

National Institute of Standards and Technology U.S. Department of Commerce

Optimizing Implementations of Boolean Functions

Meltem Sönmez Turan

National Institute of Standards and Technology

Presented at BFA2023 - September 2023

NIST Circuit Complexity Project

Goal:

- improve the understanding of the circuit complexity of Boolean functions and vectorial Boolean functions;
- develop new techniques for constructing better circuits for use by academia and industry.

Example circuits: 1

Circuit	Gate count						Depth	
Circuit	All	AND	XOR	XNOR	NOT	Total	AND	
AES S-Box	113	32	77	4	0	27	6	
AES-128(k,m)	28 600	6400	21 356	844	0	326	60	
SHA-256(<i>m</i>)	115 882	22 385	89 248	3894	355	5403	1604	

¹Project webpage: https://csrc.nist.gov/Projects/circuit-complexity

- Boolean circuits
- Optimizing linear circuits & Paar's heuristic
- Extending Paar's heuristic

Boolean Circuits

A Boolean circuit with n inputs and m outputs is a **directed** acyclic graph (DAG), where

- the inputs and the gates are *nodes*,
- the edges correspond to Boolean-valued wires,
- fanin/fanout of a node is the number of wires going in/out the node,
- the nodes with fanin zero are called input nodes,
- the nodes with fanout zero are called *output nodes*.

https://keccak.team/figures.html

Problem: Given a set of Boolean gates (e.g., AND, NAND, XOR, NOR), construct a circuit that computes a Boolean function that is optimal w.r.t. a target metric.

Target metric depends on the application.

- Number of gates: for lightweight cryptography applications running on constrained devices.
- Number of nonlinear gates: for secure multi-party computation, zero-knowledge proofs and side channel protection.
- > AND-depth: for homomorphic encryption schemes.

etc.

Linear vs. Nonlinear Layers

Linear layers

- provides diffusion
- e.g., bit permutations, multiplication with a binary matrix
- implementations by XOR, NOT gates
- Nonlinear layers
 - provides confusion
 - e.g., s-boxes
 - implementations by AND, NAND, XOR, NOT gates

Constructing efficient circuits for these layers are challenging, even for the linear ones.

Linear Optimization

Linear layers can be represented using a an $m \times n$ binary matrix M, applied to n input variables (x_1, \ldots, x_n) to calculate m output variables (y_1, \ldots, y_m) .

For a given binary $m \times n$ matrix M, the goal is to minimize the number of XOR operations.

Three Metrics: d-XOR, s-XOR and g-XOR

Direct XOR (d-XOR)

lmplements each row individually, corresponds to (weight(M) - m) XORs.

Sequential XOR (s-XOR)

- ▶ Counts the number of XOR operations of the form $x_i = x_i \oplus x_j$, that updates the value of input x_i
- Relevant for quantum implementations
- Known techniques (e.g., Gauss-Jordan elimination)

► General XOR (g-XOR)

- Corresponds to the number of operations of the form $x_i = x_j \oplus x_k$
- The Shortest Linear Program (SLP) problem: Minimizing the number of XORs (i.e., determining g-XOR) to compute Mx is known to be NP-hard. (Boyar et al., 2013)

Paar's Heuristic (1997)

Main idea:

- ▶ Determines the frequency for each possible pairs of input variable x_i, x_j $(i \neq j)$ that are XORed together in m linear functions
- Compute the pair with highest frequency and place it to the matrix as a new variable
- Repeat until all outputs have been computed

Two options in a tie:

- Choose the first pair in lexicographical order
- Exhaust all equally frequent options

Matrix representation

/1	1	1	0	$0 \rangle$	$\langle m_{\pi} \rangle$		$\langle y_0 \rangle$
0	1	0	1	1	$\begin{pmatrix} x_0 \\ x \end{pmatrix}$		y_1
1	0	1	1	1	$\begin{array}{c} x_1 \\ x_2 \end{array}$		y_2
0	1	1	1	0	x_2	=	y_3
1	1	0	1	0	$\begin{bmatrix} x_3 \\ x_3 \end{bmatrix}$		y_4
$\left(0 \right)$	1	1	1	1/	$\langle x_4 \rangle$		y_5

Pair	Frequency	Pair	Frequency
(x_0, x_1)	2	(x_1, x_3)	4
(x_0, x_2)	2	(x_1, x_4)	2
(x_0, x_3)	2	(x_2, x_3)	3
(x_0, x_4)	1	(x_2, x_4)	2
(x_1, x_2)	3	(x_3, x_4)	3

The first selected pair is (x_1, x_3) with frequency 4. So, the first step of the implementation is $t_0 = x_1 \oplus x_3$.

