Optimizing Implementations of Boolean Functions

Meltem Sönmez Turan

National Institute of Standards and Technology

Presented at BFA2023 ~ September 2023

NIST Circuit Complexity Project

Goal:

- improve the understanding of the circuit complexity of Boolean functions and vectorial Boolean functions;
- develop new techniques for constructing better circuits for use by academia and industry.

Example circuits: ${ }^{1}$

Circuit	Gate count					Depth	
	All	AND	XOR	XNOR	NOT	Total	AND
AES S-Box	113	32	77	4	0	27	6
AES-128 (k, m)	28600	6400	21356	844	0	326	60
SHA-256 (m)	115882	22385	89248	3894	355	5403	1604

[^0]
Overview

- Boolean circuits
- Optimizing linear circuits \& Paar's heuristic
- Extending Paar's heuristic

Boolean Circuits

A Boolean circuit with n inputs and m outputs is a directed acyclic graph (DAG), where

- the inputs and the gates are nodes,
- the edges correspond to Boolean-valued wires,
- fanin/fanout of a node is the number of wires going in/out the node,
- the nodes with fanin zero are called input nodes,
- the nodes with fanout zero are called output nodes.

Circuit for Keccak s-box https://keccak.team/figures.html

Optimizing Boolean Circuits

Problem: Given a set of Boolean gates (e.g., AND, NAND, XOR, NOR), construct a circuit that computes a Boolean function that is optimal w.r.t. a target metric.

Target metric depends on the application.

- Number of gates: for lightweight cryptography applications running on constrained devices.
- Number of nonlinear gates: for secure multi-party computation, zero-knowledge proofs and side channel protection.
- AND-depth: for homomorphic encryption schemes.
- etc.

Linear vs. Nonlinear Layers

- Linear layers
- provides diffusion
- e.g., bit permutations, multiplication with a binary matrix
- implementations by XOR, NOT gates
- Nonlinear layers
- provides confusion
- e.g., s-boxes
- implementations by AND, NAND, XOR, NOT gates

Constructing efficient circuits for these layers are challenging, even for the linear ones.

Linear Optimization

Linear layers can be represented using a an $m \times n$ binary matrix M, applied to n input variables $\left(x_{1}, \ldots, x_{n}\right)$ to calculate m output variables $\left(y_{1}, \ldots, y_{m}\right)$.

The linear layer

$$
\begin{aligned}
x_{0}+x_{1}+x_{2} & =y_{0} \\
x_{1}+x_{3}+x_{4} & =y_{1} \\
x_{0}+x_{2}+x_{3}+x_{4} & =y_{2} \\
x_{1}+x_{2}+x_{3} & =y_{3} \\
x_{0}+x_{1}+x_{3} & =y_{4} \\
x_{1}+x_{2}+x_{3}+x_{4} & =y_{5}
\end{aligned}
$$

Matrix representation

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right)
$$

For a given binary $m \times n$ matrix M, the goal is to minimize the number of XOR operations.

- Direct XOR (d-XOR)
- Implements each row individually, corresponds to (weight $(M)-m)$ XORs.
- Sequential XOR (s-XOR)
- Counts the number of XOR operations of the form $x_{i}=x_{i} \oplus x_{j}$, that updates the value of input x_{i}
- Relevant for quantum implementations
- Known techniques (e.g., Gauss-Jordan elimination)
- General XOR ($\mathrm{g}-\mathrm{XOR}$)
- Corresponds to the number of operations of the form $x_{i}=x_{j} \oplus x_{k}$
- The Shortest Linear Program (SLP) problem: Minimizing the number of XORs (i.e., determining $\mathrm{g}-\mathrm{XOR}$) to compute $M x$ is known to be NP-hard. (Boyar et al., 2013)

Paar's Heuristic (1997)

Main idea:

- Determines the frequency for each possible pairs of input variable $x_{i}, x_{j}(i \neq j)$ that are XORed together in m linear functions
- Compute the pair with highest frequency and place it to the matrix as a new variable
- Repeat until all outputs have been computed

Two options in a tie:

- Choose the first pair in lexicographical order
- Exhaust all equally frequent options

Example: Paar's Heuristic (1)

Matrix representation

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right)
$$

Pair	Frequency	Pair	Frequency
$\left(x_{0}, x_{1}\right)$	2	$\left(x_{1}, x_{3}\right)$	$\mathbf{4}$
$\left(x_{0}, x_{2}\right)$	2	$\left(x_{1}, x_{4}\right)$	2
$\left(x_{0}, x_{3}\right)$	2	$\left(x_{2}, x_{3}\right)$	3
$\left(x_{0}, x_{4}\right)$	1	$\left(x_{2}, x_{4}\right)$	2
$\left(x_{1}, x_{2}\right)$	3	$\left(x_{3}, x_{4}\right)$	3

The first selected pair is $\left(x_{1}, x_{3}\right)$ with frequency 4 . So, the first step of the implementation is $t_{0}=x_{1} \oplus x_{3}$.

