
Optimizing Implementations of Boolean Functions

Meltem Sönmez Turan

National Institute of Standards and Technology

Presented at BFA2023 – September 2023

1 / 20



NIST Circuit Complexity Project
Goal:
▶ improve the understanding of the circuit complexity of Boolean functions and vectorial

Boolean functions;
▶ develop new techniques for constructing better circuits for use by academia and

industry.

Example circuits: 1

Circuit Gate count Depth
All AND XOR XNOR NOT Total AND

AES S-Box 113 32 77 4 0 27 6
AES-128(k,m) 28 600 6400 21 356 844 0 326 60
SHA-256(m) 115 882 22 385 89 248 3894 355 5403 1604

1Project webpage: https://csrc.nist.gov/Projects/circuit-complexity
2 / 20

https://csrc.nist.gov/Projects/circuit-complexity


Overview

▶ Boolean circuits
▶ Optimizing linear circuits & Paar’s heuristic
▶ Extending Paar’s heuristic

3 / 20



Boolean Circuits

A Boolean circuit with n inputs and m outputs is a directed
acyclic graph (DAG), where
▶ the inputs and the gates are nodes,
▶ the edges correspond to Boolean-valued wires,
▶ fanin/fanout of a node is the number of wires going in/out

the node,
▶ the nodes with fanin zero are called input nodes,
▶ the nodes with fanout zero are called output nodes.

Circuit for Keccak s-box
https://keccak.team/figures.html

4 / 20



Optimizing Boolean Circuits

Problem: Given a set of Boolean gates (e.g., AND, NAND, XOR, NOR), construct a circuit
that computes a Boolean function that is optimal w.r.t. a target metric.

Target metric depends on the application.

▶ Number of gates: for lightweight cryptography applications running on constrained
devices.

▶ Number of nonlinear gates: for secure multi-party computation, zero-knowledge proofs
and side channel protection.

▶ AND-depth: for homomorphic encryption schemes.
▶ etc.

5 / 20



Linear vs. Nonlinear Layers

▶ Linear layers
▶ provides diffusion
▶ e.g., bit permutations, multiplication with a binary matrix
▶ implementations by XOR,NOT gates

▶ Nonlinear layers
▶ provides confusion
▶ e.g., s-boxes
▶ implementations by AND,NAND,XOR,NOT gates

Constructing efficient circuits for these layers are challenging, even for the linear ones.

6 / 20



Linear Optimization
Linear layers can be represented using a an m × n binary matrix M , applied to n input
variables (x1, . . . , xn) to calculate m output variables (y1, . . . , ym).

The linear layer

x0 + x1 + x2 = y0

x1 + x3 + x4 = y1

x0 + x2 + x3 + x4 = y2

x1 + x2 + x3 = y3

x0 + x1 + x3 = y4

x1 + x2 + x3 + x4 = y5

Matrix representation

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1


.


x0
x1
x2
x3
x4

 =



y0
y1
y2
y3
y4
y5



For a given binary m × n matrix M , the goal is to minimize the number of XOR operations.

7 / 20



Three Metrics: d-XOR, s-XOR and g-XOR

▶ Direct XOR (d-XOR)
▶ Implements each row individually, corresponds to (weight(M) − m) XORs.

▶ Sequential XOR (s-XOR)
▶ Counts the number of XOR operations of the form xi = xi ⊕ xj , that updates the value of

input xi

▶ Relevant for quantum implementations
▶ Known techniques (e.g., Gauss-Jordan elimination)

▶ General XOR (g-XOR)
▶ Corresponds to the number of operations of the form xi = xj ⊕ xk

▶ The Shortest Linear Program (SLP) problem: Minimizing the number of XORs (i.e.,
determining g-XOR) to compute Mx is known to be NP-hard. (Boyar et al., 2013)

8 / 20



Paar’s Heuristic (1997)

Main idea:
▶ Determines the frequency for each possible pairs of input variable xi, xj (i ̸= j) that

are XORed together in m linear functions
▶ Compute the pair with highest frequency and place it to the matrix as a new variable
▶ Repeat until all outputs have been computed

