Practical Challenges with AES-GCM and the need for a new mode and wide-block cipher

Panos Kampanakis, Matt Campagna, Eric Crocket, Adam Petcher
Amazon Web Services (AWS)
PRACTICAL CHALLENGES WITH AES-GCM

Agenda

AES-GCM challenges

• IVs
• PRP limits
• Key / Context Commitment

• Solution Properties
 • New wide-block cipher
 • New Mode
PRACTICAL CHALLENGES WITH AES-GCM

Agenda

AES-GCM challenges

- IVs
- PRP limits
- Key / Context Commitment

Solution Properties

- New wide-block cipher
- New Mode
Random IVs and the 2^{32} invocation limit

High-volume Transport Encryption for virtualized networks

Distributed transport encryption can collectively encrypt $\sim 2^{32}$ messages in 2 seconds.

Re-keying every 2 seconds is not practical.

High-volume AWS KMS Encryption

AWS Key Management Service (AWS KMS) key sometimes can encrypt 2^{32} plaintexts / week.

Rekeying weekly and managing AWS keys for thousands of accounts annually adds overhead.
Deterministic 96-bit IVs

Transport Encryption deterministic IV challenges
- Support for large # of identifiers limits the counter size which means less messages per key.
- Unique identifiers in distributed systems add complexity.
- We prefer random IVs.

Transport Encryption FIPS challenges
- IV uniqueness proof, reuse checks, zeroization in distributed, zero-downtime systems has challenges.
- Efficient counter management adds complexity.
- We prefer random IVs.

Fabric Encryption performance challenges

OTN / FlexO
- ~80KB frames = 5,000 AES blocks.
- 100x Gbps speeds
- AES-GCM can be slow for 5,000 AES blocks at 400Gbps speeds.
Block # limits (2^{64} (SP800-38D) or $2^{34.5}$ (RFC8446))

Transport Encryption

Distributed encryption systems could collectively encrypt $\sim 2^{64}$ blocks in 2 weeks.
Key / Context Commitment

Without key commitment, C could be decrypted to M1 or M2 depending on the data decryption key used.

This issue affected AWS client-side envelope encryption.

It was addressed in 2020 with explicit KeyIds.
PRACTICAL CHALLENGES WITH AES-GCM

Agenda

AES-GCM challenges

• IVs
• PRP limits
• Key / Context Commitment

• Solution Properties
 • New wide-block cipher
 • New Mode
Solution Properties

NEW WIDE-BLOCK CIPHER AND MODE

• Performance

• 256-bit block width (to avoid the 2^{64} block # limit)

• Ability to encrypt (at least) 2^{64} or (ideally) 2^{92} messages with random IVs

• Minimum 2^{-64} \{key, IV\} collision probability for 2^{64} messages or 2^{-32} for 2^{112} messages.

• A key / context commitment option for robustness

• An IV misuse-resistance option
PRACTICAL CHALLENGES WITH AES-GCM

Solution – 1. New Cipher

Properties
• Can reuse, or build new efficient hardware from existing architectures

Candidates
• Rijndael-256
• Based on other PRPs
Solution – 2. New Mode

Candidates

- OCB mode
- AEGIS-128L
- New stream cipher and authenticator. More in the literature…
Off topic:

Quantum-safe asymmetric encryption to replace RSA-OAEP in SP 800-56B.

Hint: PQ HPKE, hpke-xyber768d00 😊
Thank you!

Panos Kampanakis
kpanos@amazon.com