Example: Paar's Heuristic (2)

Updated matrix:

Updated frequency table

1	1	1	0	0\		/1	1	1	0	0	<mark>0</mark> \
0	1	0	1	1		0	0	0	0	1	1
1	0	1	1	1	,	1	0	1	1	1	0
0	1	1	1	0	\rightarrow	0	0	1	0	0	1
1	1	0	1	0		1	0	0	0	0	1
0	1	1	1	1/		$\langle 0 \rangle$	0	1	0	1	1/

Pair	Frequency	Pair	Frequency
(x_0, x_1)	1	(x_1, t_0)	0
(x_0, x_2)	2	(x_2, x_3)	1
(x_0, x_3)	1	(x_2, x_4)	2
(x_0, x_4)	1	(x_2, t_0)	2
(x_0, t_0)	1	(x_3, x_4)	1
(x_1, x_2)	1	(x_3, t_0)	0
(x_1, x_3)	0	(x_4, t_0)	2
(x_1, x_4)	0	-	-

Implementation:

$t_0 = x_1 \oplus x_3$	$t_3 = x_1 \oplus t_1$	$t_6 = x_2 \oplus t_0$
$t_1 = x_0 \oplus x_2$	$t_4 = x_3 \oplus x_4$	$t_7 = x_0 \oplus t_0$
$t_2 = x_4 \oplus t_0$	$t_5 = t_1 \oplus t_4$	$t_8 = x_2 \oplus t_2$

The output $(y_0, y_1, y_2, y_3, y_4, y_5)$ is obtained as $(t_3, t_2, t_5, t_6, t_7, t_8)$.

Cancellations in circuits happen when the inputs to an XOR gate are of the form $(x_1 \oplus x_3, x_2 \oplus x_3)$. The XOR gate computes $x_1 \oplus x_2$, and cancels x_3 .

Paar's heuristic is **cancellation-free**, which leads to generating sub-optimal circuits (Boyar et al., 2019).

New heuristics with cancellation property, such as Maximov & Ekdahl, 2019, Banik et al. 2019, Xiang et al, 2020.

Observation

Due to cancellation-free property, a modification of Paar's algorithm can be applied to nonlinear Boolean functions. Represent *n*-variable Boolean function with m monomials using a $m \times n$ binary matrix.

Example.
$$f = x_1 + x_2 \cdot x_3 + x_0 x_1 x_3 x_4$$
. Matrix representation is $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$

With this representation, it is possible to apply Paar's heuristic. Note that XOR operations now corresponds to AND.

Not promising approach, as it implements each monomial independently.

Main idea: Decompose Boolean function into homogeneous Boolean functions, and exploit affine equivalence relations to find low-weight matrix representations.

NIS

Proposal

1. Decompose f into d homogeneous Boolean functions,

 $f = a + f_1 \oplus f_2 \oplus \ldots \oplus f_d,$

where f_i is the sum of monomials of f with degree i, and a is the constant term. Example. $f = x_1 + x_2.x_3 + x_2.x_4 + x_2x_5 + x_1.x_2.x_4 + x_1.x_2.x_5 + 1$ The decomposition is

$$a = 1$$

$$f_1 = x_1$$

$$f_2 = x_2 \cdot x_3 + x_2 \cdot x_4 + x_2 x_5$$

$$f_3 = x_1 \cdot x_2 \cdot x_4 + x_1 \cdot x_2 \cdot x_5$$

Proposal

2. Apply affine transformations to the highest-degree homogeneous function, (i.e., f_d) to reduce the # of monomials. If f'_d includes monomials with degree smaller than d, those monomials are added to the corresponding f_i depending on their degree.