Two options in a tie:
▶ Choose the first pair in lexicographical order
▶ Exhaust all equally frequent options

9 / 20



Example: Paar’s Heuristic (1)

Matrix representation

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1


.


x0
x1
x2
x3
x4

 =



y0
y1
y2
y3
y4
y5



Pair Frequency Pair Frequency
(x0, x1) 2 (x1, x3) 4
(x0, x2) 2 (x1, x4) 2
(x0, x3) 2 (x2, x3) 3
(x0, x4) 1 (x2, x4) 2
(x1, x2) 3 (x3, x4) 3

The first selected pair is (x1, x3) with frequency 4. So, the first step of the implementation
is t0 = x1 ⊕ x3.

10 / 20



Example: Paar’s Heuristic (2)

Updated matrix:

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1


→



1 1 1 0 0 0
0 0 0 0 1 1
1 0 1 1 1 0
0 0 1 0 0 1
1 0 0 0 0 1
0 0 1 0 1 1



Updated frequency table

Pair Frequency Pair Frequency
(x0, x1) 1 (x1, t0) 0
(x0, x2) 2 (x2, x3) 1
(x0, x3) 1 (x2, x4) 2
(x0, x4) 1 (x2, t0) 2
(x0, t0) 1 (x3, x4) 1
(x1, x2) 1 (x3, t0) 0
(x1, x3) 0 (x4, t0) 2
(x1, x4) 0 - -

Implementation:
t0 = x1 ⊕ x3

t1 = x0 ⊕ x2

t2 = x4 ⊕ t0

t3 = x1 ⊕ t1

t4 = x3 ⊕ x4

t5 = t1 ⊕ t4

t6 = x2 ⊕ t0

t7 = x0 ⊕ t0

t8 = x2 ⊕ t2

The output (y0, y1, y2, y3, y4, y5) is obtained as (t3, t2, t5, t6, t7, t8).
11 / 20



Cancellation-free

Cancellations in circuits happen when the inputs to an XOR gate are of the form
(x1 ⊕ x3, x2 ⊕ x3). The XOR gate computes x1 ⊕ x2, and cancels x3.

Paar’s heuristic is cancellation-free, which leads to generating sub-optimal circuits (Boyar
et al., 2019).

New heuristics with cancellation property, such as Maximov & Ekdahl, 2019, Banik et al.
2019, Xiang et al, 2020.

Observation
▶ Due to cancellation-free property, a modification of Paar’s algorithm can be applied to

nonlinear Boolean functions.

12 / 20



Paar’s heuristic for Nonlinear Boolean Functions

Represent n-variable Boolean function with m monomials using a m × n binary matrix.

Example. f = x1 + x2.x3 + x0x1x3x4. Matrix representation is

1 0 0 0 0
0 1 1 0 0
1 1 0 1 1


With this representation, it is possible to apply Paar’s heuristic. Note that XOR operations
now corresponds to AND.

Not promising approach, as it implements each monomial independently.

Main idea: Decompose Boolean function into homogeneous Boolean functions, and exploit
affine equivalence relations to find low-weight matrix representations.

13 / 20



Proposal

1. Decompose f into d homogeneous Boolean functions,

f = a + f1 ⊕ f2 ⊕ . . . ⊕ fd,

where fi is the sum of monomials of f with degree i, and a is the constant term.

Example. f = x1 + x2.x3 + x2.x4 + x2x5 + x1.x2.x4 + x1.x2.x5 + 1 The
decomposition is

a =1
f1 =x1

f2 =x2.x3 + x2.x4 + x2x5

f3 =x1.x2.x4 + x1.x2.x5

14 / 20



Proposal

2. Apply affine transformations to the highest-degree homogeneous function, (i.e., fd) to
reduce the # of monomials. If f ′

d includes monomials with degree smaller than d,
those monomials are added to the corresponding fi depending on their degree.

a =1
f1 =x1 → f ′

1 = x1

f2 =x2.x3 + x2.x4 + x2x5 → f ′
2 = x2.x3

f3 =x1.x2.x4 + x1.x2.x5 → f ′
3 = x1.x2.x3

15 / 20



Proposal

3. Apply modified Paar’s heuristic to find an implementation for the degree d terms of
f ′

d. (Note that in modified Paar’s heuristic each iteration corresponds to modulo 2
multiplication, instead of modulo 2 addition.) Apply the inverse affine transformation
to the circuit to construct an implementation for the degree d monomials of f .