Example: Paar's Heuristic (2)

Updated matrix:
$\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right)$

Updated frequency table

Pair	Frequency	Pair	Frequency
$\left(x_{0}, x_{1}\right)$	1	$\left(x_{1}, t_{0}\right)$	0
$\left(x_{0}, x_{2}\right)$	2	$\left(x_{2}, x_{3}\right)$	1
$\left(x_{0}, x_{3}\right)$	1	$\left(x_{2}, x_{4}\right)$	2
$\left(x_{0}, x_{4}\right)$	1	$\left(x_{2}, t_{0}\right)$	2
$\left(x_{0}, t_{0}\right)$	1	$\left(x_{3}, x_{4}\right)$	1
$\left(x_{1}, x_{2}\right)$	1	$\left(x_{3}, t_{0}\right)$	0
$\left(x_{1}, x_{3}\right)$	0	$\left(x_{4}, t_{0}\right)$	2
$\left(x_{1}, x_{4}\right)$	0	-	-

Implementation:

$$
\begin{array}{lll}
t_{0}=x_{1} \oplus x_{3} & t_{3}=x_{1} \oplus t_{1} & t_{6}=x_{2} \oplus t_{0} \\
t_{1}=x_{0} \oplus x_{2} & t_{4}=x_{3} \oplus x_{4} & t_{7}=x_{0} \oplus t_{0} \\
t_{2}=x_{4} \oplus t_{0} & t_{5}=t_{1} \oplus t_{4} & t_{8}=x_{2} \oplus t_{2}
\end{array}
$$

The output ($y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$) is obtained as $\left(t_{3}, t_{2}, t_{5}, t_{6}, t_{7}, t_{8}\right)$.

Cancellation-free

Cancellations in circuits happen when the inputs to an XOR gate are of the form $\left(x_{1} \oplus x_{3}, x_{2} \oplus x_{3}\right)$. The XOR gate computes $x_{1} \oplus x_{2}$, and cancels x_{3}.

Paar's heuristic is cancellation-free, which leads to generating sub-optimal circuits (Boyar et al., 2019).

New heuristics with cancellation property, such as Maximov \& Ekdahl, 2019, Banik et al. 2019, Xiang et al, 2020.

Observation

- Due to cancellation-free property, a modification of Paar's algorithm can be applied to nonlinear Boolean functions.

Represent n-variable Boolean function with m monomials using a $m \times n$ binary matrix.
Example. $f=x_{1}+x_{2} . x_{3}+x_{0} x_{1} x_{3} x_{4}$. Matrix representation is $\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1\end{array}\right)$
With this representation, it is possible to apply Paar's heuristic. Note that XOR operations now corresponds to AND.

Not promising approach, as it implements each monomial independently.
Main idea: Decompose Boolean function into homogeneous Boolean functions, and exploit affine equivalence relations to find low-weight matrix representations.

1. Decompose f into d homogeneous Boolean functions,

$$
f=a+f_{1} \oplus f_{2} \oplus \ldots \oplus f_{d}
$$

where f_{i} is the sum of monomials of f with degree i, and a is the constant term. Example. $f=x_{1}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{2} x_{5}+x_{1} \cdot x_{2} \cdot x_{4}+x_{1} \cdot x_{2} \cdot x_{5}+1$ The decomposition is

$$
\begin{aligned}
a & =1 \\
f_{1} & =x_{1} \\
f_{2} & =x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{2} x_{5} \\
f_{3} & =x_{1} \cdot x_{2} \cdot x_{4}+x_{1} \cdot x_{2} \cdot x_{5}
\end{aligned}
$$

2. Apply affine transformations to the highest-degree homogeneous function, (i.e., f_{d}) to reduce the $\#$ of monomials. If f_{d}^{\prime} includes monomials with degree smaller than d, those monomials are added to the corresponding f_{i} depending on their degree.