$$a = 1$$

$$f_1 = x_1 \to f'_1 = x_1$$

$$f_2 = x_2 \cdot x_3 + x_2 \cdot x_4 + x_2 \cdot x_5 \to f'_2 = x_2 \cdot x_3$$

$$f_3 = x_1 \cdot x_2 \cdot x_4 + x_1 \cdot x_2 \cdot x_5 \to f'_3 = x_1 \cdot x_2 \cdot x_3$$

Proposal

- 3. Apply modified Paar's heuristic to find an implementation for the degree d terms of f'_d . (Note that in modified Paar's heuristic each iteration corresponds to modulo 2 multiplication, instead of modulo 2 addition.) Apply the inverse affine transformation to the circuit to construct an implementation for the degree d monomials of f.
- 4. Repeat the procedure to find an implementation for f'_{d-1} where f'_{d-1} is the XOR of f_d and the new degree d-1 monomials generated during Step 2.
- 5. Repeat until implementations for all homogoeneous function is generated and combine the sub-circuits.

Most time consuming phase is finding the *right* affine equivalence class. If a class representative with low degree is available, decomposing functions into homogeneous functions, and reducing the number of monomials of same degree can be done much more efficiently.

Example. Let n = 6. There are 150357 affine equivalance classes.

• Degree=6, # classes = 74596
$$\rightarrow$$
 # monomial = 1

- ▶ Degree=5, # classes =73262 \rightarrow # monomial = 1
- ▶ Degree=4, # classes =2465 \rightarrow # monomial \leq 3
- ▶ Degree=3, # classes =30 $\rightarrow \#$ monomial ≤ 5
- ▶ Degree=2, # classes =3 \rightarrow # monomial \leq 3
- ► We observe that the technique achieves optimal implementations (in terms of nonlinear gates) for some of the classes for small n ≤ 6, where it is possible to compare with the optimal values.

- Proposed a modification to Paar's algorithm to apply to nonlinear Boolean functions (possible due to the cancellation-free property)
- ▶ Technique is currently more efficient when a low-weight representative from the equivalence class of the target function is available $(n \le 6)$.
- For larger n, our goal is to achieve a generic bound for Boolean function complexity (in term of AND gates), which is better than generic bounds.

Thanks! Questions?

Contact:

meltem.turan@nist.gov
circuit_complexity@nist.gov

- GitHub: https://github.com/usnistgov/Circuits/
- NIST Circuit Complexity Project Webpage: https://csrc.nist.gov/Projects/Circuit-Complexity

References

- Pa97 Paar, Optimized Arithmetic for Reed-Solomon Encoders. In 1997 IEEE International Symposium on Information Theory, 1997.
- BFP19 J. Boyar, MG. Find, R. Peralta, *Small Low-Depth Circuits for Cryptographic Applications* Cryptogr Commun. 2019
- BPP00 J. Boyar, R. Peralta, and D. Pochuev, *On the multiplicative complexity of Boolean functions over the* basis $(\wedge, \oplus, 1)$ Theoretical Computer Science, vol. 235, no. 1, pp. 43 57, 2000.
- XZLB20 Z. Xiang, X. Zeng, D. Lin, Z. Bao, and S. Zhang. Optimizing implementations of linear layers. IACR Transactions on Symmetric Cryptology, 2020(2):120–145, Jul. 2020.
 - BFI19 S. Banik, Y. Funabiki, and T. Isobe. *More results on shortest linear programs* Advances in Information and Computer Security 14th International Workshop on Security, IWSEC 2019, Tokyo, Japan
 - FTT17 M. G. Find, D. Smith-Tone, M. Sönmez Turan, *The Number of Boolean Functions with Multiplicative Complexity 2* International Journal of Information and Coding Theory, 2017.
- CTP19 Ç. Çalık, M. Sönmez Turan, R. Peralta, *Boolean Functions with Multiplicative Complexity 3 and 4* Cryptography and Communications 2019.
- STP21 M. Sönmez Turan and R. Peralta. *On the Multiplicative Complexity of Cubic Boolean Functions* IACR Cryptol. ePrint Arch. 2021: 1041 (2021)