software and hardware, design maturity, amount of third-party analysis, IP issues, etc.)
 - Different security claims, different functionality, attacks with different complexities etc.
 - Limited resources (not all algorithms got the same attention from the crypto community)
- Decision relied on publicly available analysis and benchmarking results.
- In February 2023, NIST announced the Ascon family as the winner.
 - Large amount of third-party analysis
 - AEAD variants were listed part of the CAESAR portfolio for 'lightweight applications'.
 - No tweak
 - Performance advantage over NIST standards in software and hardware

Next Steps

Publication of the third–round status update

Sixth Lightweight Cryptography Workshop in June 21-22 2023 (virtual)

Submission deadline: May 1, 2023

Aim: to explain the selection process, and to discuss various aspects of lightweight cryptography standardization, such as

- Which ASCON variants to standardize? All of subset? XOF instead of hash?
- Additionally functionality, e.g. dedicated MAC?
- Support for additional parameter sizes? e.g., larger nonce, shorter tags

Publication of draft standard (in 2023)

CONTACT US

lightweight-crypto@nist.gov

PUBLIC FORUM lwc-forum@list.nist.gov

GITHUB https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

WEBSITE https://csrc.nist.gov/Projects/lightweight-cryptography