$$
\begin{aligned}
a & =1 \\
f_{1} & =x_{1} \rightarrow f_{1}^{\prime}=x_{1} \\
f_{2} & =x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{2} x_{5} \rightarrow f_{2}^{\prime}=x_{2} \cdot x_{3} \\
f_{3} & =x_{1} \cdot x_{2} \cdot x_{4}+x_{1} \cdot x_{2} \cdot x_{5} \rightarrow f_{3}^{\prime}=x_{1} \cdot x_{2} \cdot x_{3}
\end{aligned}
$$

3. Apply modified Paar's heuristic to find an implementation for the degree d terms of f_{d}^{\prime}. (Note that in modified Paar's heuristic each iteration corresponds to modulo 2 multiplication, instead of modulo 2 addition.) Apply the inverse affine transformation to the circuit to construct an implementation for the degree d monomials of f.
4. Repeat the procedure to find an implementation for f_{d-1}^{\prime} where f_{d-1}^{\prime} is the XOR of f_{d} and the new degree $d-1$ monomials generated during Step 2.
5. Repeat until implementations for all homogoeneous function is generated and combine the sub-circuits.

Experiments and Notes

- Most time consuming phase is finding the right affine equivalence class. If a class representative with low degree is available, decomposing functions into homogeneous functions, and reducing the number of monomials of same degree can be done much more efficiently.

Example. Let $n=6$. There are 150357 affine equivalance classes.

- Degree=6, \# classes $=74596 \rightarrow \#$ monomial $=1$
- Degree $=5$, \# classes $=73262 \rightarrow$ monomial $=1$
- Degree $=4$, \# classes $=2465 \rightarrow \#$ monomial ≤ 3
- Degree=3, \# classes $=30 \rightarrow \#$ monomial ≤ 5
- Degree $=2$, \# classes $=3 \rightarrow$ \# monomial ≤ 3
- We observe that the technique achieves optimal implementations (in terms of nonlinear gates) for some of the classes for small $n \leq 6$, where it is possible to compare with the optimal values.

Conclusion

- Proposed a modification to Paar's algorithm to apply to nonlinear Boolean functions (possible due to the cancellation-free property)
- Technique is currently more efficient when a low-weight representative from the equivalence class of the target function is available ($n \leq 6$).
- For larger n, our goal is to achieve a generic bound for Boolean function complexity (in term of AND gates), which is better than generic bounds.

Thanks! Questions?

- Contact:
meltem.turan@nist.gov
circuit_complexity@nist.gov
- GitHub: https://github.com/usnistgov/Circuits/

- NIST Circuit Complexity Project Webpage: https://csrc.nist.gov/Projects/Circuit-Complexity

Pa97 Paar, Optimized Arithmetic for Reed-Solomon Encoders. In 1997 IEEE International Symposium on Information Theory, 1997.

BFP19 J. Boyar, MG. Find, R. Peralta, Small Low-Depth Circuits for Cryptographic Applications Cryptogr Commun. 2019
BPP00 J. Boyar, R. Peralta, and D. Pochuev, On the multiplicative complexity of Boolean functions over the basis $(\wedge, \oplus, 1)$ Theoretical Computer Science, vol. 235, no. 1, pp. $43-57,2000$.
XZLB20 Z. Xiang, X. Zeng, D. Lin, Z. Bao, and S. Zhang. Optimizing implementations of linear layers. IACR Transactions on Symmetric Cryptology, 2020(2):120-145, Jul. 2020.
BFI19 S. Banik, Y. Funabiki, and T. Isobe. More results on shortest linear programs Advances in Information and Computer Security - 14th International Workshop on Security, IWSEC 2019, Tokyo, Japan
FTT17 M. G. Find, D. Smith-Tone, M. Sönmez Turan, The Number of Boolean Functions with Multiplicative Complexity 2 International Journal of Information and Coding Theory, 2017.
CTP19 Ç. Çalık, M. Sönmez Turan, R. Peralta, Boolean Functions with Multiplicative Complexity 3 and 4 Cryptography and Communications 2019.
STP21 M. Sönmez Turan and R. Peralta. On the Multiplicative Complexity of Cubic Boolean Functions IACR Cryptol. ePrint Arch. 2021: 1041 (2021)

[^0]: ${ }^{1}$ Project webpage: https://csrc.nist.gov/Projects/circuit-complexity

