

Practical Challenges with AES-GCM and the need for a new mode and wide-block cipher

Panos Kampanakis, Matt Campagna, Eric Crocket, Adam Petcher

Amazon Web Services (AWS)

Agenda

AES-GCM challenges

- IVs
- PRP limits
- Key / Context Commitment
- Solution Properties
 - New wide-block cipher
 - New Mode

Agenda

AES-GCM challenges

- IVs
- PRP limits
- Key / Context Commitment
- Solution Properties
 - New wide-block cipher
 - New Mode

Random IVs and the 2³² invocation limit

High-volume Transport Encryption for virtualized networks

Distributed transport encryption can collectively encrypt $\sim 2^{32}$ messages in 2 seconds.

Re-keying every 2 seconds is not practical.

High-volume AWS KMS Encryption

AWS Key Management Service (AWS KMS) key sometimes can encrypt 2³² plaintexts / week.

Rekeying weekly and managing AWS keys for thousands of accounts annually adds overhead.

Deterministic 96-bit IVs

Transport Encryption deterministic IV challenges

Support for large # of identifiers limits the counter size which means less messages per key.

Unique identifiers in distributed systems add complexity.

We prefer random IVs.

Transport Encryption FIPS challenges

IV uniqueness proof, reuse checks, zeroization in distributed, zerodowntime systems has challenges.

Efficient counter management adds complexity.

We prefer random IVs.

Fabric Encryption performance challenges

OTN / FlexO

- ~80KB frames = 5,000 AES blocks.
- 100x Gbps speeds
- AES-GCM can be slow for 5,000 AES blocks at 400Gbps speeds.

Block # limits (2⁶⁴ (SP800-38D) or 2^{34.5} (RFC8446))

TRANSPORT ENCRYPTION

Distributed encryption systems could collectively encrypt ~2⁶⁴ blocks in 2 weeks.

Key / Context Commitment

HTTPS://IA.CR/2020/1456

 Without key commitment, C could be decrypted to M1 or M2 depending on the data decryption key used.

- This issue affected AWS client-side envelope encryption
- It was addressed in 2020 with explicit Keylds.

AWS Encryption SDK

Agenda

AES-GCM challenges

- IVs
- PRP limits
- Key / Context Commitment
- Solution Properties
 - New wide-block cipher
 - New Mode

Solution Properties

NEW WIDE-BLOCK CIPHER AND MODE

- Performance
- 256-bit block width (to avoid the 2⁶⁴ block # limit)
- Ability to encrypt (at least) 2⁶⁴ or (ideally) 2⁹² messages with random IVs
- Minimum 2⁻⁶⁴ {key, IV} collision probability for 2⁶⁴ messages or 2⁻³² for 2¹¹² messages.
- A key / context commitment option for robustness
- An IV misuse-resistance option

Solution – 1. New Cipher

Properties

Can reuse, or build new efficient hardware from existing architectures

Candidates

- Rijndael-256
- Based on other PRPs

Solution - 2. New Mode

Candidates

- OCB mode
- AEGIS-128L
- New stream cipher and authenticator. More in the literature...

Off topic:

Quantum-safe asymmetric encryption to replace RSA-OAEP in SP 800-56B.

Hint: PQ HPKE, hpke-xyber768d00 @

Thank you!

Panos Kampanakis

kpanos@amazon.com