4. Repeat the procedure to find an implementation for f ′
d−1 where f ′

d−1 is the XOR of fd

and the new degree d − 1 monomials generated during Step 2.

5. Repeat until implementations for all homogoeneous function is generated and combine
the sub-circuits.

16 / 20



Experiments and Notes

▶ Most time consuming phase is finding the right affine equivalence class. If a class
representative with low degree is available, decomposing functions into homogeneous
functions, and reducing the number of monomials of same degree can be done much
more efficiently.
Example. Let n = 6. There are 150357 affine equivalance classes.
▶ Degree=6, # classes = 74596 → # monomial = 1
▶ Degree=5, # classes =73262 → # monomial = 1
▶ Degree=4, # classes =2465 → # monomial ≤ 3
▶ Degree=3, # classes =30 → # monomial ≤ 5
▶ Degree=2, # classes =3 → # monomial ≤ 3

▶ We observe that the technique achieves optimal implementations (in terms of
nonlinear gates) for some of the classes for small n ≤ 6, where it is possible to
compare with the optimal values.

17 / 20



Conclusion

▶ Proposed a modification to Paar’s algorithm to apply to nonlinear Boolean functions
(possible due to the cancellation-free property)

▶ Technique is currently more efficient when a low-weight representative from the
equivalence class of the target function is available (n ≤ 6).

▶ For larger n, our goal is to achieve a generic bound for Boolean function complexity
(in term of AND gates), which is better than generic bounds.

18 / 20



Thanks! Questions?

▶ Contact:
meltem.turan@nist.gov
circuit complexity@nist.gov

▶ GitHub: https://github.com/usnistgov/Circuits/

▶ NIST Circuit Complexity Project Webpage:
https://csrc.nist.gov/Projects/Circuit-Complexity

19 / 20

https://github.com/usnistgov/Circuits/
https://csrc.nist.gov/Projects/Circuit-Complexity
https://csrc.nist.gov/Projects/circuit-complexity


References

Pa97 Paar, Optimized Arithmetic for Reed-Solomon Encoders. In 1997 IEEE International Symposium on
Information Theory, 1997.

BFP19 J. Boyar, MG. Find, R. Peralta, Small Low-Depth Circuits for Cryptographic Applications Cryptogr
Commun. 2019

BPP00 J. Boyar, R. Peralta, and D. Pochuev, On the multiplicative complexity of Boolean functions over the
basis (∧, ⊕, 1) Theoretical Computer Science, vol. 235, no. 1, pp. 43 – 57, 2000.

XZLB20 Z. Xiang, X. Zeng, D. Lin, Z. Bao, and S. Zhang. Optimizing implementations of linear layers. IACR
Transactions on Symmetric Cryptology, 2020(2):120–145, Jul. 2020.

BFI19 S. Banik, Y. Funabiki, and T. Isobe. More results on shortest linear programs Advances in Information
and Computer Security - 14th International Workshop on Security, IWSEC 2019, Tokyo, Japan

FTT17 M. G. Find, D. Smith-Tone, M. Sönmez Turan, The Number of Boolean Functions with Multiplicative
Complexity 2 International Journal of Information and Coding Theory, 2017.

CTP19 Ç. Çalık, M. Sönmez Turan, R. Peralta, Boolean Functions with Multiplicative Complexity 3 and 4
Cryptography and Communications 2019.

STP21 M. Sönmez Turan and R. Peralta. On the Multiplicative Complexity of Cubic Boolean Functions IACR
Cryptol. ePrint Arch. 2021: 1041 (2021)

20 / 20


	Optimizing Implementations of Boolean Functions

